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The light hadron masses have been extensively and quite successfully studied in lattice QCD
simulations [5, 16]. However, the study of strong decays remains a challenge that only a few
exploratory calculations have addressed so far [14, 15].

Until recently this issue could be ignored : firstly because the sea quarks required for a multi-
body decay are not present in the quenched approximation, and then because energy conservation
leaves little or no phase space in those decays for unphysically large light quark masses. But as we
get closer to the physical point and improve our precision, this issue has to be addressed for us to
be able to reliably determine masses of resonant states. Additionally, it is exciting way to test the
characteristic dynamical effects of sea quarks.

A finite-volume formalism has been developped by Lüscher [7–11], and extended to moving
frames [12], which describes the modification of the quantization condition of scattering states
momenta under interactions. We use this framework to compute the rho decay width on a subset
of the Budapest-Marseille-Wuppertal collaboration configurations [1, 2], which features improved
Wilson fermions with N f = 2+1 flavors of sea quarks.

1. Introducing the two-pions levels

1.1 Basics of avoided crossings

If ρ were not coupled to ππ , the spectrum as a function of box size L would only consist of :

• a ρ state, whose energy would be a constant mρ up to exponentially suppressed finite-volume
corrections [7], and

• free two-pions states, whose momenta~k = (2π/L)~n, and energies E =

√
m2

π +~k2 are quan-
tized.

For some particular box sizes the ρ states crosses one of the free two-pions states. At these points
we would have a degeneracy but nothing particular would happen. But if now we turn on interac-
tions, the situation becomes very different: we know from quantum mechanics that two eigenstates
cannot cross. The interaction mixes ρ and ππ into new eingenstates which exhibit an avoided
level crossing phenomenon (Fig. 1). These avoided crossings therefore contain information on the
coupling between the states, and hence on the ρ width.

1.2 Lüscher’s Formula

In a finite box we expect the pions to interact then propagate over small distance, then interact
again, and so on. This can be represented as an expansion in a series of two-particles-irreducible
kernels as shown in Fig. 2. When this expansion is resummed, the interactions move F poles
(free two-pions states) to 1−MF zeros [13]. The zeros of 1−MF correspond to the solutions of
Lüscher’s formula, which was first derived in [8].

Lüscher’s formula is only valid below the 4π inelastic threshold. Expressed in a form exhibit-
ing its role of quantization condition, it reads (up to exponentially small terms in mπL) :

Φ(q) = nπ−δ (q), (1.1)

using the reduced momentum q = kL/2π and the δ phase shift in the I = J = 1 channel. Φ is a
known kinematical function of q, expressing the breaking of Lorentz invariance by the cubic box.
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Figure 1: The left side shows the spectrum in the free case as a function of mπ L, for mρ/mπ = 3 and ignoring
exponential corrections. This free spectrum is reproduced in dash lines on the right side and then we show
its deformation with different couplings. The model is the one used in section 1.3, with the coupling getting
stronger from green to red.
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Figure 2: Here we represent the finite-volume correction of an arbitrary correlator, computed under the
inelastic threshold up to exponentially small corrections. M is the infinite-volume amputated four-point
function, while F is the difference between finite-volume loops and infinite-volume ones. M is obtained as
a resummation of a volume-independant series of 2-particle-irreducible kernels.

1.3 The g-coupling model

Lüscher’s equation gives us the phase shift for a few discrete values of the momentum, deter-
mined by the parameters of the lattice. It would be difficult and very costly numerically to signifi-
cantly increase the number of such momenta. Therefore we need a model to reconstruct the phase
shift from a few points. Moreover, this model will be useful to make the necessary extrapolations
(mπ → mphys

π , a→ 0, L→ ∞, ... ). Following [11] we use both an effective range approximation
and an effective lagrangian Le f f = gεabcρa

µπb∂ µπc.
The effective range approximation parametrizes the phase shift in terms of a Taylor expansion

around kρ =
√

E2/4−m2
π , where kρ is the momentum of ρ ′s decay products in infinite-volume:

k3

W
cotδ = b(k2− k2

ρ). (1.2)

The second ingredient allows us to parametrize the coupling of the ρ to ππ states in terms of
a constant coupling g that should have a rather small dependance on the quark mass. On the other
hand the width Γ is strongly dependant on kinematics :

Γρ =
g2

6π
·

k3
ρ

m2
ρ

. (1.3)

Using experimental values for the masses and the width it yields g' 6.0.
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2. Results with a single interpolating operator

The formulae 1.2 and 1.3 can be combined into a very simple form, giving the correction to
get the ρ mass from the energy E of an arbitrary eigenstate in the I = J = 1 channel :

m2
ρ = E2− g2

6π

k3

E
cotΦ(kL/2π) where k =

√
E2

4
−m2

π (2.1)

In this expression, the unknowns are mπ and g. Instead of using two energy levels at a given
quark mass, one can extract the ground state energy level at different quark masses. But the kine-
matics required in that case are contradictory: on the one hand we would get no signal for the width
if the state is far below the first free two-pion state; on the other hand, near the first crossing one
cannot disentangle the contributions of the ρ mass and width to the measured energy level.

In [5] we considered only situations on which the ground state obtained with a single operator
is far from the first crossing. Thus, in combined fits of our 6-stout data, we obtained a precise
determination of mρ (mρ ∼ 5%), but a much less precise determination of g : g = 9.5±4.6.

3. Using two interpolating operators

3.1 Generalized Eigenvalue Problem

Now we are going to quickly present the principle of extraction of several energies by the
variationnal method. Let us first assume that we can compute observables only affected by N
eigenstates. We will show that energies can be computed from a set of N×N cross-correlators

Ci j(t) =
〈
0 | Oi(t)O j(0) | 0

〉
, with i, j = 1 . . .N. (3.1)

We first decompose them on the energy eigenstates and express them in a compact matrix form :

Ci j(t) = ∑
n
〈0 | Oi | n〉e−Ent 〈n | O j | 0

〉
(3.2)

= ∑
m,n

(V †)i,m ·Dm,n(t) ·Vn, j, (3.3)

so Vn, j is the nth-state content of the Oi operator and D is a diagonal matrix containing the expo-
nentials of the energies. Now we immediatly see that C(t)C−1(t0) is diagonal in the eigenstates
basis :

C(t)C−1(t0) =V †D(t)V
(
V †D(t0)V

)−1
= (V †)D(t− t0)(V †)−1, (3.4)

and its eigenvectors give the energies through :

λi = e−Ei(t−t0). (3.5)

This is exact if and only if the operators are linearly independent (so we can invert the V s). Note
that in the case N = 1 this is simply the effective mass method.

In practice we can only compute the matrix of operators obtained from a few N operators.
Thus only the N low-lying levels are asymptotically known, and higher-levels are treated as a
contamination at short times. The energies are computed with errors of order exp[(EN −EN+1)t]
and exp[(EN−EN+1)t0], so t and t0 must be large (t−t0 is not very important, since it only enters in
polynomial prefactors). A more precise study of high-levels corrections on some derived quantities
is made in [9].
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Figure 3: The contractions of ππ → ππ (top), ππ → ρ (bottom-left) and ρ → ππ (bottom-right), the
ρ → ρ being trivial. Time flows upward from 0 to t. Black dots represent an explicit summation whereas
shaded dots represent a noise-noise contact. Between those dots we can have Q propagators (one line) or W
propagator (two lines).

3.2 Operators and contractions

To implement the generalized eigenvalue approch described above, we consider two operators.
The first is the point ρ meson operator

ρi = ūγiu− d̄γid. (3.6)

The second operator must be non-local to have a sufficiently independent coupling to scattering
states. We construct it from local pion operators :

ππ i(~p,~q) = (pi−qi)
[
π
+(~p)π−(~q)−π

−(~p)π+(~q)
]
. (3.7)

Then, the cross-correlator is computed by contracting “stochastic propagators”. Following [14] we
use two kinds of “stochastic propagators” :

Q(~x, t |~q, ts,ξ j) = ∑
~y

D−1(~x, t;~y, ts) · [ei~p·~y
ξ j(~y)] (3.8)

W (~x, t |~k, t1 |~q, ts) = ∑
~z

D−1(~x, t;~z, t1) · [ei~k·~z
γ5Q(~z, t1 |~q, ts)] (3.9)

The contraction are described in Fig. 3, and here we make explicit the first one :

G1st
ππ→ρ = ∑

j,~x
e−i~P~x

〈
Q(~x, t |~0, ts,ξ j)W †(~x, t | −~p, ts | −~q, ts,ξ j)γ5γ3

〉
. (3.10)

4. Preliminary results

We use the simulation setup of the Budapest-Marseille-Wuppertal collaboration [5, 6] with 2
levels of HEX smearing [1–3], featuring N f = 2+1 flavors of tree-level improved Clover fermions
[6] and the tree-level improved Lüscher-Weisz gauge action [17]. We choose two simulations, for
which the two lowest-lying scattering states are near the crossing.
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Figure 4: Components of generalized eigenvectors, normalized and obtained from operators normalized
so that 〈0 | O(1)O(0) | 0〉 = 1. The eigenvectors are very sensitive to both higher-level contamination
and statistical errors. For t < 6 higher-state contamination is obvious, but for 6 ≤ t ≤ 9 or even more the
eigenvectors are constant as should be.
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Figure 5: The two energies obtained from solving generalized eigenvalue problem show a clean plateau,
and their energy difference is significant. The same goes for mπ = 200 MeV.

The first point is for mπ ' 200 MeV, with β = 3.31 and a = 0.116 fm with a lattice size of
323× 48. Contractions were computed in the center-of-mass frame ~P = (0,0,0), in which the ρ

mass nearly crosses the π(0,0,2π/L)π(0,0,−2π/L) free two-pion state.
The other point has mπ ' 340 MeV, with β = 3.31 and a = 0.116 fm. Here, the lattice size

is 243× 48. The analysis is performed in the moving frame ~P = (0,0,2π/L), in which the ρ can
nearly "decay" into π(0,0,2π/L)π(0,0,0).

Using Eq. 2.1 on the two energies resulting from the variational method we get (see Fig. 4 and
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5) :

g = 5.5±2.9 for the mπ ' 200MeV point, (4.1)

g = 6.6±3.4 for the mπ ' 340MeV point, (4.2)

where the error is purely statistical. Combining the two results we get

g = 6.0±2.2, (4.3)

which is in good agreement with experimental data.
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