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Animals, plants, and fungi—the three

traditional kingdoms of multicellular eu-

karyotic life—make up almost all of the

visible biosphere, and they account for the

majority of catalogued species on Earth

[1]. The remaining eukaryotes have been

assembled for convenience into the protists,

a group composed of many diverse

lineages, single-celled for the most part,

that diverged after Archaea and Bacteria

evolved but before plants, animals, or

fungi appeared on Earth. Given their

single-celled nature, discovering and de-

scribing new species has been difficult, and

many protistan lineages contain a relative-

ly small number of formally described

species (Figure 1A), despite the critical

importance of several groups as patho-

gens, environmental quality indicators,

and markers of past environmental chang-

es. It would seem natural to apply

molecular techniques such as DNA bar-

coding to the taxonomy of protists to

compensate for the lack of diagnostic

morphological features, but this has been

hampered by the extreme diversity within

the group. The genetic divergence ob-

served between and within major protistan

groups greatly exceeds that found in each

of the three multicellular kingdoms. No

single set of molecular markers has been

identified that will work in all lineages, but

an international working group is now

close to a solution. A universal DNA

barcode for protists coupled with group-

specific barcodes will enable an explosion

of taxonomic research that will catalyze

diverse applications.

The undiscovered species diversity

among protists may be orders of magnitude

greater than previously thought. Surveys of

protistan environmental diversity usually

based on Sanger sequencing of polymerase

chain reaction-amplified 18S rDNA clone

libraries revealed an extremely high pro-

portion of sequences that could not be

assigned to any described species and in

some cases even suggested the presence of

several new eukaryotic kingdoms [2,3].

Although some of these sequences have

since been shown to be chimeric or long-

branch attraction artefacts (caused by
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heterogeneity of evolutionary rates) [4],

novel protistan phyla continue to be

discovered (e.g., [5,6]). More recently, the

growing number of Next Generation Se-

quencing (NGS) studies of eukaryotic

diversity [6–9] has confirmed that the

evolutionary and ecological importance of

protists is much higher than traditionally

thought (Figure 1B) and suggest that the

number of protist species may easily exceed

one million, although the correct estima-

tion depends on many factors discussed

below. The flow of eukaryotic sequence

data produced by NGS from environmen-

tal DNA extracts is exponentially increas-

ing, but there is currently no way to

interpret these sequences in terms of species

diversity and ecology.

DNA barcoding is a technique that uses

a short standardized DNA region to

identify species [10]. Large public refer-

ence libraries of DNA barcodes are being

developed for animals, plants, and fungi,

but there is no general agreement on

which region to use for protists. Identify-

ing the standard barcode regions for

protists and assembling a reference library

are the main objectives of the Protist

Working Group (ProWG), initiated by the

Consortium for the Barcode of Life

(CBOL, http://www.barcodeoflife.org/).

The ProWG unites a panel of interna-

tional experts in protist taxonomy and

ecology, with the aim to assess and unify

the efforts to identify the barcode regions

across all protist lineages, create an

integrated plan to finalize the selection,

and launch projects that would populate

the reference barcode library. Here, we

discuss the advantages and limitations of

DNA barcodes currently in use and

introduce a two-steps barcoding approach

to assess protistan biodiversity.

The Unknown Vastness of
Protist Richness

The first task of the protist barcoding

initiative is to assess species richness in all

protistan supergroups. In historically well-

studied and biologically well-known taxa,

such as higher plants or vertebrates, the

number of predicted and described spe-

cies is relatively similar. The situation is

diametrically different for the fungi, for

which catalogued species comprise ,7% of

the predicted species number [1]. It is

even worse for protists. The number of

catalogued protistan species is very low in

comparison to the diversity of animals,

plants, and fungi, ranging from ,26,010

excluding marine nonphotosynthetic pro-

tists [1] to ,43,000 [11] and ,74,400 for

the novel ProWG estimates presented

herein (Table S1). Among the seven

protistan supergroups (Figure 2A), the

most diverse are Stramenopiles, with

,25,000 morphospecies. Over 10,000

described species are also found in

Alveolata, Rhizaria, and Archaeplastida

(excluding land-plants). Much fewer spe-

cies have been catalogued for Amoebozoa

(,2,400), Excavata (,2,300), and for the

unicellular Opisthokonta (,300)—this

latter group being dominated by animals

and fungi.

The predicted richness of protistan species

ranges from 1.46105 to 1.66106 [12]. In

several groups, the number of predicted

species has been arbitrarily estimated to be

twice the number of described species

[12]. But the true number of species could

be several orders of magnitude higher. For

example, the Apicomplexa are obligatory

parasites, including the malaria agent

Plasmodium and omnipresent Toxoplasma,

and thus could reach up to 1.26106

species if we assume a strict specificity to

their metazoan hosts. The same argument

can be applied to predict extreme species

richness in protistan parasites of fishes

(e.g., Mesomycetozoa) and plants (e.g.,

Oomycetes). However, most of these

predictions are highly subjective.

Moreover, just like in Bacteria and

Archaea [13,14], there is no general

agreement on how to define species in

protists, and no single species concept can

be applied unequivocally to all protistan

groups. Molecular studies typically reveal

a multitude of genotypes hidden within

protist species that have been discovered

and described using traditional methods

based on morphological criteria (often

referred to as ‘‘morphospecies’’). Repro-

ductive isolation could theoretically be

used in differentiating eukaryotic species,

but data on the very existence of a sexual

phase are very sparse in protists. Mating

studies in some ‘‘model’’ systems (e.g.,

[15,16]) are consistent with the evidence

from molecular data that protistan species

diversity is greatly underestimated by

classical morphological approaches. Over-

all intraspecific and intragenomic variabil-

ities in environmental protistan popula-

tions are still largely unknown, because

most genetic studies are carried out on

clonal strains maintained in laboratory

cultures.

Protist Barcoding: State of the
Art

Although the term DNA barcoding ap-

peared only recently in the protistological

Figure 1. Morphological versus genetic views of total eukaryotic diversity. (A) Relative
numbers of described species per eukaryotic supergroup—see Table S1 for a detailed count per
division/class. (B) Relative number of V4 18S rDNA Operational Taxonomic Units (97%) per
eukaryotic supergroup, based on 59 rDNA clone library surveys of marine, fresh-water, and
terrestrial total eukaryotic biodiversity (as listed in [55]).
doi:10.1371/journal.pbio.1001419.g001
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literature, the identification of protistan

taxa using molecular markers has a long

history. The most commonly used markers

have been parts of the genes coding for

ribosomal RNAs, in particular 18S rDNA

(e.g., [17]). The advantages of 18S rDNA

are many: found in all eukaryotes, it

occurs in many copies per genome,

allowing genetic work at the individual

(single-cell) level; it is highly expressed,

permitting molecular ecological investiga-

tion at the RNA level; and it includes a

mosaic of highly conserved and variable

nucleotide sequences allowing combined

phylogenetic reconstruction and biota

recognition at various taxonomic levels.

Different 18S rDNA variable regions have

been used in clone libraries and NGS-

based environmental surveys [3,7,18]. 18S

rDNA barcodes have been shown to

effectively distinguish species in some

groups, such as foraminifera [19,20] and

some diatoms [21], however they are not

sufficiently variable to resolve interspecies

relationships in several other taxa

(Figure 2B).

Various alternative protistan DNA bar-

codes have been proposed (Figure 2, Table

S2). The D1–D2 and/or D2–D3 regions

at the 59 end of 28S rDNA have been

positively tested in ciliates [22], hapto-

phytes [23], and acantharians [24] and are

also promising for diatoms [25,26]. Ribo-

somal internal transcribed spacers (ITS1

and/or ITS2 rDNA), which are the main

fungal barcodes [27], are also commonly

utilized in oomycetes [28], chlorarachnio-

phytes [29], and green algae [30] and have

also been suggested for dinoflagellates

[31,32] and diatoms [33] with some

reserve [34]. The mitochondrial gene

coding for cytochrome oxidase 1 (COI),

which has been proposed as the universal

barcode for animals [10], also allows

morpho-species identification in red [35–

37] and brown [38,39] algae, dinoflagel-

lates [40], some raphid diatoms [41],

Euglyphida [42], lobose naked [43] and

shelled [44] amoebae, coccolithophorid

haptophytes [45], and some ciliates

[46,47]. Other group-specific barcodes

include the large subunit of the ribulose-

1,5-biphosphate carboxylase–oxygenase

gene (rbcL) and the chloroplastic 23S

rRNA gene for photosynthetic protists

[25,48–50], and Spliced Leader RNA

genes for trypanosomatids [51]. Clearly,

the choice of group-specific barcodes is

often a question of tradition or ease of use,

and studies systematically comparing the

resolution power of different protistan

DNA barcodes are rare [25,42,43,52].

ProWG Objectives and
Perspectives

The ultimate objective of the CBOL

ProWG is to establish universal criteria for

barcode-based species identification in

protists. The DNA barcoding approach

has several well-known limitations related

to the standardization of species identifi-

Figure 2. Current state-of-the art phylogeny and barcode markers for the main protistan lineages. (A) A recent phylogeny of eukaryotic
life, after [56]. (B) Mean V4 18S rDNA genetic similarity between all congeneric species within each lineage, available in GenBank. (C) Currently used
group-specific barcodes. The dashed line indicates the incertitude concerning the position of the root in the tree of eukaryotic life. The unresolved
relationships between eukaryotic groups are indicated by polytomies. The names of the three multicellular classical ‘‘kingdoms’’ are highlighted.
doi:10.1371/journal.pbio.1001419.g002
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cation [53,54], and addressing some of the

challenges raised by genetic identification

of protists will certainly require more

fundamental research on protistan specia-

tion. The ProWG will organise workshops

and seminaries that will provide opportu-

nity to discuss general questions concern-

ing species definition, genetic variations,

and applications of DNA barcodes in all

protistan groups.

From a practical perspective, the

ProWG mission is to establish the genetic

standards that will allow recognition of

protistan taxa exclusively on the basis of

DNA sequence data. Our goal is not to

exclude morphological identification but

to propose alternative tools that will be

more efficient in dealing with the immense

protistan biodiversity and more objective

and accessible to nonspecialists. In most

protistan groups, morphological charac-

ters are unreliable for identification at the

species level but do provide guides for

higher level taxonomic assignments, as

well as valuable information about the

biology, ecology, and evolution of organ-

isms. Therefore, every protistan reference

DNA barcode must be associated with

voucher material and/or illustrations pro-

viding phenotypic data from the barcoded

specimen.

Because of their long, independent, and

complex evolutionary histories, protists are

so genetically variable that it is virtually

impossible to find a single universal DNA

barcode suitable for all of them. The

ProWG consortium therefore recom-

mends a two-step barcoding approach,

comprising a preliminary identification

using a universal eukaryotic barcode,

called the pre-barcode, followed by a

species-level assignment using a group-

specific barcode (Figure 3). In this nested

strategy, the ,500 bp variable V4 region

of 18S rDNA is proposed as the universal

eukaryotic pre-barcode. Group-specific

barcodes (Figure 2C) will then have to be

defined separately for each major protistan

group, based on comparative studies using

the CBOL selection criteria, and much of

this work is still to be done. Depending on

the type of material (isolates and cultures)

and whether or not DNA extraction is

destructive for the analysed species, the

morphological appearance of each bar-

coded protist will be preserved as micro-

photographs, fixed cells, or live and/or

cryopreserved cultures. This voucher would

be deposited in a public collection, just as

type specimens are required for new taxa by

the nomenclatural codes. Collection details

including locality, date, and (as far as

possible) habitat characteristics must also

be provided, accompanied in parasitic and

symbiotic taxa by an accurately identified

host voucher or its DNA/tissue sample

wherever this is available. Moreover, the

extracted DNA must be deposited in a

recognized DNA bank or museum collec-

tion and cited with a unique identifier to

allow checks and further genetic analyses.

Most of these recommendations are

already followed where newly described

protistan species are based on cultured

strains deposited in collections. However,

the large majority of protists are currently

uncultivable by known means or not

available in culture collections, and genetic

data only exist for a very small fraction of

described species. Therefore, it is impera-

tive to establish standard barcoding pro-

tocols for future protist barcoding projects

that will substantially increase the number

of collected, described, but uncultivable

protists. A combination of novel high-

throughput imaging/sorting with newer

genetic technologies—including single-

amplified-genome methods—opens excit-

ing avenues in protistan metabarcoding. A

protist barcoding protocol such as that

outlined in Figure 3 will allow collection of

the data necessary to set up a representa-

tive protist species reference library. The

protocols and recommendations concern-

ing protist barcoding will be available at

the ProWG website (under construction at

www.protistbarcoding.org), and a platform

dedicated to protist multi-locus barcodes

will be accessible at the Barcode of Life

Database.

Given the ongoing DNA sequencing

revolution, the 21st-century exploration of

biodiversity must do more than document

the higher macrofaunal and macrofloral

branches on the Tree of Life. Amongst

other microbes, protists are key but poorly

known elements of the ecosystems we see

in Nature, including the complex micro-

biomes hidden within individual plants,

animals, and fungi. Ecological models

must include protists based on the new

knowledge of their species-level diversity

that will mostly come from the billions of

NGS-generated environmental barcodes.

The reference library of standard protistan

barcodes will be the Rosetta stone that

makes protist diversity less anonymous.

Supporting Information

Table S1 Number of catalogued mor-

phospecies and V4 18S rDNA OTU-97%

among the 60 main eukaryotic lineages.

(PDF)

Table S2 Group-specific barcodes for

selected genera representing all eukaryotic

supergroups (in brackets, number of cor-

responding sequences in the GenBank).

NM, nucleomorph origin. Variable re-

gions used in 18S and 28S genes are

indicated in some cases.

(PDF)
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