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Abstract

Over the last decade, culture-independent surveys of marine picoeukaryotic diversity based on 18S ribosomal DNA clone
libraries have unveiled numerous sequences of novel high-rank taxa. This newfound diversity has significantly altered our
understanding of marine microbial food webs and the evolution of eukaryotes. However, the current picture of marine
eukaryotic biodiversity may be significantly skewed by PCR amplification biases, occurrence of rDNA genes in multiple
copies within a single cell, and the capacity of DNA to persist as extracellular material. In this study we performed an analysis
of the metagenomic dataset from the Global Ocean Survey (GOS) expedition, seeking eukaryotic ribosomal signatures. This
PCR-free approach revealed similar phylogenetic patterns to clone library surveys, suggesting that PCR steps do not impose
major biases in the exploration of environmental DNA. The different cell size fractions within the GOS dataset, however,
displayed a distinct picture. High protistan diversity in the ,0.8 mm size fraction, in particular sequences from radiolarians
and ciliates (and their absence in the 0.8–3 mm fraction), suggest that most of the DNA in this fraction comes from
extracellular material from larger cells. In addition, we compared the phylogenetic patterns from rDNA and reverse
transcribed rRNA 18S clone libraries from the same sample harvested in the Mediterranean Sea. The libraries revealed major
differences, with taxa such as pelagophytes or picobiliphytes only detected in the 18S rRNA library. MAST (Marine
Stramenopiles) appeared as potentially prominent grazers and we observed a significant decrease in the contribution of
alveolate and radiolarian sequences, which overwhelmingly dominated rDNA libraries. The rRNA approach appears to be
less affected by taxon-specific rDNA copy number and likely better depicts the biogeochemical significance of marine
protists.
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Introduction

In the last decade, 18S rDNA clone libraries have been

considered as the gold standard approach for conducting

molecular surveys of marine protist diversity in the environment

[1,2]. These investigations, almost exclusively performed on the

picoplanktonic size fraction (0.2–3 mm), have unveiled high rank

taxa such as the so-called MALV (marine alveolates, [3]), MAST

(marine stramenopiles, [4]), and picobiliphytes [5], many of which

have become cornerstone taxa for microbial ecologists. Diversity

surveys of picoplanktonic protists in different marine regions have

generated broadly similar patterns [2,6], with dominance of non-

photosynthetic groups, including tiny parasites [7] and grazers [8].

In contrast, epifluorescence microscopy typically reveals a

dominance of photosynthetic or mixotrophic cells over heterotro-

phic cells (ca 80% vs 20%, respectively) in the oceans [9]. This

suggests that 18S rDNA clone libraries may give a significantly

biased view of diversity. Several technical limitations inherent to

culture-independent explorations of microbial diversity have been

highlighted [10,11]. Among these, biases during DNA extraction

and PCR amplification steps [12], primer selectivity, multiple

rDNA gene copy number [13], and the existence of pseudogenes

[14] or extracellular DNA [15], are particularly relevant.

Alternative approaches focused on photosynthetic protists have

recently been developed to overcome the apparent bias towards

heterotrophic cells. These include the construction of clone

libraries from flow cytometry sorted populations [16], studies

specifically targeting plastid genes [17], and the use of taxon-

specific primers [18]. However, PCR biases, rDNA copy number,

and extracellular DNA remain as potentially problematic issues

with these approaches. A promising alternative which does not

require PCR steps is the metagenomic approach, based on direct

cloning and shotgun sequencing of environmental DNA.

This strategy was recently used to study prokaryotic life on a

worldwide scale (Sorcerer, Global Ocean Survey expedition, [19]).

Studies that compared metagenomic and 16S rDNA PCR-based

clone libraries demonstrated that these two approaches were

complementary for bacterial community analysis [20,21]. With

respect to eukaryotic microbes, phylogenetic information present

in metagenomic libraries has thus far received very little attention

[22]. Another perspective to investigate microbial diversity is to

target directly the 18S rRNA (i.e. the ribosomes themselves) as a

proxy for both diversity and metabolic activity of cells [23], and to

avoid the problems induced by differences in rDNA copy number

and the perturbation from dissolved DNA. This approach has

been proven to be effective on prokaryotic communities

[11,24,25], but to date has only been applied on protist

communities in an oxygen depleted environment [26].

In the present study we performed an in-depth analysis of the

metagenomic dataset from the GOS expedition, seeking eukary-
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otic signatures through the presence of 18S rDNA genes. We also

compared the protist diversity assessed by 18S rDNA libraries

prepared from both environmental DNA and RNA extracted from

the same water sample collected in the Mediterranean Sea. We

show that overall the PCR induced biases do not appear to impact

significantly diversity surveys. Rather we argue that rDNA copy

number and extracellular DNA (partially by-product of the size

fractionation) are major issues that introduce biases in current

studies of protist diversity. Environmental 18S rRNA clone

libraries appear to represent a promising means to minimize

these biases and thereby offer new perspectives in the study of the

diversity and function of marine protist.

Results

Taxonomic composition in 18S rDNA clone libraries
versus the metagenomic dataset

Taxonomic affiliation of sequences retrieved from PCR

amplified 18S rDNA clones libraries performed on the picoplank-

ton size fraction (0.2 to 3 mm) of samples collected in the photic

zone around the globe [2] was compared to that of 18S rDNA

sequences found in the ,3 mm size fraction of the GOS

metagenomic dataset (Figure 1A). Despite the large differences

in the number of sequences analyzed for both datasets, random

sub-sampling of the larger dataset demonstrated that the range of

expected averaged distributions on a smaller number of sequences

matched closely to the distribution observed (Figure S1). This

shows that looking at a limited number of sequences does not

affect the diversity observed at the taxonomic level we considered.

The clonal representation of the different taxonomic groups in

both datasets was significantly correlated (slope 0.78; R2 = 0.39;

p = 0.0165), indicating that both integrated datasets yielded

comparable results.

In the clone libraries, out of the 2175 sequences reviewed by

Massana and Pedrós-Alió, alveolates dominated the assemblages

with 50.3% of the sequences retrieved (most of which were

MALV, marine alveolates: 19.2% MALV-II and 16.7% MALV-I).

The second most represented taxon was the stramenopiles,

accounting for 20% of the eukaryotic sequences (of which 10.9%

were MAST, marine stramenopiles). Prasinophytes and radiolar-

ians accounted for 12.1% and 4.1% of the sequences, respectively.

Cryptophytes, haptophytes and picobiliphytes represented 2.9%,

2.4%, and 1.1% of the sequences. The category ‘‘other’’,

accounting for 7.2% of the sequences, was mainly composed of

cercozoans, choanoflagellates and unassigned alveolates. Out of

116 sequences extracted from the GOS metagenomic dataset, the

most represented groups were the alveolates (40.5%, of which

24.1% belonged to MALV-II and 5.2% to MALV-I), radiolarians

(18.1%), stramenopiles (16.4%, including 12.9% of MAST),

prasinophytes (11.2%), and haptophytes (6.9%). Sequences

Figure 1. Relative contribution of different taxonomic groups from 18S rDNA sequences obtained from the picoplankton fraction
of marine samples. A. Comparison of data obtained through PCR-based clone libraries as presented in [2] versus the metagenomic data retrieved
from , 3 mm size fraction of the GOS dataset. B. Detail of the metagenomic GOS dataset obtained from two different size fractions ,0.8 mm and 0.8
to 3 mm. C. Comparison of clone libraries performed on the same sample from the Mediterranean Sea (0.6 to 3 mm size fraction) after DNA extraction
(62 sequences) and RNA extraction (111 sequences). Actual numbers of sequences affiliated to each taxonomic group used to prepare these graphs
are shown in Table S1.
doi:10.1371/journal.pone.0007143.g001
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affiliated to the picobiliphytes accounted for 1.7% of total

sequences.

The 18S rDNA sequences retrieved from the GOS dataset had

an averaged similarity of 96.0% with sequences deposited in the

GenBank database. The most dissimilar sequences affiliated with

marine alveolates (e.g. 80.6% similarity), whereas some were

identical to GenBank entries (mostly prasinophytes and the

haptophyte Chrysochromulina) and many were .99% similar to

GenBank sequences. Closest matches for most GOS sequences

corresponded to environmental clones obtained from PCR-based

studies (Tables S4 and S5)

Taxonomic analysis of distinct size fractions among the
metagenomic dataset

Of the 116 18S rDNA sequences identified in the metagenomic

dataset from the GOS expedition, 69 derived from the ,0.8 mm

fraction and 47 from the 0.8–3 mm size fraction. Clearly, both size

fractions were capturing a distinct fraction of picoeukaryotic

diversity (Figure 1B), and the percentage of taxonomic groups

observed in the two size fractions did not correlate at all (slope

0.18; R2 = 0.03; p = 0.5523). Considering the smaller size fraction

(,0.8 mm), radiolarians contributed 30.4% and stramenopiles

7.2% of the sequences (with 5.8% MAST). The overall

contribution of alveolates was 41.9% of the sequences, including

18.8% of MALV-II, 10.1% of dinoflagellates and 7.2% of ciliates.

Prasinophytes contributed 15.9% and haptophytes 2.9%. No

picobiliphyte sequences were detected. In the larger size fraction

(0.8–3 mm) the overall contribution of alveolates remained similar,

but there was an increase of MALV-II (31.9% of sequences) and a

decrease of dinoflagellates (2.1%) and ciliates (not detected). The

contribution of stramenopiles increased drastically to 29.8% (of

which 23.4% were MAST) while not a single radiolarian sequence

was identified. Prasinophytes decreased to 4.3%, whereas the

contributions of haptophytes, chrysophytes, and picobiliphytes

increased to 12.8%, 4.3%, and 4.3%, respectively.

18S rDNA clones libraries prepared from DNA and RNA
extracts

18S rDNA environmental clone libraries were constructed from

DNA and RNA extracts (followed by a reverse transcription)

obtained from the same seawater sample (Figure 1C). Considering

the limited number of clones sequenced and previous knowledge

for marine samples, the libraries were explored in numbers far

from saturation. Nevertheless, obvious patterns could be distin-

guished and the distribution of diversity observed for the 18S

rRNA library is well outside the range of expected values for 18S

rDNA libraries. Again, there was no correlation among the clonal

percentage of taxonomic groups in the two libraries (slope -0.02;

R2 = 0.00; p = 0.9539). Among the 62 sequences from the DNA

based library, 43.5% affiliated to alveolates, 38.7% to radiolarians,

and 11.3% to stramenopiles. Most alveolate sequences affiliated

with MALV-I (21.0%) or MALV-II (17.7%). Most of the

stramenopiles belonged to MAST (i.e. 8.1% of the sequences).

Chrysophytes, haptophytes, prasinophytes, and cryptophytes were

detected but with a low clonal representation. In the rRNA based

library, the diversity observed for the 111 sequences analyzed was

drastically different. The contribution of alveolates decreased to

9.9% and the contribution of stramenopiles increased to 64.8%

including 45.0% MAST. The contribution of sequences affiliated

to haptophytes and prasinophytes increased to 7.2% and 4.5%,

respectively. In contrast, the contribution of radiolarians sharply

decreased down to 2.7%. The pelagophytes and picobiliphytes,

which were not detected in the DNA survey, contributed 8.1%

and 4.5% of sequences in the RNA survey, respectively. Also only

detected in the RNA-based library, dictyochophytes made up half

of the ‘‘other stramenopiles’’ category and Telonemia the major

fraction of the ‘‘other eukaryotes’’ (data not shown).

In each library, Operational Taxonomic Units (OTUs) were

defined using a 99% identity threshold (Table 1). Of the 62 and

111 sequences from the DNA and RNA based libraries, 34 and 52

OTUs were identified, respectively. Only 2 OTUs were present in

both libraries, one affiliated to MALV-I, and the other to MAST-

4. Using a 98% identity threshold, 29 and 46 OTUs were

identified for the DNA and RNA based libraries respectively, but

only one additional OTU (belonging to chrysophytes) was

common to the two libraries. Statistical comparisons performed

with LIBSHUFF found a significant difference between the two

libraries (p,0.001).

Discussion

18S rDNA clone libraries and metagenomic surveys give
similar diversity patterns

Our analyses of the 18S rDNA sequences retrieved from the

metagenomic dataset from the GOS expedition did not reveal

substantial differences as compared to the PCR-based environ-

mental clone libraries (Figure 1A). Both datasets were obtained

from a similar size fraction (,3 mm) and correspond to

compilations of sequences from various sampling locations and

thus represent a reasonable integration of the photic layer in the

marine environment. Eukaryotic microbial diversity assessed by

means of environmental clone libraries of the 18S rDNA gene has

been reported from a variety of ecosystems over the last decade

[2,6]. This approach has led to the discovery of eukaryotic taxa

such as the MALV and MAST groups that often dominate the

Table 1. Number of sequences and OTUs (Operational
Taxonomic Units) defined at 99% identity threshold in
different taxonomic groups from both DNA- and RNA-based
libraries.

DNA RNA

# seq. OTU 99% # seq. OTU 99%

MALV-I 13 8 7 2

MALV-II 11 8 2 2

Dinoflagellates 3 2 1 1

Ciliates 0 0 1 1

MAST 5 3 50 20

Chrysophytes 2 1 5 2

Pelagophytes 0 0 9 1

Other Stramenopiles 0 0 8 6

Radiolarians 24 8 3 2

Prasinophytes 1 1 5 3

Cryptophytes 1 1 2 1

Haptophytes 2 2 8 6

Picobiliphytes 0 0 5 1

Telonema 0 0 3 2

Other 0 0 2 2

TOTAL 62 34 111 52

Ratio OTUs / # seq. 0.55 0.47

doi:10.1371/journal.pone.0007143.t001
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community in terms of clonal abundance. Among the technical

issues usually invoked to lead to biases in 18S rDNA clone libraries

there is the PCR step before the cloning procedure [10,12].

Metagenomic approaches directly clone and shotgun sequence the

DNA from a given sample, without prior PCR. The similarity in

diversity patterns between the PCR cloning and metagenomic

approaches suggests little impact of the PCR step on the outcome

of clone libraries in terms of sequence diversity and relative

contribution of specific taxa. Our observation is consistent with

similar studies on 16S rDNA bacterial diversity that did not find

significant differences at high phylogenetic levels between

metagenomic and PCR-based libraries [20].

Analysis of GOS size fractions refines our view of actual
community composition

Separate analysis of the two size fractions from the GOS dataset

revealed clear differences in terms of taxonomic composition

(Figure 1B). As the smallest eukaryotic organism known so far has

a cell diameter of 0.8 mm [27], some of the 18S rDNA signatures

observed in the ,0.8 mm fraction might indeed derive from very

small eukaryotes (like the prasinophytes that appeared mostly in

this small fraction, Table S4), but many sequences most likely

derive from cell debris or extracellular DNA from larger cells. This

is likely the case for radiolarians, dinoflagellates, and ciliates,

groups known to contain relatively large nano- and microplank-

tonic cells, and for which sequences were prominent in the

,0.8 mm fraction and nearly absent from the 0.8–3 mm fraction.

Among these groups, the radiolarians were the most intriguing,

since these relatively large exoskeleton bearing protists typically

represent a significant fraction of 18S rDNA sequences in diversity

surveys of marine picoeukaryotes (Figure 1A). These radiolarian

sequences appear highly diverse [28], and most likely derived from

larger organisms for which molecular data are not yet available,

highlighting the extent of both the unknown diversity in this

taxonomic group and filtration artifacts which affect environmen-

tal surveys of the smallest size fractions. As suggested in a recent

study that investigated the eukaryotic diversity of the ,0.8 mm size

fraction in a subset of the GOS dataset (i.e. Sargasso Sea samples)

[22], future environmental surveys should target the 0.8–3 mm

fraction, which may actually better represent the picoeukaryote

diversity.

Several studies have proved the occurrence of extracellular

DNA (particulate or dissolved) in water or sediments [29–31].

Among this DNA pool, a substantial portion contains high

molecular weight molecules and is thought to be derived from

eukaryotic organisms [29]. This extracellular DNA is prone to

PCR amplification, and genes such as the one coding for the rbcL

enzyme have been successfully amplified from particle-free water

samples [15]. It is very likely that a fraction of the extracellular

DNA is retained onto 0.2 mm filters, through collection of

aggregates or molecular adsorption. Consequently, we believe

that it is important to consider the interference of extracellular

DNA when assessing the diversity of eukaryotic microbes in

ecological perspectives.

The RNA approach gives complementary perspectives on
marine protist diversity

Diversity assessed by means of libraries prepared after reverse

transcription of extracted RNA led to a drastically different view of

the community as compared to the classical DNA-based approach

(Figure 1C). It is generally recognised that 18S rDNA diversity

surveys are not quantitative with respect to cell abundance

[32,33]. Besides PCR biases, the contributions of specific taxa are

related to the number of rDNA copies within cells of the taxa.

Although rDNA copy number is usually assumed to be correlated

with cell size [13,34], for a limited size range (e.g. picoeukaryotes)

this number can vary significantly depending on phylogenetic

affiliation and is also suspected to be influenced by life strategies of

cells (e.g. parasitic, heterotrophic, autotrophic) [2,35]. The effect

of taxon-specific rDNA copy number is avoided when analysing

extracted RNA. Moreover, extracellular RNA is much less stable

than DNA, minimising the problem of amplification from

extracellular material. Ribosome content within a single cell is

commonly viewed as a proxy of cellular activity status [23,36].

Therefore, 18S rRNA libraries are intentionally skewed to give

insights on both diversity and taxon specific activity within protist

assemblages [26]. As a flip side effect we might have expected an

over representation of the most active taxa. However, both DNA-

based and RNA-based libraries contained a high diversity, with

comparable ratios of OTUs/number of sequences (Table 1). We

found very little overlap in the sequences retrieved in the DNA

and RNA libraries. At the 98% identity threshold, only 3 OTUs

(ca. 4%) were detected in both libraries, which is rather low

compared to the 27% observed in a similar study on anoxic waters

[26]. This discrepancy might be explained by a lower sequencing

effort done here but also by the selective nature of anoxic waters

that might impose stronger constraints on the communities

compared with open ocean conditions, implying a lower diversity

and therefore a higher overlap between rDNA and rRNA

libraries.

The diversity observed by both approaches is clearly not

distributed within the same high level taxa, paralleling observa-

tions made on prokaryotes or on eukaryotes in an extreme

environment [11,24–26]. Some photosynthetic groups such as

pelagophytes and picobiliphytes were not detected in the 18S

rDNA based library, whereas they contributed notably to the 18S

rRNA library (Figure 1C). The relative contribution of other

photosynthetic groups such as the prasinophytes and the

haptophytes was also higher in the rRNA library. This might

reflect a relatively higher metabolic activity in these photosynthetic

taxa at the time of sampling, or may indicate that they have fewer

rDNA copies (e.g. Pelagomonas, [13]), so they could be diluted in the

environmental DNA surveys by cells with a higher rDNA copy

number (e.g. alveolates). Among prasinophytes, cells belonging to

the genus Micromonas were identified as being the most active

(Table S3), confirming previous studies showing the significance of

this genus in coastal ecosystems [37]. Regarding heterotrophic

protists, sequences belonging to MAST-3, -4 and -7 appeared as

prominent grazers (Table S3), which together with the widespread

distribution of these taxa suggest they might actually be the major

protistan predators in the oceans [8]. Finally, the most pronounced

divergence between both libraries was the contribution of

alveolates and radiolarians, which overwhelmingly dominated

DNA-based diversity surveys [2]. This perhaps reflects the high

18S rDNA gene diversity and high copy number matching the

parasitic life strategy of MALV [7,38] and further supports the

putative presence of extracellular radiolarian 18S rDNA in

seawater.

Conclusions
Size fractionation, metagenomics, and 18S rRNA libraries bring

new perspectives for the understanding of marine picoeukaryotic

diversity. In particular, rRNA libraries reduce significantly two of

the major biases of rDNA diversity surveys, the rDNA copy

number and the occurrence of extracellular DNA, but are in turn

skewed towards the active part of the communities. Considering

the relative ease of handling ribosomal RNA molecules, extended

Marine Protists Diversity

PLoS ONE | www.plosone.org 4 September 2009 | Volume 4 | Issue 9 | e7143



diversity surveys based on environmental rRNA will undoubtedly

provide insights into the ecology of uncultured species. Associated

with stronger depth of sequencing (e.g. 454 [39]), this approach

will probably help to achieve a nearly exhaustive view of protist

diversity and to better appreciate the contribution and function of

specific organisms in the microbial food web.

Materials and Methods

Mining the GOS dataset using CAMERA
The Global Ocean Survey (GOS) covered a variety of oceanic

regions from Nova Scotia to South Africa across the Caribbean,

the Panama Channel, the Pacific and the Indian Ocean [19] and

data is accessible through the CAMERA database [40]. For the

purpose of our analysis, and to compare waters of similar

characteristics, only samples from offshore and coastal photic

zones were used, whereas samples from environments such as

hypersaline lagoons or mangroves were discarded. Seventy two

sampling sites, representing a sequencing effort of 14000 Mb, were

analyzed for the ,0.8 mm fraction, whereas only 8 sampling sites

(850 Mb) were analyzed for the 0.8–3 mm fraction. This

demonstrates the primary focus on prokaryotes of the GOS

expedition. The fraction ,3 mm recorded in our analysis

corresponds to the sum of data retrieved from the two size

fractions. We searched for 18S rDNA genes using the eukaryotic

specific primers EukA and EukB [41], 528f [42], 336f and 1209f

[43] as in silico probes. Sequences were then assigned to specific

taxonomic groups after the results of BLAST searches [44].

Chimeras were detected by doing BLAST with different regions of

the sequence. Metazoans, marine euryarchaeote group II

sequences (obtained with EukA primer), and short (,100 bp)

sequences were discarded. We ended up with a total of 116

eukaryotic sequences from this metagenomic survey, with 69

and 47 sequences in ,0.8 mm and 0.8–3 mm size fractions,

respectively.

Sampling procedures for the DNA vs RNA clone libraries
Seawater samples were harvested on November, 15th 2007 in

the Mediterranean Sea off Villefranche sur Mer (France). Water

was collected with a 12L Niskin bottle deployed successively at 40,

60, 80, 100, 120, and 140 meter depths. After a pre-filtration

through a 1000 mm mesh, equal volumes of water from each depth

were mixed together in order to obtain an integration of the

communities throughout the water column. Then water was gently

sieved through 63 mm and 20 mm meshes and filtered through a

3 mm pore size 47 mm diameter polycarbonate filter. For DNA

and RNA libraries, around 4 liters of the fraction below 3 mm were

filtered onto 0.6 mm pore size 47 mm diameter polycarbonate

filters at a rate of 90 ml min21. Finally the filters were flash frozen

in liquid nitrogen and stored at 280uC until further analysis.

Nucleic acid extractions and clone library construction
For DNA extraction, the filter was cut in small pieces with a

sterile razor blade and placed in a 2 ml microcentrifuge tube.

Liquid nitrogen was added to the tube and the frozen sample

material was disrupted manually with a disposable pellet pestle

(Fisher Bioblock), repeating this step four more times. This

disruption procedure was followed by DNA extraction with a

DNeasy Plant Mini kit (Qiagen) following the manufacturer’s

recommendations. DNA extracts were stored at 280uC until

analysis. For RNA extraction, filters were immersed in RLT buffer

(from a Quiagen RNeasy kit) mixed with an equal amount of 0.1

and 0.5 mm glass beads and subsequently vortexed. Then the

RNeasy kit instructions for Plants and Fungi were followed.

Quantification of extracted nucleic acids was performed with the

Qubit Quantitation platform (Invitrogen). Prior to reverse

transcription, a DNase digestion step was performed with DNaseI

(Roche Diagnostic) and efficient digestion was controlled by gel

electrophoresis. Reverse transcription was performed on pure

RNA using the SuperScript II kit (Invitrogen) according to the

manufacturer’s instructions. The eukaryotic 18S specific EUKB

primer [41] was used for the reverse transcription.

Both 18S rDNA genes and 18S ribosomal cDNA were PCR

amplified using the same set of primers, 528f [42] and EUKB [41].

Approximately 10 ng of DNA were used as a template in a 50 ml

PCR mixture containing 200 mM of each dNTP, 1.5 mM MgCl2,

0.5 mM of each primer and 1.25 units of Taq DNA polymerase

(Promega) with the PCR buffer supplied with the enzyme.

Reactions were carried out in a thermocycler with the following

cycle: an initial denaturing step at 94uC for 3 min, 35 cycles of

denaturing at 94uC for 45 s, annealing at 55uC for 1 min and

extension at 72uC for 3 min, and a final extension step at 72uC for

10 min. In order to check the quality of the RNA extraction, we

used the RNA extract digested by DNase as a PCR template.

Negative results confirmed the lack of remnant DNA after

digestion which could have interfered with the results obtained

for the cDNA libraries. PCR products were used for clone library

construction. In both cases, three separate fresh PCR products

(50 ml) were pooled and cleaned with the Qiagen PCR Purification

kit and cloned using the TOPO-TA cloning kit (Invitrogen).

Putative positive clones were checked by PCR amplification using

the same primer set. PCR reactions showing the right insert size

were purified and sequenced with the 528f primer on an ABI

Prism 3100 sequencer (Applied Biosystems) at the Station

Biologique de Roscoff sequencing facility.

Taxonomic affiliation of the 18S rDNA sequences obtained in

this study (between 800 and 950 bp length) and putative chimeras

were identified by using BLAST as explained before (data shown

in Tables S2 and S3). Among the 113 cDNA clones sequenced 2

were chimeras leaving 111 sequences for further analysis. Sixty

seven rDNA clones were sequenced, 2 chimeras were identified,

and 3 metazoan sequences (Appendicularia and copepods) were

discarded, leaving 62 sequences for further analysis. Operational

Taxonomic Units (OTU) at 99% identity threshold were identified

and compared among libraries using the DOTUR and SONS

programs [45,46]. Statistical comparisons of the two libraries were

performed with the webLIBSHUFF tool [47]. Sequences have

been deposited in GenBank under accession numbers GQ344621

to GQ344796.

Statistical analysis
Considering the small number of sequences retrieved from our

analysis, we wanted to make sure that comparisons between

datasets were meaningful. Using R software we calculated the

expected distribution of sequences from small size samples

compared to a larger reference dataset. The random sub-sampling

procedure of 62 and 47 sequences was replicated 1000 times from

the Massana and Pedrós-Alió (2008) dataset (2175 sequences) and

the GOS dataset (116 sequences), respectively. Standard devia-

tions were calculated for each taxonomic group considered and

comparisons between observed and expected datasets were plotted

(Figure S1).

Correlations were performed with the statistical package JMP

5.0.1a to evaluate the degree of divergence between paired

datasets and estimate the impact of PCR approaches (Figure 1A),

size fractionation (Figure 1B), and 18S rDNA versus 18S rRNA

clones libraries (Figure 1C), on environmental diversity surveys.
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Supporting Information

Figure S1 Taxonomic distribution of observed diversity com-

pared to expected distribution in a sample of smaller size. A)

Histogram showing the observed distribution of sequences in the

Massana and Pedrós-Alió 2008 dataset (Black) and the average

and standard deviation of expected distribution after random sub-

sampling of 62 sequences, replicated 1000 times (Red). B)

Histogram showing the observed distribution of sequences in the

GOS , 3mm dataset (Black) and the average and standard

deviation of expected distribution after random sub-sampling of 47

sequences, replicated 1000 times (Red).

Found at: doi:10.1371/journal.pone.0007143.s001 (3.02 MB TIF)

Table S1 Number of sequences for each taxonomic group found

in the analyzed dataset

Found at: doi:10.1371/journal.pone.0007143.s002 (0.05 MB

DOC)

Table S2 List of closest blast results for the RNA based clone

library

Found at: doi:10.1371/journal.pone.0007143.s003 (0.26 MB

DOC)

Table S3 List of closest blast results for the DNA based clone

library

Found at: doi:10.1371/journal.pone.0007143.s004 (0.16 MB

DOC)

Table S4 Closest blast hits on sequences retrieved from the

GOS , 0.8mm dataset

Found at: doi:10.1371/journal.pone.0007143.s005 (0.10 MB

DOC)

Table S5 Closest blast hits on sequences retrieved from the

GOS 0.8 - 3 mm dataset

Found at: doi:10.1371/journal.pone.0007143.s006 (0.08 MB

DOC)
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