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Abstract

Background: Despite enormous environmental variability linked to glacial/interglacial climates of the Pleistocene, we have
recently shown that marine diatom communities evolved slowly through gradual changes over the past 1.5 million years.
Identifying the causes of this ecological stability is key for understanding the mechanisms that control the tempo and mode
of community evolution.

Methodology/Principal Findings: If community assembly were controlled by local environmental selection rather than
dispersal, environmental perturbations would change community composition, yet, this could revert once environmental
conditions returned to previous-like states. We analyzed phytoplankton community composition across .104 km latitudinal
transects in the Atlantic Ocean and show that local environmental selection of broadly dispersed species primarily controls
community structure. Consistent with these results, three independent fossil records of marine diatoms over the past
250,000 years show cycles of community departure and recovery tightly synchronized with the temporal variations in Earth’s
climate.

Conclusions/Significance: Changes in habitat conditions dramatically alter community structure, yet, we conclude that the
high dispersal of marine planktonic microbes erases the legacy of past environmental conditions, thereby decreasing the
tempo of community evolution.
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Introduction

Environmental variability and historical contingencies shape

ecosystems by controlling the spatial distribution of species,

promoting biological innovation and extinction and, ultimately,

driving the evolution of communities [1–3]. Ecological theory has

yielded two main classes of mechanisms to account for patterns of

biodiversity and community assembly: 1) limited dispersal of species

combined with unrestricted entry into communities (dispersal-

assembly models) [4], and 2) species’ dispersal combined with

environmental filtering (niche-assembly models) [5,6]. Dispersal-

assembly models predict a progressive decay of community

similarity in space and through time, reflecting the effect of

dispersal limitation and the stochastic replacement of individuals

from the community. By contrast, niche-assembly models are

expected to have more predictable community composition among

sites and/or time periods characterized by similar environmental

conditions [6]. In between these two extreme scenarios, high

dispersal rates characteristic of organisms such as marine microbial

plankton may potentially overwhelm the effect of spatial constraints

and environmental determinants, giving rise to random species’

distributions (‘everything is everywhere’) [7]. The ‘everything is

everywhere’ hypothesis implies a lack of biogeographic patterns,

and, over the last decade, has been a subject of intense debate

among aquatic microbial ecologists [7–9]. Overall, these ecological

theories may help to explain the patterns of biodiversity and

community structure observed in the fossil record [2].

The activity of marine phytoplankton, unicellular photoauto-

trophs that drift with ocean currents, accounts for approximately

half of primary production on Earth and sustains marine food

webs [10,11]. Recent work shows that local communities of

marine diatoms, a prominent group of phytoplankton in the

modern ocean, evolved slowly through gradual changes over the

past 1.5 million years (My) of Earth’s history [9]. This observation

is somewhat surprising because this geological period has

witnessed dramatic climate perturbations [12], potentially increas-

ing the rate of community turnover through changes in species’

distribution ranges and extinction [13–15]. It has been hypoth-
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esized that the high dispersal of marine phytoplankton would have

ensured species’ survival and community recovery [9]; dispersal

allows species to track changes in environmental conditions and

decreases the probability of extinction [7,16]. However, our

limited understanding of the mechanisms that control the assembly

of microbial plankton communities, and the low temporal

resolution of the fossil records analyzed to date have precluded

testing this hypothesis. Here, we tested this ‘high dispersal-

community recovery’ hypothesis by analyzing contemporary

phytoplankton communities’ structure and fossil records of marine

diatoms over the past 250,000 years across large latitudinal

gradients in the Atlantic Ocean.

Methods

Analysis of modern phytoplankton communities
Data of extant phytoplankton communities were extracted from

the Atlantic Meridional Transect (AMT) database (http://web.

pml.ac.uk/amt/). The AMT programme offers a unique oppor-

tunity to conduct a basin scale study of phytoplankton dynamics

across different environmental settings including subtropical gyres,

equatorial and coastal upwelling systems, and temperate/subpolar

regions. [17]. From September 1995 to May 1997, two meridional

transects between Great Britain and the Falkland Islands were

carried out each year during the boreal spring and autumn. AMT

1, 2, 3, and 4 were carried out on board RRS James Clark Ross in

September–October 1995, April–May 1996, September–October

1996, and April–May 1997, respectively (see Figure 1 for cruise

tracks and Table S1 for sampling details). During each cruise, a

total of 25 stations were sampled at intervals of approximately 270

nautical miles between 50uN and 50uS. At each station, seawater

samples for the determination of chemical and biological variables

were collected from 2–5 depths in the upper 200 m of the water

column with a set of 12 metal-clean, lever action Teflon Niskin

bottles provided with silicone O-rings and seals. Inorganic

nutrients were measured colourimetrically in fresh samples using

a Technicon AAII Autoanalyser and standard techniques [18].

The detection level was 0.05mM for nitrate and 0.01 mM for

phosphate. Duplicate 100-ml seawater samples were preserved,

one with 1% buffered formalin (to preserve calcium carbonate

structures) and the other with 1% final concentration Lugol’s

iodine solution. After sedimentation of a subsample for 24 hours

(Utermöhl’s technique), cells were counted with an inverted

microscope and identified to the smallest possible taxonomic level

(usually morphospecies level). The volume of water samples used

for sedimentation varied between 50 and 256 ml, according to the

overall biomass of phytoplankton as shown by fluorometry. The

complete database included 360 morphologically defined species

belonging to three major taxonomic groups: diatoms, dinoflagel-

lates and coccolithophorids. These phytoplankton groups exhibit

striking variations in biomass and species richness along AMT

[19,20]. See Table S2 for a full list of species.

Fossil records
The data used in this paper were obtained from gravity cores

GeoB1710 recovered from the continental slope off Namibia

(23.43uS 11.70uE, 2987 m water depth, 1045 cm core length)

[21], M16772-2 from the eastern equatorial Atlantic (1u219S

11u58.49W, 3913 m water depth) [22], and M12392 from the NW

African margin (25u10.39N 16u50.79, 2575 m water depth) during

R.V. Meteor cruises (Figure 1 and Table S3 for sampling details)

[23,24]. The chronostatigraphy of the cores 16772-2 and M12392

was based on oxygen isotope analyses made on planktonic

foraminifera Globigerinoides sacculifer. Correlation of the d18O record

with the curve of Martinson et al [25] provides chronologic

framework prior to 30,000 years ago. For the last 30,000 years, age

control was based on Interpolation of U/Th age [26], converted

from Accelerator Mass Spectrometry (AMS)-based 14C. For core

GeoB1710, oxygen isotope analyses of the benthic foraminifera

Cibicidoides wuellerstorfi provide the basic chronostratigraphic

framework. Twenty-six isotopic events were identified between

6000 and 245,000 years ago and correlated with the normalized

SPECMAP standard record [27]. The chronostratigraphy of the

younger part was based on AMS14C dates determined on tests of

the planktic foraminifer Globorotalia inflata and corrected with 2400

years for the apparent age of low-latitude surface ocean water [28].

These sedimentary records were analyzed for diatoms assem-

blage composition. Microfossil slides were prepared using

permanent mounting medium and analyzed using a Nikon

microscope with phase-contrast illumination at 10006magnifica-

tion [29,30]. Diatoms were identified at the smallest taxonomic

level counting 200–400 specimens (diatom valves) across at least 3

replicate slides of each level. See Table S4 for a full list of species.

Figure 1. Map showing the sampling sites overlain on a
satellite image of ocean color. Atlantic Meridional Transect tracks
(white line) separated into subtropical regions (blue boxes) and the sub-
Antarctic front (red box), and sediment core sampling sites (red stars).
doi:10.1371/journal.pone.0010037.g001
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The interpretation of diatom assemblages in downcore sediment

samples is susceptible to preferential silica preservation/dissolution

effects, which could bias the results on community dynamics

among the different sampling sites and climatic periods. However,

earlier comparisons between living and fossil diatom assemblages

along the Portuguese margin and NW African upwelling system

have shown that the dominant fossil diatoms in the sediments

possess distribution patterns similar to those of their living

counterparts in the water column [31]. This indicates that the

sedimentary record of diatoms from highly-productive, coastal

upwelling regions can be used for paleoecological inferences [31].

Whereas the analysis of extant phytoplankton communities

included species of different taxonomic groups (diatoms, dinofla-

gellates and coccolithophores), our analysis of the fossil record

focused exclusively on diatoms. Because of the planktonic life

strategy of these organisms in the open ocean, their biogeographic

distributions largely are a result of dispersal, and therefore,

regardless of the taxonomic groups under consideration, both

biogeographic and paleoecological approaches should provide

comparable results.

Species-abundance curves
Preston’s representation, displaying the frequency of species

across classes of abundance [32], and the rank-abundance species

curve, showing the number of individuals versus taxon, with taxa

ranked according to their respective abundance, was constructed

using the global AMT 1–4 database. Species were sorted into

classes of abundance distributed in logarithmic size intervals.

Species-abundance curves were constructed for each individual

assemblage (sample). Finally, an average species’ frequency

histogram and rank-abundance species curve were computed.

Community similarity
The Jaccard index, J, a measure of the similarity between

communities j and k, is defined as [33],

Jjk~
a

azbzc

where a is the number of species present in both communities j and

k, b is the number of species present in community j, but absent in

k, and c is the number of species present in community k, but

absent from j. This index requires that species which are jointly

absent from j and k are first removed. J ranges from 0 (when no

species are shared between any two communities) to 1 (when all

species are shared), emphasizes compositional changes, and serves

as a metric of b-diversity. Quantitative estimates of community

similarity were determined using the Bray-Curtis index (BC),

which is defined as,

BCjk~

Pp

i~1

yij{yik

Pp

i~1

yijzyik

where yij and yik are the abundances of species (i = 1, 2, …p) in

samples j and k. This index emphasizes changes in the most

abundant species. Pairwise community similarities were computed

using SPSS software.

Mantel test
To determine the extent to which the spatial distribution of

marine phytoplankton assemblages was controlled by local

environmental selection or spatial constraints (dispersal limitation),

standard and partial Mantel tests were performed using the

PASSAGE software for PC [34]. The standard Mantel test is used

to compare two independent (dis)similarity matrices describing the

same set of entities and to test whether the association is stronger

than one would expect from chance [35]. Our null hypothesis

predicts that, given the dominance of dispersal, microbial

assemblages will be spatially random (‘‘everything is everywhere’’).

The partial Mantel test is used to determine the relationship

between two matrices while holding another one constant which

allows separating the effects of spatial constraints from those of

environmental controls. Matrices of community similarity were

constructed using the Jaccard index between pairs of communities.

Environmental matrices were obtained using the coefficient of

Euclidean distances for quantitative data (seawater nutrient

concentrations, the depth of the nutricline and the nutristad).

Other environmental variables such as irradiance and temperature

strongly correlate with nutrient availability, and therefore these

variables were not included into the analysis. Spatial constraints

were calculated as the geographic (Euclidean) distance between

each pair of communities.

Principal component analysis
To further investigate community dynamics through the

sedimentary records taking into account species identities, we

conducted Principal Component analysis (PCA). This method

reduces the data dimensionality by performing a covariance

analysis between factors. The procedure transforms a number of

possibly correlated variables into a smaller number of uncorrelated

factors called principal components. The scores of each sample on

the first component (axis) were used to examine changes in

community composition through time.

Results

We first compared the taxonomic composition of extant

phytoplankton communities including diatoms, dinoflagellates and

coccolithophorids using data collected during Atlantic Meridional

Transect (AMT) 1–4. The analysis included: i) habitats dominated by

oligotrophic conditions extending thousands of kilometers across

subtropical and tropical oceans, and ii) habitats characterized by

contrasting environmental conditions within nearby oceanic regions

across the sub-Antarctic front (Figure 1). Subtropical and tropical

ocean systems are characterized by a marked thermal stratification

and nutrient depleted surface waters. In contrast, high latitude

regions are dominated by strong vertical mixing and high nutrient

concentrations throughout the water column. Across the sub-

Antarctic front, a sharp increase in chlorophyll a concentration

highlights a rapid transition from unproductive subtropical waters to

highly productive temperate and sub-polar systems (Figure 1). For

each individual AMT, community similarity and geographic distance

were weakly correlated (data not shown), however, closer inspection

of these distance-similarity relationships highlighted two different

patterns of community turnover. First, community similarity was not

correlated with geographic distance across subtropical/tropical

systems (Figure 2A, Table 1 and Figure S1). Second, regardless of

the geographic distance, communities assembled under different

environmental conditions (e.g. across the sub-Antarctic front)

exhibited striking dissimilarities (Figure 2A, Table 1 and Figure S1).

To quantify the importance of environmental conditions on

community structure, we calculated the ‘site-to-site’ environmental

distance using five different nutritional variables: nitrate plus

nitrite, phosphate and silicate concentration in seawater, the depth

of the nutricline and the nutristad (the gradient of nitrate in the

Microbial Community Stability
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nutricline). The two latter parameters can be considered as proxies

of nutrient supply to the upper mixed layer of the ocean.

Environmental distance explained a significant fraction of

community turnover (Figure 2B, Table 1 and Figure S2). The

relationship between community similarity and environmental

distance is a result of comparing tropical/subtropical waters with

highly productive systems characteristic of the sub-Antarctic

region. Perhaps surprisingly, Mantel and partial Mantel tests

suggest that community similarity was not correlated with

environmental variability or geographic distance in the subtropics

(Table 2). Across the sub-Antarctic front community similarity was

correlated with environmental distance in AMT 3–4, and with

geographic distance in AMT 2. Community similarity was

correlated with both environmental and geographic distance in

AMT 1, but the relationship was not significant when holding

matrices constant (Table 2).

High dispersal implies abundance-dominance relationships

characterized by a decreasing power function; i.e., many rare

species account for high local diversities and a few dominant taxa

form the bulk of community abundance and biomass [36]. On

average, the classical Preston’s (1960) representation [32],

displaying the frequency of species across classes of abundance

highlights a high number of species with low population

abundances (Figure 3A). Similarly, the number of individuals

versus taxon, with taxa ranked according to their respective

abundance, further demonstrates the existence of a large pool of

rare species with a little contribution to total community

abundance (Figure 3B). This ‘seed bank’ (also dubbed ‘rare

biosphere’) recruits new species through immigration [36]. But, is

there any control on the taxonomic affiliation of immigrants/

colonizers?

We assume that, regardless of their taxonomic affiliation, all

phytoplankton species reach a given ecosystem periodically

Figure 2. Changes in community similarity across geographic
distance and environmental gradients. A. Community similarity vs
geographic distance across tropical/subtropical regions and the sub-
Antarctic front for Atlantic Meridional Transect (AMT) 3. B. Community
similarity vs environmental distance for all data including tropical,
subtropical and sub-Antarctic regions of AMT-3. Each point represents a
single pair-wise community comparison based on Jaccard similarity
index. See Table 1 for statistical results and Figures S1 and S2 for other
AMT cruises.
doi:10.1371/journal.pone.0010037.g002

Table 1. Statistical parameters for the relationship between
community similarity and, geographic distance, and
environmental distance.

Region AMT slope intercept R2 p

subtropics 1 2561026 0.3 0.1 n.s.

(geo distance) 2 2161025 0.3 0.04 *

3 2661026 0.3 0.01 *

4 2561026 0.23 0.01 n.s.

sub-ant front 1 2161024 0.4 0.77 **

(geo distance) 2 2661025 0.32 0.36 **

3 2261024 0.41 0.64 **

4 2461024 0.37 0.81 **

all data 1 20.31 0.39 0.51 **

(env distance) 2 20.15 0.3 0.19 **

3 20.34 0.39 0.52 **

4 20.26 0.35 0.44 **

AMT, Atlantic Meridional Transect. Ordinary least square linear regression model
was used to estimate parameters.
** p,0.0001, * p,0.0005, n.s. no significant.
doi:10.1371/journal.pone.0010037.t001

Table 2. Mantel and partial Mantel test comparisons
between community similarity and spatial distribution (i.e.,
geographic distance between sampling sites), and
environmental distance (nutrient availability).

Region Test AMT1 AMT2 AMT3 AMT4

subtropics E 0.11 n.s. 20.28 n.s. 0.1 n.s. 20.14 n.s.

S 20.07 n.s. 20.36 n.s. 20.07 n.s. 20.46 **

E|S 0.11 n.s. 20.25 n.s. 0.1 n.s. 20.46 n.s.

S|E 20.07 n.s. 20.3 n.s. 20.07 n.s. 20.06 n.s.

sub-ant front E 20.64 * 20.24 n.s. 20.64 * 20.68 **

S 20.58 * 20.6 * 20.4 n.s. 20.59 **

E|S 20.4 n.s. 0.3 n.s. 20.57 * 20.4 *

S|E 20.2 n.s. 20.6 * 20.21 n.s. 0.04 n.s.

AMT, Atlantic Meridional Transect. E, environmental distance; S, spatial
distribution; E|S environmental distance holding spatial distribution constant;
S|E spatial distribution holding environmental distance constant.
** p,0.01, * p,0.05, n.s. no significant.
doi:10.1371/journal.pone.0010037.t002

Figure 3. Abundance-dominance curves for marine phyto-
plankton. A. Preston’s representation showing the number of species
as a function of population abundance across logarithmic size classes.
Black line is the best fit to data. B. Number of individuals versus taxon,
with taxa ranked according to their respective abundance. Red and blue
squares represent dominant and rare species, respectively. Data from
Atlantic Meridional Transect 1–4 were used in these analyses (see
Methods for details).
doi:10.1371/journal.pone.0010037.g003
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(‘everything is everywhere’). However, owing to the low popula-

tion abundance of rare species, testing this ‘high dispersal’

hypothesis requires analyzing unpractical sample sizes. To

circumvent this limitation, we listed species’ presence/absence in

both subtropical/tropical and sub-Antarctic Polar regions consid-

ering the ensemble of samples for each particular region.

Assuming that environmental conditions in these ocean regions

remained unchanged throughout the period of study, our

approach allowed us to increase the area (sample volume) under

consideration ,100-fold (i.e., ,25 litre). The results of this

analysis reveal that these contrasting ocean environments share

,76% of their total species pool; a significant fraction considering

that our method almost certainly still under-samples rare species.

Over the past 250,000 years, Earth’s climate has undergone

profound and cyclical changes (i.e., glacial/interglacial episodes

with 104- to 105-year cyclicity) [12], which offers an excellent

framework to study the dynamics of microbial plankton commu-

nities through long-term climate perturbations. We analyzed the

taxonomic composition of fossil diatom assemblages through time

using three independent sedimentary records along the western

margin of Africa and the equatorial Atlantic. These regions are

strongly influenced by atmospheric forcing, which controls surface

ocean circulation, the position and strength of oceanic fronts, and

the intrusion of nutrient-rich deep waters into the photic layer

(Figure 4A, B). The Jaccard similarity index, comparing

community composition at each time with the earliest communi-

ties of the record, was plotted against chronological time.

Consistent with an equilibrium ecosystem model, our results

highlight striking cycles of community departure and recovery

tightly coincident with the temporal evolution of Earth’s climate,

that is atmospheric CO2 concentration and atmosphere/ocean

physical forcing (Figure 4C–E). This pattern occurred in the three

sedimentary records analyzed. To further explore community

dynamics taking into account species identities, we conducted a

Principal Component Analysis (PCA). The score of each sample

on the first axis of the PCA was plotted against time. The analysis

shows that community recovery largely was associated with species

survival and reassembly (Figure S3). Interestingly, in the case of

core GeoB1710, closer inspection of the data revealed higher

diversity values during low productive, interglacials (Figure S4).

Discussion

The evolution of Earth ecosystems and global climate are

largely dependent on the origin, maintenance and extinction of

biological units that regulate the distribution and cycling of

elements, and maintain a self-perpetuating elemental network

[37]. The open ocean is recognized as one of the most important

and active compartments for biogeochemical cycles, yet, the

biogeographic controls and evolutionary mechanisms characteriz-

ing the pelagic realm are largely unknown [8,38,39]. The

geographic distribution of biological species informs on the

importance of dispersal, environmental selection and historical

contingency in controlling community assembly, and may help to

understand the response of marine microbial plankton communi-

ties to climate change.

The biogeographic patterns delineated here are associated with

sharp environmental gradients such as those located across the

sub-Antarctic front. Other oceanographic structures such as the

equatorial divergence or the north temperate-subtropical front can

potentially influence phytoplankton community structure across

the AMT. However, we focused on the sub-Antarctic front as

previous work has revealed marked changes in phytoplankton

biomass and primary productivity across this oceanic region [19].

The biogeographic distributions reported here could be associated

with the existence of physical barriers such as water mass fronts,

limiting habitat connectivity and species’ dispersal ranges. Indeed,

the geographic isolation of biological units mediated by thermal

and salinity gradients has been proposed as a mechanism

promoting allopatric speciation in the ocean [40]. If these physical

barriers effectively limited microbial plankton dispersal, we would

expect to find biogeographic differences between tropical/

subtropical regions to the north and south of the equatorial

Figure 4. Response of marine diatom communities to past
climate change. A. Changes in atmospheric CO2 concentration from
Vostok ice core [12]. B. Position of the Angola-Benguela front (ABF)
indicating variations in the strength of the upwelling [51]. C–E. Jaccard
similarity index comparing community composition at each time with
the earliest communities of the record in the Walvis basin, SW Africa
(GeoB1710), the Eastern Equatorial Atlantic (M16772-2), and the
Mauritanian upwelling system (M12392), respectively. Each point is a
pair-wise comparison between pair of communities separated in time.
Thick and thin lines are the average trend of community similarity
calculated using the Jaccard index and the Bray-Curtis quantitative
index, respectively. The analysis shows cycles of community departure
and recovery. Lower similarity values correspond with comparisons
between communities from different climatic periods, and viceversa.
Numbers at the top are oxygen isotopic stages. Shaded areas represent
glacial periods.
doi:10.1371/journal.pone.0010037.g004
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divergence. However, communities inhabiting these oceanic

environments exhibited striking similarities (Figure 2A and

Table 2).

Much evidence indicates that marine microbial morphospe-

cies consist of a number of cryptic species with subtle

morphological differences. Several studies have shown that

these cryptic species are adapted to particular ecological niches

[38]. This could constitute an evolutionary strategy to increase

the geographic distribution ranges and buffer species against

extinction. Including the diversity of cryptic species in our

analysis, changes in community similarity across environmental

gradients would have been even larger than those reported here.

The extent to which the spatial distribution of these cryptic

species could be controlled by spatial constraints is not

straightforward, however, previous work has shown that,

although disjunct, cryptic forms of the diatom Skeletonema possess

world-wide distribution [41].

Biotic interactions between microbial plankton species emerge

and disappear in the order of days to weeks in response to

environmental variability [42]. Often the whole community

changes due to environmental reset. Their high growth/loss rates

(,four orders of magnitude higher than those of forest trees) and

planktonic nature (i.e., phytoplankton drift with ocean currents),

are likely to be responsible for the ephemeral dominance and

rapid succession of microbial plankton species in the ocean

[43,44]. Arguably, these biological communities lack of an

evolutionarily acquired network of biotic interactions. But is

their low resistance to environmental change synonymous of

community fragility?

In a previous report [9], we have shown that local communities

of marine diatoms evolved slowly through gradual changes over

the past 1.5 million years. However, the low temporal resolution of

the fossil records analyzed (tens to hundreds of thousands of years)

precluded obtaining a more detailed picture of the effect of climate

change on community dynamics. Here, using fossil records with a

higher temporal resolution, we show that diatom biodiversity and

community structure largely recovered from dramatic climate

perturbations in the past. The strong correlation between

atmospheric CO2 levels (from Antarctic ice cores) and community

dynamics is somewhat surprising taking into account that, in

addition to changes in global climate, the fossil diatom

assemblages analyzed here were influenced by local determinants

such as regional current systems, terrestrial nutrient inputs,

atmospheric deposition, physical mixing, etc [31,45]. Further-

more, it is well known that there are substantial differences

between subsequent glacial and interglacial stages and previous

evidence indicates that non-analog climates produce non-analog

community assemblages.

Similar results have been reported for other microbial plankton

groups during different periods of Earth’s climatic history. Recent

evidence shows that the vast majority of calcareous nanoplankton,

including coccolithophores and foraminifera, survived across the

Paleocene/Eocene thermal maximum event (,55 million years

ago) [46], an episode characterized by rapidly rising atmospheric

CO2, global warming and ocean acidification [47]. Furthermore,

the fossil record has repeatedly shown that microbial plankton

species track changes in environmental conditions [14], which, in

conjunction with their broad dispersal ranges, allows habitat re-

colonization and community recovery.

The broad dispersal of marine planktonic microbes contrasts with

the limited dispersal ranges of marine and terrestrial plants and

animals. Dispersal limitation increases species’ vulnerability to climate

change and habitat fragmentation, which, however, exert a minor

impact on the distribution of species with global dispersal ranges. These

fundamental differences between marine planktonic microbes and

macroorganisms suggest different patterns of community evolution.

Our results provide an explanation for the slow and gradual

evolution of marine diatom communities across the Pleistocene

[9]. Environmental changes rapidly alter community structure,

yet, the great potential for dispersal of microbial plankton species

confer planktonic ecosystems the ability to hold in check every

taxonomic unit required to ensure community recovery. We

conclude that marine phytoplankton communities are generally

robust with respect to species composition over geological time

scales on order of 1 million years. However, this assertion raises

important questions concerning the mechanisms that control

speciation, extinction and community turnover in marine

microbial plankton [48–50]. What causes the extinction of species

with global dispersal ranges? What controls the tempo and mode

of community evolution? Our analysis provides some clues such

that glacial/interglacial climatic cycles might play a minor role on

long-term community evolution. Currently, the extent to which

extrinsic factors such as climate change or biotic pressures such as

resource competition dominate the evolution of marine microbial

plankton remains uncertain. Understanding these fundamental

questions must be key to aquatic microbial ecologists and demands

further integration of the fields of molecular biology, evolutionary

ecology and micropaleontology.

Supporting Information

Figure S1 Relationship between community similarity and

geographic distance across subtropical regions and the sub-

Antarctic front for Atlantic Meridional Transect 1–4. See

Table 1 for statistical parameters.

Found at: doi:10.1371/journal.pone.0010037.s001 (0.87 MB TIF)

Figure S2 Relationship between community similarity and

environmental distance for Atlantic Meridional Transect 1–4.

Only samples collected at surface were used in these analyses. See

Table 1 for statistical parameters.

Found at: doi:10.1371/journal.pone.0010037.s002 (0.76 MB TIF)

Figure S3 Jaccard similarity index and the score of the sample

on the first component of a Principal Component Analysis (PCA)

against chronological time. Blue line is the average trend of

community similarity calculated using the Jaccard index. Dots are

the score of each sample on the first axis of the PCA.

Found at: doi:10.1371/journal.pone.0010037.s003 (0.76 MB TIF)

Figure S4 Changes in diatom species richness along sedimentary

records.

Found at: doi:10.1371/journal.pone.0010037.s004 (0.85 MB TIF)

Table S1 Sampling details for Atlantic Meridional Transects

1–4.

Found at: doi:10.1371/journal.pone.0010037.s005 (0.20 MB

DOC)

Table S2 List of phytoplankton species identified during Atlantic

Meridional Transects 1–4.

Found at: doi:10.1371/journal.pone.0010037.s006 (0.15 MB

DOC)

Table S3 Geographic coordinates, sample depth and age for

diatom fossil records.

Found at: doi:10.1371/journal.pone.0010037.s007 (0.11 MB

DOC)

Table S4 Diatom species list in sedimentary records.

Found at: doi:10.1371/journal.pone.0010037.s008 (0.06 MB

DOC)
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36. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends

in Microbiology 14: 257–263.
37. Falkowski PG, Fenchel T, DeLong EF (2008) The microbial engines that drive

Earth’s biogeochemical cycles. Science 320: 1034–1039.
38. de Vargas C, Saez AG, Medlin L, Thierstein HR (2004) Super-species in the

calcareous plankton. In: Thierstein HR, Young JR, eds. Coccolithophores: From

Molecular Proccesses to Global Impact. Berlin Heidelberg: Springer-Verlag. pp
251–298.

39. Venter J (2004) Environmental genome shotgun sequencing of the Sargasso Sea.
Science 304: 66–74.

40. Wei KY, Kennett JP (1988) Phyletic gradualism and punctuated equilibrium in
the late Neogene planktonic foraminiferal clade Globoconella. Paleobiology 14:

345–363.

41. Kooistra WH, Sarno D, Balzano S, Gu H, Andersen RA, et al. (2008) Global
Diversity and biogeography of Skeletonema species (bacillariophyta). Protist 159:

177–193.
42. Dolan JR (2005) An introduction to the biogeography of aquatic microbes.

Aquatic Microbial Ecology 41: 39–42.

43. Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an
unstable environment. Oceanologica Acta 1: 493–509.

44. Smayda TJ, Reynolds CS (2001) Community assembly in marine phytoplank-
ton: application of recent models to harmful dinoflagellate blooms. Journal of

Plankton Research 23: 447–461.

45. Pichevin L, Cremer M, Giraudeau J, Bertrand P (2005) A 190 ky record of
lithogenic grain-size on the Namibian slope: Forging a tight link between past

wind-strength and coastal upwelling dynamics. Marine Geology 218: 81–96.
46. Bown PR, Pearson P (2009) Calcareous plankton evolution and the Paleocene/

Eocene thermal maximum event: New evidence from Tanzania. Marine
Micropaleontology 71: 60–70.

47. Sluijs A, Bowen GJ, Brinkhuis H, Lourens L, Thomas E (2007) The Paleocene-

Eocene thermal maximum super greenhouse: biotic and geochemical signatures,
age models and mechanisms of global change. In: Haywood WM, Gregory FJ,

Schmidt DN, eds. Deep-time perspectives on climate change: marrying signals
from computer models and biological proxies The Geological Society. pp

323–349.

48. Jackson JBC, Cheetham AH (1999) Tempo and mode of speciation in the sea.
Trends in Ecology and Evolution 14.

49. Roy K, Valentine JW, Jablonski D, Kidwell SM (1996) Scales of climatic
variability and time averaging in Pleistocene biotas: implications for ecology and

evolution. Trends in Ecology and Evolution 11: 458–463.
50. Weinbauer MG, Rassoulzadegan F (2007) Extinction of microbes: evidence and

potential consequences. Endargered Species Research 3: 205–215.

51. West S, Jansen JHF, Stuut J-B (2004) Surface water conditions in the Northern
Benguela Region (SE Atlantic) during the last 450 ky reconstructed from

assemblages of planktonic foraminifera. Marine Micropaleontology 51:
321–344.

Microbial Community Stability

PLoS ONE | www.plosone.org 7 April 2010 | Volume 5 | Issue 4 | e10037


