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Statistial properties of intermittent maps with unboundedderivativeGiampaolo Cristadoro, Niolai Haydn, Philippe Marie, Sandro VaientiDeember 16, 2008AbstratWe study the ergodi and statistial properties of a lass of maps of the irle and ofthe interval of Lorenz type whih present indi�erent �xed points and points with unboundedderivative. These maps have been previously investigated in the physis literature. We provein partiular that orrelations deay polynomially, and that suitable Limit Theorems (onver-gene to Stable Laws or Central Limit Theorem) hold for Hölder ontinuous observables. Wemoreover show that the return and hitting times are in the limit exponentially distributed.
1 IntrodutionThe prototype for intermittent maps of the interval is the well known Pomeau-Manneville map
T de�ned on the unit interval [0, 1] and whih admits a neutral �xed point at 0 with loalbehavior T (x) = x + cx1+α; otherwise it is uniformly expanding. The onstant α belongs to
(0, 1) to guarantee the existene of a �nite absolutely ontinuous invariant probability measureand the onstant c ould be hosen in suh a way that the map T has a Markov struture.This map enjoy polynomial deay of orrelations and this property still persists even if themap is not anymore Markov [30℄.Another interesting lass of maps of the interval are the one-dimensional uniformly ex-panding Lorenz-like maps (see [15, 29, 11℄ for their introdution and for the study of theirtopologial properties), whose features are now the presene of points with unbounded deriva-tives and the lak of Markov struture: in this ase one ould build up towers and �nd variousrates for the deay of orrelations depending on the tail of the return time funtion on thebase of the tower, see, for instane [7℄ and [8℄. The latter paper deals in partiular withone-dimensional maps whih admit ritial points and, eventually, points with unboundedderivatives, but it leaves open the ase where there is presene of neutral �xed points.In this paper we are interested in maps whih exhibit the last two behaviors, namelyneutral �xed points and points with unbounded derivatives. Suh maps have been introdued1
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into the physis literature by Grossmann and Horner in 1985 [14℄; they showed numeriallya polynomial deay of orrelations and they also studied other statistial properties like thesuseptibility and the 1/f -noise. Another ontribution by A. Pikovsky [25℄ showed, still withheuristi arguments, that these maps produe anomalous di�usion with square displaementgrowing faster than linearly. R. Artuso and G. Cristadoro [3℄ improved the latter result byomputing the moments of the displaement on the in�nite replias of the fundamental domainand showed a phase transition in the exponent of the moments growth. Reently Lorenz uspmaps arose to desribe the distribution of the Casimir maximum in the Kolmogorov-Lorenzmodel of geo�uid dynamis [24℄. Despite this interesting physial phenomenology, we didnot �nd any rigorous mathematial investigation of suh maps. These maps are de�ned onthe torus T = [−1, 1]/ ∼ and depend on the parameter γ (see below); when γ = 2 theorresponding map was taken as an example of the non-summability of the �rst hyperbolitime by Alves and Araujo in [2℄. This maps reads:
T̃ (x) =

{
2
√
x− 1 if x ≥ 0

1 − 2
√

|x| otherwise (1)and it was proved in [2℄ that it is topologial mixing, but no other ergodi properties werestudied.Atually, the Grossmann and Horner maps are slightly di�erent from those investigatedin [25℄ and [3℄, the di�erene being substantially in the fat that the latter are de�ned on theirle instead than on the unit interval. We will study in detail the irle version of thesemaps in Setions 2 to 5, and we will show in Setion 6 how to generalize our results to theinterval version: sine both lasses of maps are Markov, the most important information,espeially in omputing distortion, will ome from the loal behavior around the neutral �xedpoints and the points with unbounded derivatives and these behaviors will be the same forboth versions. There is nevertheless an interesting di�erene. The irle version introdued inSetion 1 is written in suh a way that the Lebesgue measure is automatially invariant. Thisis not the ase in general for the interval version quoted in Setion 6. However the strategythat we adopt to prove statistial properties (Lai-Sang Young towers) will give us as well theexistene of an absolutely ontinuous invariant measure and we will omplete it by providinginformations on the behavior of the density. It is interesting to observe that in the lass ofmaps onsidered by Grossmann and Horner on the interval [−1, 1] (see Set. 6), the analogof (1) is given by the following map:
S̃(x) = 1 − 2

√
|x| . (2)This map was investigated by Hemmer in 1984 [19℄: he also omputed by inspetion the in-variant density whih is ρ(x) = 1

2 (1 − x) and the Lyapunov exponent (simply equal to 1/2),but he only argued about a slow deay of orrelations. We will show in Set. 6 how to reoverthe qualitative behavior of this density (and of all the others in the Grossmann and Hornerlass).In this paper we study the one-parametri family of ontinuous maps T (Fig. 1) whih are2



C1 on T/{0}, C2 on T/({0} ∪ {1}) and are impliitly de�ned on the irle by the equations:
x =






1

2γ
(1 + T (x))γ if 0 ≤ x ≤ 1

2γ

T (x) +
1

2γ
(1 − T (x))γ if 1

2γ
≤ x ≤ 1and for negative values of x by putting T (−x) = −T (x). We assume that parameter γ > 1.Note that when γ = 1 the map is ontinuous with onstant derivative equal to 2 and isthe lassial doubling map. The point 1 is a �xed point with derivative equal to 1, whileat 0 the derivative beomes in�nite. The map leaves the Lebesgue measure m invariant (itis straightforward to hek that the Perron-Frobenius operator has 1 as a �xed point). Wewill prove in the next setions the usual bunh of statistial properties: deay of orrelations(whih, due to the paraboli �xed point, turns out to be polynomial with the rate foundin [14℄); onvergene to Stable Laws and large deviations; statistis of reurrene. All theseresults will follow from existing tehniques, espeially towers, ombined with the distortionbound proved in the next setion. Distortion will in fat allows us to indue with the �rstreturn map on eah ylinder of a ountable Markov partition assoiated to T . Atually oneould indue on a suitable interval only (alled I0 in the following): the proof we give isintented to provide disortion on all ylinders of the ountable Markov partition overing mod

0 the whole spae [−1, 1], sine this is neessary in order to apply the induing tehnique of[4℄ whih will give us the statistial features of reurrene studied in Set. 5: distributions of�rst return and hitting times, Poissonian statistis for the number of visits, extreme valueslaws.2 DistortionN otations: With an ≈ bn we mean that there exists a onstant C ≥ 1 suh that C−1bn ≤
an ≤ Cbn for all n ≥ 1; with an . bn we mean that there exists a onstant C ≥ 1 suh that
∀n ≥ 1, an ≤ Cbn; with an ∼ bn we mean that limn→∞

an

bn
= 1. We will also use the symbol"O" in the usual sense. Finally we denote with |A| the diameter of the set A.There is a ountable Markov partition {Im}m∈Z assoiated to this map; the partition isbuilt mod m as follows: Im = (am−1, am) for all m ∈ Z

∗ and I0 = (a0−, a0+)/{0}, where,denoting with T+ = T|(0,1) and with T− = T|(−1,0):
a0+ =

1

2γ
, a0− = − 1

2γ
and ai = T−i

+ a0+ , a−i = T−i
− a0−, i ≥ 1 .Then we de�ne ∀i ≥ 1:

b−i = T−1
− ai−1 and bi = T−1

+ a−(i−1) .We now state without proof a few results whih are diret onsequenes of the de�nitionof the map. 3
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Lemma 1. 1. When x→ 1−: T (x) = 1 − (1 − x) − 1
2γ (1 − x)γ+O ((1 − x)γ)2. When x→ 0+: T (x) = −1 + (2γ)

1
γ x

1
γ .Lemma 2. We have for all n ≥ 0, a±(n+1) = a±n + 1

2γ (1 − a±n)γ and:
an ∼ 1 −

(
2γ

γ − 1

) 1
γ−1 1

n
1

γ−1

a−n ∼ −1 +

(
2γ

γ − 1

) 1
γ−1 1

n
1

γ−1

ln := length[an−1, an] ∼ 1

2γ

(
2γ

γ − 1

) γ
γ−1 1

n
γ

γ−1

n > 1

|b±(n+1)| ∼ 1

2γ

(
2γ

γ − 1

) γ
γ−1 1

n
γ

γ−1

, n > 1 .We now indue on the interval Im := (a−m, am)/{0} and provide a bounded distortionestimate for the �rst return map. We de�ne Zm,p = Z+
m,p ∪ Z−

m,p, where: Z+
m,1 := (bm+1, am),

Z−
m,1 := (a−m, b−(m+1)) and Z+

m,p>1 := (bm+p, bm+p−1), Z−
m,p>1 := (b−(m+p−1), b−(m+p)). Note4



that Im = ∪p≥1Zm,p and that the �rst return map T̂ = Im → Im ats on eah Zm,p as T̂ = T pand in partiular:
T p(Z+

m,p) =

{
(a−m, am−1) p = 1

(a−m, a−(m−1)) p > 1
T p(Z−

m,p) =

{
(a−(m−1), am) p = 1

(am−1, am) p > 1 .We �nally observe that the indued map T̂ is uniformly expanding in the sense that for eah
m and p there exists β > 1 suh that |DT̂ (x)| > β, ∀x ∈ Im.1Proposition 3 (Bounded distortion). Let us indue on Im; then there exists a onstant K > 0that depends on m, suh that for eah m and p and for all x, y ∈ Zm,p, we have:

∣∣∣∣
DT p(x)

DT p(y)

∣∣∣∣ ≤ eK|T p(x)−T p(y)| ≤ e2K .Remark 1. The ylinder Zm,p is the disjoint union of the two open intervals Z+
m,p and Z−

m,psitting on the opposite sides of 0 (see above). Whenever x and y belongs to di�erent om-ponents, we proeed by �rst notiing that DT p(x) = DT p(−x) and −x sits now in the sameomponent as y. By exploiting the fat that T p is odd we get
∣∣∣∣
DT p(x)

DT p(y)

∣∣∣∣ =

∣∣∣∣
DT p(−x)
DT p(y)

∣∣∣∣ ≤ eK|T p(−x)−T p(y)| ≤ eK|−T p(x)−T p(y)| ≤ eK|T p(x)−T p(y)| .and we an thus onentrate on the ase when x and y are taken in the same open omponent(see below).Proof. We denote with lm the length of the interval (am−1, am) (when m = 0, l0= length of
(0, a0+)). We start by observing that

∣∣∣∣
DT p(x)

DT p(y)

∣∣∣∣ = exp




p−1∑

q=0

(log |DT (T qx)| − log |DT (T qy)|)





= exp




p−1∑

q=0

∣∣∣∣
D2T (ξ)

DT (ξ)

∣∣∣∣ |T qx− T qy|



 , (3)where ξ is a point between T qx and T qy.We divide the ases p = 1 and p > 1.
• p = 1For (x, y) ∈ Z−

m,1 (see Remark(1) above), using |x− y| < |T (x) − T (y)|, we diretly get:
∣∣∣∣
DT (x)

DT (y)

∣∣∣∣ ≤ exp [K1|T (x) − T (y)|] ,where K1 = sup(Z−

m,1)D
2T = D2T (am).1Using the hain rule we an see that β ≡ infx∈Zm,1

|DT (x)| > 1.5



• p > 1Start with x, y ∈ Z−
m,p (see Remark(1) above), then Tx, Ty ∈ (am+p−2, am+p−1); T 2x, T 2y ∈

(am+p−3, am+p−2); . . . ; T p−1x, T p−1y ∈ (am, am+1), we have:
(3) ≤ exp




sup(Z−

m,p)

(
|D2T |

)

inf(Z−

m,p)

(
|DT |

) |x− y| +
p−1∑

q=1

sup(am+p−q−1,am+p−q)

(
|D2T |

)

inf(am+p−q−1,am+p−q)

(
|DT |

) |T qx− T qy|





≤ exp



 sup
(Z−

m,p)

(
|D2T |

)
|x− y| +

p−1∑

q=1

sup
(am+p−q−1,am+p−q)

(
|D2T |

)
|T qx− T qy|



 . (4)To ontinue we need the followingLemma 4. For x, y ∈ Z−
m,p (see Remark(1) above) we have:(i) ∑p−1

q=1 sup(am+p−q−1,am+p−q)

(
|D2T |

)
|T qx− T qy| ≤ C1|T p−1Z|(ii) supZ−

m,p

(
|D2T |

)
|x− y| ≤ C2

|T p−1Z|
lm+1

,where we set for onveniene Z the interval with endpoints x and y.Proof. (i) Denote T p−1x = zx and T p−1y = zy; sine the derivative is dereasing on
(0,m) we have:

|T qx− T qy| ≤ 1

DT p−1−q(am+p−q)
|zx − zy| . (5)Let's now onsider the term:

DT p−1−q(am+p−q) = DT (am+p−q)DT (Tam+p−q) . . . DT (T p−2−qam+p−q) . (6)Sine for q ≥ 1 and ξ1 ∈ (aq, aq+1):
DT (aq) ≥ DT (ξ1) =

T (aq+1) − T (aq)

aq+1 − aq
=
aq − aq−1

aq+1 − aqit follows that
(6) ≥ am+p−q − am+p−q−1

am+p+1−q − am+p−q
·am+p−q−1 − am+p−q−2

am+p−q − am+p−q−1
. . .

am+2 − am+1

am+3 − am+2
≥ am+2 − am+1

am+p+1−q − am+p−qand thus:2
1

DT p−1−q(am+p−q)
≤ am+p+1−q − am+p−q

am+2 − am+1
.2We have just proved that if ξ is any point in (am+p, am+p+1) (and the same result holds for its negativeounterpart (a−(m+p+1), a−(m+p)) as well) then DT p(ξ) ≥ am+2−am+1

am+p+1−am+p

. In a similar way we an prove the lowerbound: DT p(ξ) ≤ a
0+

am+p−1−am+p−2
, for p ≥ 2. 6



Moreover: |zx − zy| ≤ |T p−1Z|. Finally:
(5) ≤ am+p+1−q − am+p−q

am+2 − am+1
|T p−1Z| . (7)Using lemmas 1 and 2 we see that there exists a onstant C0 depending only on the map

T suh that:
(

sup
(am+q−1,am+q)

|D2T |
)

(am+q+1 − am+q) ≤ C0 ·
1

(q +m)
γ−2
γ−1 (q +m)

γ
γ−1

= C0 ·
1

(q +m)2
.Therefore the sum over q = 1, 2, . . . is summable and there exists a onstant C1 suhthat for x, y ∈ Z−

m,p:
p−1∑

q=1

(
sup

(am+p−q−1,am+p−q)
|D2T |

)
|T qx− T qy| ≤ C1|T p−1Z| . (8)(ii) In this ase we need to ontrol the behavior of the map lose to 0. In partiular, byusing lemmas 1 and 2 (and the symmetry of b±i) we start by notiing that

(
sup

(bi+1,bi)
|D2T |

)
|bi − bi+1| = O(

i
2γ−1
γ−1

i
2γ−1
γ−1

) = 1. (9)Combining (8) and (9) with (4) we get that there exists a onstant D2 so that for all
j ≤ p− 1

1

D2
≤

∣∣∣∣
DT j(x)

DT j(y)

∣∣∣∣ ≤ D2. (10)Let's all α = b−(m+p−1), β = b−(m+p) the end points of Z−
m,p. For j1, j2 ≤ p − 1 thereexist η1 ∈ (x, y) and η2 ∈ (α, β) suh that:

|T j1x− T j1y| = DT j1(η1)|x− y|,
|T j2α− T j2β| = DT j2(η2)|α− β|.The distortion bound (10) yields
∣∣T j1x− T j1y

∣∣
|T j1α− T j1β| ≤ D2

2

∣∣T j2x− T j2y
∣∣

|T j2α− T j2β| .If we now hoose j1 = 0 and j2 = p− 1 then
(

sup
(α,β)

|D2T |
)
|x− y| ≤ D2

2

(
sup
(α,β)

|D2T |
) |α− β| · |T p−1x− T p−1y|

|T p−1α− T p−1β| .Sine |T p−1α− T p−1β| = lm+1 = am − am+1 and x and y to belong to Z we get:
(

sup
(α,β)

|D2T |
)
|x− y| ≤ D2

2

(
sup
(α,β)

|D2T |
) |α− β| · |T p−1Z|

lm+17



and using distortion bound (9) one more we have that there exist a onstant C2 suhthat:
(

sup
(α,β)

|D2T |
)
|x− y| ≤ C2

|T p−1Z|
lm+1

.By olleting lemma 4(i) and 4(ii) we see that the ratio |DT p(x)/DT p(y)|, (x, y ∈ Z) isbounded as:
∣∣∣∣
DT p(x)

DT p(y)

∣∣∣∣ ≤ exp

[
C2

|T p−1Z|
lm+1

+ C1|T p−1Z|
]
≤ exp

[
K2|T p−1Z|

] (11)with K2 = C1 + C2/lm+1.We �nish the proof of the Proposition by hoosing K = max(K1,K2)3 Deay of orrelationsIn this setion and in the next we prove several statistial properties for our map: they arebasially onsequenes of the distortion inequality got in the previous setion mathed withestablished tehniques.Proposition 5. The map T enjoys polynomial deay of orrelations (w.r.t. the Lebesguemeasure m), for Hölder ontinuous funtions on T. More preisely, for all Hölder ϕ : T → Rand all ψ ∈ L∞(T,m), we have:
∣∣∣∣
∫

(ϕ ◦ T n) ψ dm−
∫
ϕ dm

∫
ψ dm

∣∣∣∣ = O
( 1

n
1

γ−1

)
.Proof. We will use Lai-Sang Young's tower tehnique [30℄. We build the tower over the interval

I0 and we de�ne the return time funtion as the �rst return time:for all x ∈ I0, R(x) := min{n ∈ N
+ ; T nx ∈ I0} := τI0(x) .The tower is thus de�ned by:

∆ = {(x, l) ∈ I0 × N ; l ≤ τI0(x) − 1}and the partition of the base I0 is given by the ylinders Z0,p de�ned in the previous setion.Reall that the dynamis on the tower is given by:
F (x, l) =

{
(x, l + 1) if l < τI0(x) − 1

(T τI0
(x)(x), 0) if l = τI0(x) − 1Aording to [30℄, the deay of orrelations is governed by the asymptotis ofm{x ∈ I0 ; τI0(x) ≥

n} namely
m{x ∈ I0 ; τI0(x) > n} = m(b−n, bn) ∼ 1

γ

(
2γ

γ − 1

) γ
γ−1 1

(n− 1)
γ

γ−1

.8



Moreover we must verify another important requirement of the theory; this will also beuseful in the next setion about limit theorems. Let us �rst introdue the separation time
s(x, y) between two points x and y in I0. Put T̂ the �rst return map on I0; we de�ne
s(x, y) = minn≥0{(T̂ n(x), T̂ n(y)) lie in distint Z0,p, p ≥ 1}. We ask that ∃C > 0, δ ∈ (0, 1)suh that ∀x, y ∈ Z0,p, p ≥ 1, we have

∣∣∣∣∣
DT̂ (x)

DT̂ (y)

∣∣∣∣∣ ≤ exp[Cδs(T̂ (x),T̂ (y))] . (12)Let us prove this inequality. Remember that the ylinder Z0,p is the disjoint union of twoopen omponents, Z+
0,p and Z−

0,p, whih sit on the opposite sides of 0. Suppose �rst that x and
y stay in the same open omponent of some Z0,p, p ≥ 1, and that s(T̂ (x), T̂ (y)) = n; thensine the orbits (under T̂ ) of the two points will be in the same ylinder up to time n− 1, andon these ylinders T̂ is monotone and uniformly expanding, |DT̂ | ≥ β > 1 (see footnote 1),we have |T̂ (x) − T̂ (y)| ≤ β−(n−1). Therefore by the distortion inequality we get

∣∣∣∣∣
DT̂ (x)

DT̂ (y)

∣∣∣∣∣ ≤ exp
[
Kβ−(n−1)

]
≤ exp[Cδs(T̂ (x),T̂ (y))] , (13)where C = Kβ and δ = β−1. If instead x, y lie in the two di�erent open omponents of some

Z0,p, p ≥ 1, and again s(T̂ (x), T̂ (y)) = n, this means that −x and y will have the same odingup to n; hene ∣∣∣∣∣
DT̂ (x)

DT̂ (y)

∣∣∣∣∣ =

∣∣∣∣∣
DT̂ (−x)
DT̂ (y)

∣∣∣∣∣

≤ exp[K|T̂ (−x) − T̂ (y)|] ≤ exp
[
Kβ−(n−1)

]
≤ exp[Cδs(T̂ (x),T̂ (y))] .Aording to [30℄ the orrelations deay satis�es ∣∣∫ (ϕ ◦ T n) ψ dm −

∫
ϕ dm

∫
ψ dm

∣∣ = O(
∑

k>nm{x ∈
I0 ; τI0(x) ≥ k} and the right hand side of this inequality behaves like O

(
n
− 1

γ−1
).Optimal bounds The previous result on the deay of orrelations ould be strengthenedto produe a lower bound for the deay of orrelations for integrable funtions whih vanishin a neighborhood of the indi�erent �xed point. We will use for that the renewal tehniqueintrodued by Sarig [28℄ and suesively improved by Gouëzel [13℄. We �rst need that ouroriginal map is irreduible: this is a onsequene of the already proved ergodiity, but oneould shown diretly by inspetion that the ountable Markov partition given by the preimagesof zero has suh a property. We moreover need additional properties that we diretly formulatein our setting:

• Suppose we indue on Im = (a−m, am)/{0} and all Zm the Markov partition into theretangles Zm,p with �rst return p. A ylinder [d0, d1, · · · , dn−1] with di ∈ Zm will bethe set ∩n−1
l=0 T̂

−idl.We �rst need that the jaobian of the �rst return map is loally Hölder ontinuous,namely that there exists θ < 1 suh that:
sup | logDT̂ (x) − logDT̂ (y)| ≤ Cθn ,9



where the supremum is taken over all ouples x, y ∈ [d0, d1, · · · , dn−1], di ∈ Zm and C isa positive onstant. But this is an immediate onsequene of formula (13) with θ = β−1and C = Kβ. Using the separation time s(·, ·), we de�neDmf = sup |f(x)−f(y)|/θs(x,y),where f is an integrable funtion on Im and the supremum is taken over all ouples
x, y ∈ Im. We then put ||f ||Lθ,m

≡ ||f ||∞ + Dmf . We all Lθ,m the spae of θ-Hölderfuntions on Im.
• We need the so-alled big image property, whih means that the Lebesgue measure ofthe images, under T̂ , all the retangles Zm,p ∈ Zm are uniformly bounded from belowby a stritly positive onstant. In our ase, see setion 3, these images are bounded frombelow by the length of the interval (a−m, am).
• We �nally need thatm(x ∈ Im|τ(x) > n) = O(n−χ), for some χ > 1 (this is Gouëzel's as-sumption, whih improves Sarig's one, asking for χ > 2). In our ase by the onstrutiondeveloped in Set. 3 we immediately get that m(x ∈ Im|τ(x) > n) = m(∪p>nZm,p) =

(b−(m+n), bm+n) ∼ C(n + m)−b = Cn−b(1 + m/n)−b ∼ Cn−b, where the onstants Cand b are the same as those given in the proof of Th. 4, preisely C = 1
γ

(
2γ

γ−1

) γ
γ−1 and

b = γ
γ−1 .Under these assumptions, Sarig and Gouëzel proved a lower bound for the deay of orrelationswhih we diretly speialize to our map:Proposition 6. There exists a onstant C suh that for all f whih are θ-Hölder and gintegrable and both supported in Im we have

∣∣∣∣∣Corr( f, g ◦ T
n) − (

∞∑

k=n+1

m(x ∈ Im|τ(x) > n))

∫
g dm

∫
f dm

∣∣∣∣∣ ≤ CFγ(n)||g||∞||f ||Lθ,mwhere Fγ(n) = 1

n
γ

γ−1
if γ < 2, (log n)/n2 if γ = 2 and 1

n
2

γ−1
if γ > 2.Moreover, if ∫

f dm = 0, then ∫
(g ◦ T n) f dm = O( 1

n
γ

γ−1
). Finally the entral limit theoremholds for the observable f .Remark 2. (i) Sine when m→ ∞, Im overs mod-0 all the interval (−1, 1) we get an optimaldeay of orrelations of order O( 1

n
1

γ−1
) for all integrable smooth enough funtions whih vanishin a neighborhood of 1.(ii) The last sentene about the existene of the entral limit theorem will be also obtained,using a di�erent tehnique, in Proposition 5, part 2, (a).4 Limit theoremsLet us reall the notion of stable law (see [9, 12℄): a stable law is the limit of a resaled i.i.dproess. More preisely, the distribution of a random variable X is said to be stable if thereexist an i.i.d stohasti proess (Xi)i∈N and some onstants An ∈ R and Bn > 0 suh that indistribution:

1

Bn

( n−1∑

i=0

Xi −An

)
−→ X .10



The kind of laws we are interested in an be haraterized by their index p ∈ (0, 1) ∪ (1, 2),de�ned as followed:
m(X > t) = (c1 + o(1))t−p , m(X < −t) = (c2 + o(1))t−p ,where c1 ≥ 0 and c2 ≥ 0 are two onstants suh that c1+c2 > 0, and by other two parameters:

c =






(c1 + c2)Γ(1 − p) cos(
pπ

2
) p ∈ (0, 1) ∪ (1, 2)

1

2
p = 2

, β =
c1 − c2
c1 + c2

.We will denote by X(p, c, β) the law whose harateristi funtion is
E(eX(p,c,β)) = e−c|t|p

(
1−iβsgn(t) tan( pπ

2
)
)
.Proposition 7. Let us denote Snϕ =

∑n−1
k=0 ϕ ◦ T k, where ϕ is an ν-Hölder observable, with∫

ϕ(x) dx = 0.1. If γ < 2 then the Central Limit Theorem holds for any ν > 0. That is to say there existsa onstant σ2 suh that Snϕ√
n

tends in distribution to N (0, σ2).2. If γ > 2 then:(a) If ϕ(1) = 0 and ν > 1
2 (γ − 2) then the Central Limit Theorem still holds. Moreover

σ2 = 0 i� there exists a measurable funtion ψ suh that φ = ψ ◦ T − ψ(b) If ϕ(1) 6= 0 then Snϕ

n
γ−1

γ

onverges in distribution to the stable law X
(
p, c, β

) with:
p =

γ

γ − 1

c =
1

2γ

(
2γϕ(1)

γ − 1

) γ
γ−1

Γ(
1

(1 − γ)
) cos(

πγ

2(γ − 1)
)

β = sgnϕ(1)3. If γ = 2 then:(a) If ϕ(1) = 0 then the Central Limit Theorem holds.(b) If ϕ(1) 6= 0 then there exist a onstant b suh that Snϕ√
n log n

tends in distribution to
N (0, b).Proof.1. As a by-produt of the tower's theory we get the existene of the entral limit theoremwhenever the rate of deay of orrelations is summable ([30℄, Th. 4); this happens in ourase for γ < 2. As usual we should avoid that φ is a o-boundary.11



2. (a) We proeed as in [12℄ Th. 1.3 where this result was proven for the Pomeau-Mannevilleparaboli maps of the interval. We defer the reader to Gouëzel's paper for thepreparatory theory; we only prove here the neessary onditions for its appliation.We indue again on I0 and we put ϕI0(x) :=
∑τI0

−1

i=0 ϕ(T ix). We need:i. φ must be loally θ-Hölder on I0 (resp. T), with θ < 1, whih means that thereexists a onstant C suh that |φ(x) − φ(y)| ≤ Cθs(x,y) ∀x, y ∈ I0 (resp.T) with
s(x, y) ≥ 1. We extend the separation time s(x, y) to the ambient spae asfollows: if x, y ∈ T, all x̂, ŷ their �rst returns to I0. Whenever T ix, T iy stay inthe same element of the Markov partition {Im}m∈Z until the �rst return to I0,we put s(x, y) = s(x̂, ŷ) + 1; otherwise s(x, y) = 0.ii. m{x ∈ I0; τI0(x) > n} = O(1/nη+1), for some η > 1iii. ϕI0 ∈ L2

(
I0

)
.Reall that the indued map T̂ on I0 is uniformly expanding with fator β > 1;therefore for any ouple of points x, y ∈ T we have |x − y|T ≤ Bβ−s(x,y), where Bis a suitable onstant and | · |T denotes the distane on the irle. Using the Hölderassumption on φ we get |φ(x) − φ(y)| ≤ D|x− y|ν

T
≤ Eβ−νs(x,y), whih shows that

φ is loally Hölder with θ = β−ν < 1.The quantity in the seond item above is exatly (bn, b−n) for whih we obtained inthe previous setion a bound of order n−( γ
γ−1

). Hene η = γ/(γ − 1) − 1.To prove the third item denote Cϕ =
∫
I0
|ϕ(x)|2dx we obtain:

∫

I+
0

|ϕI+
0
(x)|2 dx = Cϕ +

+∞∑

p=2

∫

Z0,p

∣∣∣
p−1∑

i=0

ϕ(T ix)
∣∣∣
2
dx

. Cϕ + 2

+∞∑

p=2

∫ bp−1

bp

∣∣∣
p−1∑

i=0

|T ix− 1|νT
∣∣∣
2
dx

. Cϕ + 2

+∞∑

p=2

∫ bp−1

bp

∣∣∣
p−1∑

i=0

|ai − 1|ν
∣∣∣
2
dx

. Cϕ + 2

+∞∑

p=2

m(bp − bp−1)p
2(− ν

γ−1
+1)

dx

. Cϕ + 2

+∞∑

p=2

p
−( γ

γ−1
+1)

p
2(− ν

γ−1
+1)

dx .Finally if 2(−ν+γ−1)
γ−1 − γ

γ−1 − 1 < −1 (i.e. ν > 1
2 (γ − 2)) then ϕI0 ∈ L2

(
I0

).(b) Using the fat that
m[u > nϕ(−1)] = m(bn, b−n) ∼ 1

2γ

(
2γ

γ − 1

) γ
γ−1 1

n
γ

γ−1and the proof in 2.(a), the result easily follows along the same lines of the proof ofTh. 1.3 in [12℄. 12



3. This ould also be argued as in the Proof of Th. 1.3 in [12℄.Large deviations.The knowledge of the measure of the tail for the �rst returns on the tower (in our ase builtover I0), will allows us to apply the results of Melbourne and Niol [22℄ to get the largedeviations property for Hölder observables. Applied to our framework, their theorem statesthat if m(x; τI0 > n) = O(n−(ζ+1)), with ζ > 0, then for all observables φ : [−1, 1] → R whihare Hölder and whih we take of zero mean, we have the large deviations bounds:Proposition 8. If γ < 2 then the map T veri�es the following large deviations bounds:(I) ∀ǫ > 0 and δ > 0, there exists a onstant C ≥ 1 (depending on φ) suh that
m





∣∣∣∣∣∣
1

n

n−1∑

j=0

φ(T j(x))

∣∣∣∣∣∣
> ǫ



 ≤ Cn−(ζ−δ).(II) For an open and dense set of Hölder observables φ, and for all ǫ su�iently small, wehave
m





∣∣∣∣∣∣
1

n

n−1∑

j=0

φ(T j(x))

∣∣∣∣∣∣
> ǫ



 ≥ n−(ζ−δ)for in�nitely many n and every δ > 0.Remark 3. The Melbourne and Niol result has been reently strenghtened by Melbourne [23℄;by adopting the same notation as above, he proved that whenever the observable φ is L∞ (withrespet to the Lebesgue measure m), and ζ + 1 > 0, then for any ǫ there exists a onstant Cφ,ǫsuh that
m





∣∣∣∣∣∣
1

n

n−1∑

j=0

φ(T j(x))

∣∣∣∣∣∣
> ǫ



 ≤ Cφ,ǫn
−ζfor all n ≥ 1. Translated to our map, this means that we have the large deviation propertywhenever γ > 1. Similar results have been obtained by Polliot and Sharp [26℄ for the Pomeau-Manneville lass of maps; hopefully they ould be generalized in the presene of unbounded �rstderivaties.5 ReurreneFirst returns.In the past ten years the statistis of �rst return and hitting times have been widely usedas new and interesting tools to understand the reurrene behaviors in dynamial systems.Surveys of the latest results and some historial bakground an be found in [20, 17, 1℄.Take a ball Br(x) or radius r around the point x ∈ T and onsider the �rst return τBr(x)(y)of the point y ∈ Br(x) into the ball. If we denote with mr the onditional measure to Br(x),13



we ask whether there exists the limit of the following distribution when r → 03:
F e

r (t) = mr

(
y ∈ Br(x); τBr(x)m(Br(x)) > t

)
.The distribution F h

r (t) for the �rst hitting time (into Br(x)) is de�ned analogously justtaking y and the probability m on the whole spae T.A powerful tool to investigate suh distributions for non-uniformly expanding and hyper-boli systems is given by the onjuntion of the following results, whih redue the omputa-tions to indued subsets.
• Suppose (T,X, µ) is an ergodi measure preserving transformation of a smooth Rie-mannian manifold X; take X̂ ⊂ X an open set and equip it with the �rst return map
T̂ and with the indued (ergodi) measure µ̂. For x ∈ X̂ we onsider the ball Br(x)(Br(x) ⊂ X̂) around it and we write τ̂Br(x)(y) for the �rst return of the point y ∈ Br(x)under T̂ . We now onsider the distribution of the �rst return time for the two vari-ables τBr(x) and τ̂Br(x) in the respetive probability spaes (Br(x), µr) and (Br(x), µ̂r)(where again the subindex r means onditioning to the ball Br(x)), as : F e

r (t) = µr(y ∈
Br(x)); τBr(x)(y)µ(Br(x)) > t) and F̂ e

r (t) = µ̂r(y ∈ Br(x)); τ̂Br(x)(y)µ̂(Br(x)) > t).In [4℄ it is proved the following result: suppose that for µ-a.e. x ∈ X̂ the distribution
F̂ e

r (t) onverges pointwise to the ontinuous funtions f e(t) when r → 0 (rememberthat the previous distribution depend on x via the loation of the ball Br(x)); thenwe have as well F e
r (t) → f e(t) and the onvergene is uniform in t4. We should notethat whenever we have the distribution f e(t) for the �rst return time we an insure theexistene of the weak-limit distribution for the �rst hitting time F h

r (t) → fh(t) where
fh(t) =

∫ t
0 (1 − f e(s))ds, t ≥ 0 [16℄.Note: From now on we will say that we have f e,k(t) as limit distributions for balls, ifwe get them in the limit r → 0 and for µ-almost all the enters x of the balls Br(x).

• The previous result is useful if we are able to handle with reurrene on indued subsets,see [5, 6℄ for a few appliations. Indution for one-dimensional maps often produespieewise monotoni maps with ountably many piees. An interesting lass of suhmaps are the Ryhlik's maps [27℄ : in [4℄ Def. 3.1 the underlying measure is onformal.When the onformal measure is the Lebesgue measure m, then Ryhlik's maps ould beharaterized in the following way:Let T : Y → X be a ontinuous map, Y ⊂ X open and dense, m(Y ) = 1 and X is theunit interval or the irle. Suppose there exists a ountable family of pairwise disjointopen intervals Zi suh that Y =
⋃

i≤1 Zi and T is: (i) C2 on eah Zi; (ii) uniformlyexpanding: infZi
infx∈Zi

|DT (x)| ≥ β > 1; (iii) Var(g) <∞, where g = 1/|DT (x)| when
x ∈ Y and 0 otherwise (Var g denotes the total variation of the funtion g : R → ∞).3We all it distribution with abuse of language; in probabilisti terminology we should rather take 1 minus thatquantity.4The result proved in [4℄ is slightly more general sine it doesn't require the ontinuity of the asymptotidistributions over all t ≥ 0. We should note instead that we ould relax the assumption that X̂ is open justremoving from it a set of measure zero, whih will happen on our indued sets Im.14



In [4℄ Th. 3.2 it was shown that suh maps have exponential return time statistis aroundballs (i.e. f e(t) = fk(t) = e−t), whenever the invariant measure is absolutely ontinuousw.r.t. m and moreover this invariant measure is mixing.Before we formulate our next result for the maps T investigated in this paper let us prove thefollowing lemma.Lemma 9. The map T̂ is Ryhlik on the ylinders Im, m ∈ Z and the variation of |DT̂ | is�nite on eah of them.Proof. (see [4℄). Let us onsider the ylinder Im and partition it into the ylinders Zm,p with�rst return p ≥ 1, as we did in the seond setion; then we have for the variation on ImVar 1

|DT̂ |
≤

∑

Zm,p

∫

Zm,p

|D2T̂ (t)|
|DT̂ (t)|2

dt+ 2
∑

Zm,p

sup
Zm,p

1

|DT̂ |
.By the distortion bound proved in the seond setion we have that

e2K ≥
∣∣∣∣∣
DT̂ (x)

DT̂ (y)

∣∣∣∣∣ ≥
∣∣∣∣∣

∫ y

x

D2T̂ (t)

DT̂ (t)
dt

∣∣∣∣∣ ≥
∫ y

x

|D2T̂ (t)|
DT̂ (t)

dtfor any x, y ∈ Zm,p, sine the �rst derivative is always positive and the seond derivativehas the same sign for all the points in the same ylinder. But this immediately implies that∫
Zm,p

|D2T̂ (t)|

|DT̂ (t)|2
dt ≤ supZm,p

1
|DT̂ |

e2K . Using Remark(1) we an restrit to Z−
m. Sine T̂ maps

Z−
m,p>1 di�eomorphially onto (am−1, am) and Z−

m,1 onto (a−(m−1), am) ⊃ (am−1, am) therewill be a point ξ for whih DT̂ (ξ)m(Zm,p) ≥ m(am−1, am). Applying the bounded distortionestimate one more time, we get supZm,p

1
|DT̂ |

≤ e2Km(Zm,p)
m(am−1,am) . We �nally obtainVar 1

|DT̂ |
≤ e2K(2 + e2K)

m(am−1, am)

∑

Zm,p

m(Zm,p) <∞ .The following result now follows by [4℄ Theorem 3.2.Proposition 10. The map T has exponential return and hitting time distributions with respetto the measure m provided γ > 1.Number of visits.Let us ome bak to the general framework introdued in Set. 5.1 with the two probabilityspaes (X,T, µ) and (X̂, T̂ , µ̂). We now introdue the random variables ξe
r and ξ̂e

r whih ountthe number of visits of the orbits of a point y ∈ Br(x) to the ball itself and up to a ertainresaled time. Namely:
ξe
r(x, t) ≡

h

t
µ(Br(x))

i

∑

j=1

χBr(x)

(
T j(y)

)
,15



where χ stands for the harateristi funtion and x ∈ X. If we take x ∈ X̂ we an de�ne inthe same manner the variable ξ̂e
r(x, t) by replaing the ation of T with that of T̂ . We nowintrodue the two distributions

Ge
r(t, k) = µr(x; ξ

e
r(x, t) = k), Ĝe

r(t, k) = µ̂r(x; ξ̂
e
r(x, t) = k) ,where again the index r for the measures means onditioning on Br(x). It is proved in [4℄that whenever the distribution Ĝe

r(t, k) onverges weakly (in t) to the funtion g(t, k) andfor almost all x ∈ X̂ , the same happens, with the same limit, to the distribution Ge
r(t, k).For systems with strong mixing properties the limit distribution is usually expeted to bePoissonian [20, 17, 18, 1℄: tke−t

k! .In [10℄ it was shown that Ryhlik maps enjoy Poisson statistis for the limit distribution ofthe variables ξe
r and whenever the enter of the ball is taken a.e.. Hene we get the followingresult.Proposition 11. Let γ > 1. Then for m-almost every x the number of visits to the balls

Br(x) onverges to the Poissonian distribution as r → 0.Extreme Values.The last quoted paper [10℄ ontains another interesting appliation of the statistis of the �rsthitting time that we ould apply to our map T too. Let us �rst brie�y reall the ExtremeValue Theory. Given the probability measure preserving dynamial system (X,T, µ) and theobservable φ : X → R ∩ {±∞}, we onsider the proess Yn = φ ◦ T n for n ∈ N. Then wede�ne the partial maximum Mn ≡ max{Y0, · · · , Yn−1} and we look if there are normalisingsequenes {an}n∈N ⊂ R
+ and {bn}n∈N ⊂ R suh that

µ({x : an(Mn − bn) ≤ y}) → H(y)for some non-degenerate distribution funtion H: in this ase we will say that an ExtremeValue Law (EVL) holds for Mn. If the variables Yn were i.i.d., the lassial extreme valuetheory presribes the existene of only three types of non-degenerate asymptoti distributionsfor the maximum Mn and under linear normalisation, namely:
• Type 1: EV1 = e−e−y for y ∈ R, whih is alled the Gumbel law.
• Type 2: EV2 = e−y−α for y > 0, EV2 = 0, otherwise, where α > 0 is a parameter, whihis alled Frehet law.
• Type 3: EV3 = e−(−y)α for y ≤ 0, EV3 = 1, otherwise, where α > 0 is a parameter,whih is alled Weibull law.From now on we will take X as a Riemannian manifold with distane d and µ an absolutelyontinuous (w.r.t. Lebesgue) probability invariant measure. Moreover onsider the observable

φ of the form φ(x) = g(d(x, ξ)), where ξ is a hosen point in X. The funtion g : [0,∞) →
R ∪ {+∞} is a stritly dereasing bijetion in a neighborhood of 0 and it has 0 as a globalmaximum (eventually +∞). The funtion g ould be taken in three lasses; we defer to [10℄for the preise haraterization. Important representatives of suh lasses (denoted by the16



indies 1,2,3) are g1(x) = − log(x); g2(x) = x−1/α for some α > 0; g3(x) = D − x−1/α, forsome D ∈ R and α > 0. We also remind the distribution of the �rst hitting time F h
r (t)into the ball Br(x) introdued above; we say that a system enjoys exponential hitting timestatistis (EHTS) if F h

r (t) onverges point wise to e−t for µ-a.e. x ∈ X (we saw before that itis equivalent to get the exponential limit distribution for the �rst return time). We are nowready to state the result in [10℄ whih establishes an equivalene between the EHTS and theEVL; we will be in partiular onerned with the following impliation: suppose the system
(X,T, µ) has EHTS; then it satis�es an EVL for the partial maximum Mn onstruted on theproess φ(x) = g(d(x, ξ)), where g is taken in one of the three lasses introdued above. Inpartiular if g = gi we have an EVL for Mn of type EVi.Of ourse this result an be immediately applied to the mapping T under investigation inthis paper.6 GeneralizationsAs mentioned in the Introdution the original paper by Grossmann and Horner [14℄ dealtwith di�erent Lorenz-like maps S whih map [−1, 1] onto itself with two surjetive symmet-ri branhes de�ned on the half intervals [−1, 0] and [0, 1]. They have the following loalbehaviour:

S(x) ∼ 1 − b|x|κ, x ≈ 0, b > 0

S(x) ∼ −x+ a|x− 1|γ , x ≈ 1−, a > 0

S(x) ∼ x+ a|x+ 1|γ , x ≈ −1+where κ ∈ (0, 1) and γ > 1 are two parameters. We also require that(i) in all points x 6= −1, 1 the absolute value of the derivative is stritly bigger than 1.(ii) S is stritly inreasing on [−1, 0], stritly dereasing on [0, 1] and onvex on the two in-tervals (−1, 0), (0, 1)The map has a usp at the origin where the left and right �rst derivatives diverge to ±∞ andthe �xed point −1 is paraboli (Fig. 2). Although the map S is Markov with respet to thepartition {[−1, 0], [0, 1]} it will be more onvenient to use a ountable Markov partition whoseendpoints are given by suitable preimages of 0 (see below).The re�exion symmetry of the map T in Set. 2 was related to the invariane of theLebesgue measure. We do not really need that the map S is symmetri with respet to theorigin. We did this hoie to get only two saling exponents (κ and γ) in 0 and in ±1. Thisimplies in partiular the same salings for the preimages of 0 on (−1, 0) and (0, 1). If the leftand rigt branhes are not anymore symmetri, still preserving the Markov struture and thepresene of indi�erent points and of a point with unbounded derivative, one should play withat most four saling exponents giving the loal behavior of S in 0 and ±1.We denote by S1 (resp. S2) the restrition of S to [−1, 0] (resp. [0, 1]) and de�ne a0+ =

S−1
2 0; a0− = S−1

1 0; a−p = S−p
1 a0−; ap = S−1

2 S
−(p−1)
1 a0− for p = 1, 2, . . . . It follows that17
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Sa−p = Sap = a−(p−1). In the same way as we did in the �rst setion we de�ne the se-quene bp, p ≥ 1 as: Sb±p = ap−1. The ountable Markov partition, mod m, will be{
(a−p, a−(p−1)) : p ≥ 1

}
∪ {(ap, ap+1) : p ≥ 1} ∪ {I0}, I0 ≡ (a0−, a0+)/{0}.From the loal behaviors one gets the following saling relations

ap = −a−p ∼ 1 −
(

1

a(γ − 1)

) 1
γ−1 1

p
1

γ−1

ap − ap+1 ∼ a

(
1

a(γ − 1)

) γ
γ−1 1

p
γ

γ−1

bp = −b−p ∼
(

1

ab(γ−1)(γ − 1)

) 1
k(γ−1) 1

p
1

k(γ−1)

bp − bp−1 ∼ 1

k
(
ab(γ−1)

) 1
k(γ−1)

(
1

γ − 1

) k(γ−1)+1
k(γ−1) 1

p
k(γ−1)+1

k(γ−1)Bounded distortion. The distortion is estimated in the same way as it was done in the proof18



of Proposition 1, with however two di�erenes:
• The role of Remark1 is played here by the monotoniity of the right branh: whenever
x, y sit on di�erent omponents we an just note that |DS(−x)| = |DS(x)| and thatafter one iteration S(x) = S(−x). 5

• Let us onsider again the step from the �rst to the seond upper bound in (4): we simplydisarded the denominator given by the in�mum of the �rst derivative over the sets withgiven �rst return time, sine it was inin�uent for the map T . Instead it will now playsan important role sine it makes bounded the following ratio sine, as it is easy to hek,:
|bn+1 − bn| sup(bn+1,bn) |D2S|

inf(bn+1,bn) |DS|
= O(

1

n
) .Invariant measure and deay of orrelations. An important di�erene with the map on theirle is that we are not guaranteed that the Lebesgue measure m is anymore invariant; so wehave to build an absolutely ontinuous invariant measure µ. Fortunately the tower's tehniqueshelps us again. If the tail of the return time on the base of the tower is m-summable and thedistortion is bounded, it follows the existene of suh µ. To be more preise let us indue onthe ylinder I0. A subylinder Zp of I0 with �rst return time p will have the form6

Z1 = (a0−, b−1) ∪ (b1, a0+) (14)
Zp = (b−(p−1), b−p) ∪ (bp, bp−1) p > 1 .Consequently the Lebesgue measure of the points in I0 with �rst return bigger than nsales like

m(x ∈ I0; τI0(x) > n) ≈ 1

n
1

κ(γ−1)We an thus invoke Th. 1 in Lai-Sang Young's paper [30℄ to get :Proposition 12. Let us onsider the map S depending upon the parameters γ and κ. Thenfor 0 < κ < 1
γ−1 (or for 0 < κ < 1, when γ ≤ 2), we get the existene of an absolutelyontinuous invariant measure µ whih mixes polynomially fast on Hölder observables withrate O

(
n
−

1−κ(γ−1)
κ(γ−1)

).The map has exponential return and hitting times distributions and Poissonian statisti forthe limit distribution of the number of visits in balls.5In the asymmetri ase |DS(−x)| 6= |DS(x)| but still after one iterate S(x) and S(y) sit on the same side.This imply that multiplying by the appropriate fator we an treat the asymmetri ase in the same way as thesymmetri one.6We would like to note that, ontrarily to the map T investigated in the previous setions, the �rst returnmap Ŝ for S on I0 is not onto I0 on eah ylinder Zp with presribed �rst return time. In fat Ŝ maps all theylinders (bp−1, bp) and (b−p, b−(p−1)) onto (a0−, 0), but it maps the ylinders (a0−, b−1) and (b1, a0+) onto (0, a0−).Nevertheless Ŝ is an irreduible Markov map, as it is easy to hek. If one wants a genuine �rst return Bernoullimap, one should indue over (a0−, 0): the ylinders with given �rst return time are simply slightly more ompliatedto manage with. 19



Optimal bounds. As we did in the previous setion the result on the deay of orrelationsould be strengthened to produe a lower bound for the deay of orrelations for integrablefuntions whih vanish in a neighborhood of the indi�erent point using the renewal tehniqueintrodued in [28℄ and [13℄. The only di�erene with the previous setion is that now Lebesguemeasure is not invariant and thus we additionally need to show that the invariant density ρis Lipshitz in the region of induing Im = (a−m, am). This is proved by �rst noting that theindued density ρ̂ is Lipshitz (see Eq.(15) below ) and then using the fat that ρ(x) = Crρ̂(x)for x ∈ Im, that this is a diret onsequene of Eq.(16) below.Under these assumptions we get the analogous of Proposition 6 above:Proposition 13. There exists a onstant C suh that for all f whih are θ-Hölder and gintegrable and both supported in Im we have
∣∣∣∣∣Corr( f, g ◦ T

n) − (
∞∑

k=n+1

m(x ∈ Im|τ(x) > n))

∫
g dm

∫
f dm

∣∣∣∣∣ ≤ CFγ(n)||g||∞||f ||Lθ,mwhere
Fγ(n) =






n
− 1

k(γ−1) if 0 < κ <
1

2(γ − 1)
(or 0 < κ < 1, when γ ≤ 3/2)

(log n)/n2 if γ =
1

2(γ − 1)

n
− 2

k(γ−1)
+2 if 1

2(γ − 1)
< κ <

1

γ − 1
(or 1

2(γ − 1)
< κ < 1,when 3/2 < γ ≤ 2)Moreover, if ∫

f dm = 0, then ∫
(g ◦T n) f dm = O( 1

n
1

k(γ−1)

). Finally the entral limit theoremholds for the observable f .Remark 4. (i) Sine when m→ ∞, Im overs mod-0 all the interval (−1, 1) we get an optimaldeay of orrelations of order O(n
−

1−k(γ−1)
k(γ−1) ) for all integrable smooth enough funtions whihvanish in a neighborhood of −1 and of 1.(ii) The last sentene about the existene of the entral limit theorem will be also obtained inProposition 14, part 2, (a).Limit theorems Following the orresponding arguments in setion 3 we haveProposition 14. Let us denote Snϕ =

∑n−1
k=0 ϕ◦T k, where ϕ is an ν-Hölder observable, with∫

ϕ(x) dx = 0.1. If 0 < κ < 1
2(γ−1) (or 0 < κ < 1, when γ ≤ 3/2), then the Central Limit Theorem holdsfor any ν > 0, nameky there exists a onstant σ2 suh that Snϕ√

n
tends in distribution to

N (0, σ2).2. If 1
2(γ−1) < κ < 1

γ−1 (or 1
2(γ−1) < κ < 1, when 3/2 < γ ≤ 2), then:(a) If ϕ(−1) = 0 and ν > 1

2κ(γ−1) then the Central Limit Theorem still holds. Moreover
σ2 = 0 i� there exists a measurable funtion ψ suh that φ = ψ ◦ T − ψ20



(b) If ϕ(−1) 6= 0 then Snϕ

n
1
p

onverges in distribution to the stable law X
(
p, c, β

) with:
p =

1

κ(γ − 1)

c = ρ(0)

(
ϕ(−1)

ab(γ−1)(γ − 1)

) 1
k(γ−1)

Γ(1 − p) cos(
πp

2
)

β = sgnϕ(−1)where the density in 0, ρ(0), is always of order 1 (see next setion).3. If k = 1
2(γ−1) then:(a) If ϕ(−1) = 0 then the Central Limit Theorem holds.(b) If ϕ(−1) 6= 0 then there exist a onstant b suh that Snϕ√

n log n
tends in distributionto N (0, b).Large deviations. Large deviations results an be derived following the orresponding argu-ments in previous setions. In partiular, and by using the reent result by Melbourne [23℄,we an state that for (Lebesgue) L∞ observables, the large deviation property holds withpolynomial deay at a rate whih is given by that of the deay of orrelations; for our Lorenzmaps it is of order n− 1−κ(γ−1)

κ(γ−1) , provided that 0 < κ < 1
γ−1 (or 0 < κ < 1, when γ ≤ 2).Densities. A heuristi analysis of the density ρ of the measure µ was done in [14℄. Aordingto Th. 1 in [30℄ the indued map Ŝ has a density ρ̂ bounded away from 0 and ∞ whihadditionally veri�es, for any two points x, y in a ylinder with given �rst return time:

∣∣∣∣
ρ̂(x)

ρ̂(y)
− 1

∣∣∣∣ ≤ Cβs(x,y) (15)where C > 0 depends on the map and β < 1 and s(·, ·) are as in Set. 3 (separation times).Note that we ould get the same result by observing that our indued maps are Ryhlik(whih was proved in Set. 5), and for suh maps Kowalski [21℄ showed that the density isof bounded variation and bounded away from zero on the support of the invariant measure.What is instead the behavior of ρ. Is ρ bounded from below away from 0 too? Sine we areworking with the indued map, it is well known how to reonstrut the invariant measure µif we are able to ontrol the subset on the indued spae with given �rst return. By applyingthis formula to our indued spae I0 we get:
µ(B) = Cr

∑

i

τi−1∑

j=0

µ̂(S−j(B) ∩ Zi) (16)where B is any Borel set in [−1, 1], µ̂ is the Ŝ-invariant absolutely ontinuous measure on I0and the �rst sum runs over the ylinders Zi with presribed �rst return time τi and whoseunion gives I0. The normalising onstant Cr = µ(I0) satis�es 1 = Cr
∑

i τiµ̂(Zi). Sine, as we21



said above, µ̂ is uniformly equivalent to m on I0, we will use the latter measure in the nextomputations. Notie that the terms in the sum de�ning Cr sale as O(n
− 1

κ(γ−1) ).To obtain the asymptotis of the density in the viinity of the (interesting) points ±1 and
0 we proeed as follows. We �rst note that in order to estimate the µ-measure of of a set B weneed to onsider only the ylinders Zp of I0 whih iterates will have non-empty intersetionwith B before they return to I0. This immediately implies that µ(B) = Crµ̂(B) if B ⊂ I0. Itfollows that

µ
(
(b±(n+1), b±n)

)
≈ Crm

(
(b±(n+1), b±n)

)and thus the density ρ(x), x lose to 0, is of order 1. In a similar way we estimate the µ-measureof the ylinder (an−1, an) (for big n) near the point 1; we get that S−(1)(an−1, an) ∩ Zn+1 =
Zn+1 is the only possible non-empty intersetion of the preimage S−j(an−1, an) with Zp, forevery p and for 0 ≤ j ≤ p− 1. Therefore we get:

µ((an−1, an)) ≈ Crm(Zn+1) ≈ n
− 1−κ+κγ

κ(γ−1)The density on (an−1, an) is given by ρ((an−1, an)) ≈ µ((an−1,an))
m((an−1,an)) ≈ n

− 1−κ
κ(γ−1) .We now study the density in the neighborhood of−1, by onsidering the ylinder (a−n, a−n+1),for large n > 0. The ylinders Zp of I0 whose iterates will have non-empty intersetion with

(a−n, a−n+1) before they return to I0, have p ≥ n+ 2. Therefore we get in the usual way:
µ((a−n, a−n+1)) ≈ Cr

∞∑

p=n+2

m(Zp)) ≈ n
− 1

κ(γ−1)The density in (a−n, a−n+1) is given by ρ((a−n, a−n+1)) ≈ µ((a
−n,a

−n+1))
m((a

−n,a
−n+1))

≈ n
− 1−κγ

κ(γ−1) .Let us summarize these fats.Proposition 15. Let us onsider the map S with γ > 1 and 0 < κ < 1
γ−1 (or 0 < κ < 1when γ ≤ 2). We have

• When x→ 1 the density ρ ≡ ρ(x) → 0

• When x→ −1 the density veri�es:(i) if κ = 1
γ then ρ = O(1)(ii) if 1

γ < κ, then ρ→ ∞(iii) if 1
γ > κ, then ρ→ 0

• The density is always of order 1 in the neighborhood of 0.Note that our Proposition �ts with the density found by Hemmer for the map (2); for thismap and its irle ompanion (1) the orrelations deay as n−1.
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