Eulerian and Lagrangian formulations in $BV^s$ for gas-solid chromatography
Résumé
An initial-boundary value problem for a chemical system with unknown velocity related to gas chromatography is considered. The system is hyperbolic and existence of entropy solutions is achieved in fractional BV spaces: $BV^s$, $ s ≥ 1/3$, with less regularity than usual. We prove that $BV^{1/3}$ is the critical space for this problem. A Lagrangian formulation of the system for the initial value problem provides a smoothing effect in BV and uniqueness when the first gas is more active than the second one.
Fichier principal
BGJP.pdf (412.92 Ko)
Télécharger le fichier
Physical-Riemann-Pb.pdf (10.36 Ko)
Télécharger le fichier
Riemann.pdf (7.72 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|