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On the choice of parameters in the phase field method for simulating crack initiation with experimental validation
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The phase field method is a versatile simulation framework for studying initiation and propagation of complex crack networks without dependence to the finite element mesh. In this paper, we discuss the influence of parameters in the method and provide experimental validations of crack initiation and propagation in plaster specimens. More specifically, we show by theoretical and experimental analyses that the regularization length should be interpreted as a material parameter, and identified experimentally as it. Qualitative and quantitative comparisons between numerical predictions and experimental data are provided. We show that the phase field method can predict accurately crack initiation and propagation in plaster specimens in compression with respect to experiments, when the material parameters, including the characteristic length are identified by other simple experimental tests.

Introduction

Simulation of crack initiation and growth in brittle materials such as concrete, cement or rocks is a major concern for predicting the strength and durability of structures made of these materials. One issue lies in the prediction of the onset of cracks in brittle materials: the classical Griffith theory of brittle fracture fails to predict crack initiation in un-notched specimens [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]. On the other hand, damage models with softening suffer from strong drawbacks when implemented in numerical solving methods such as the finite element method, like mesh dependency and lack of convergence of the fracture energy as the element size goes to zero [START_REF] Pietruszczak | Finite element analysis of deformation of strain-softening materials[END_REF][START_REF] Bazant | Wave propagation in strain-softening bar: exact solution[END_REF]. This has been shown to yield from a loss of ellipticity of the associated mechanical problem [START_REF] Triantafyllidis | A gradient approach to localization of deformation: I. hyperelastic materials[END_REF][START_REF] Lasry | Localization limiters in transient problems[END_REF][START_REF] Borst | Fundamental issues in finite element analysis of localization of deformation[END_REF]. To circumvent these issues, regularization schemes must be applied, such as nonlocal damage models [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF][START_REF] Bazant | Nonlocal continuum damage, localization instability and convergence[END_REF] and higher-order deformation gradient schemes [START_REF] Peerlings | Gradientenhanced damage for quasi-brittle materials[END_REF][START_REF] Lorentz | Gradient constitutive relations: numerical aspects and application to gradient damage[END_REF]. Another possibility is to introduce cohesive layers in the models which are then numerically solved via cohesive finite elements [START_REF] Xu | Numerical simulation of fast crack growth in brittle solids[END_REF][START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF][START_REF] Zhou | Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency[END_REF]. Cohesive elements require cracks to follow the element boundaries of the mesh. Other techniques like XFEM [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF][START_REF] Daux | Arbitrary branched and intersecting cracks with the extended finite element method[END_REF] require a pre-existing crack and are not well adapted to complex cracks morphologies due to the underlying level-set functions needed to describe the displacement jump. Finally, we mention a new method, called Thick Level-Set method (TLS) [START_REF] Bernard | Damage growth modeling using the thick level set (TLS) approach: Efficient discretization for quasi-static loadings[END_REF][START_REF] Cazes | Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture[END_REF] in which a level-set function is employed to separate the undamaged zone from the damaged one, and where the crack is a consequence of the damage front motion, allowing crack initiation.

Recently, the phase field method has been proposed in [9, 13-17, 25, 37] (only to name a few). It employs a diffuse approximation of discontinuities related to cracks and is consistent with brittle fracture through a modified variational principle. This technique is able to simulate brittle crack initiation and propagation without dependence to the mesh in a classical FEM framework. It allows handling very complex, multiple crack fronts and branching in both 2D and 3D without ad hoc numerical treatment. In [START_REF] Nguyen | A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure[END_REF][START_REF] Nguyen | A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography[END_REF], the authors have demonstrated the capability of the method to simulate crack onset and propagation in complex image-based models, as such obtained by segmenting 3D X-Ray computed tomography images of real materials like concrete.

However, the method requires choosing a regularization parameter related to the smeared approximation of discontinuities. This parameter induces a characteristic length l in the model which must be chosen by the user. In [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF], Amor et al. have shown that a relationship can be established between l and at least two other material parameters. This seems consistent with a recent crack initiation criterion of Leguillon et al. [START_REF] Leguillon | Strength or toughness? a criterion for crack onset at a notch[END_REF] where two material parameters need to be identified for predicting crack onset. In the present work, we follow this line and show that l may be interpreted as a material parameter and should be deduced from experimental material parameters identification when available. We validate this by comparing simulations of crack initiation with experiments on drilled plaster samples, where the material parameters, including l, have been identified in other simple experimental tests [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF]. Experimental data provided in [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF] have been used to provide reference solutions associated with onset of cracks in plaster structures containing drilled holes in compression or in three-point bending of a beam. We also discuss the influence of other numerical parameters on the solution provided by the phase field method such as the size of load increments and the mesh size. Note that complementary results related to this work can be found in a recent paper by Mary et al. [START_REF] Mary | A numerical assessment of phase-field models for brittle and cohesive fracture: Γ -convergence and stress oscillations[END_REF].

In the following, we first give a brief summary of the phase field method in section 2. In section 3, we discuss the influence of the main parameters in the numerical method on the predicted mechanical response of cracked structures and show more specifically the relationship between the regularization parameter in the phase field method and some material parameters. In sections 4, 5 and 6, we provide qualitative and quantitative comparisons between experimental data of crack initiation in plaster samples with simulations.

Mechanical model and numerical simulation method

In the following, the basic concepts of the phase field method are briefly summarized. For more details and practical implementation aspects, the interested reader can refer to [START_REF] Miehe | A phasefield model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Nguyen | A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure[END_REF]. The phase field method is based on a regularized formulation of a sharp crack description. A regularized variational principle describing both the evolution of the mechanical problem and of an additional field d describing the damage (called phase field), is discretized by a finite element procedure and a staggered algorithm , chosen here due to its easier implementation. The method alleviates the shortcomings of remeshing crack geometry by using a fixed mesh and a regularized description of the discontinuities. In addition, crack initiation can be modeled in a straightforward manner. In contrast to volume damage models, usually implemented in nonlinear codes, such regularized approach is directly connected to the brittle crack theory of crack propagation. In the present work, the phase field method has been implemented in a in-house code both in 2D and 3D.

In the phase field method, assuming small strains, the regularized form of the energy describing the cracked structure is expressed by:

E(u, d) = ∫ Ω W (u, d)dΩ + g c ∫ Ω γ(d)dΩ, ( 1 
)
where W is the density of the elastic energy, depending on the displacements u(x) and on the phase field d(x) describing the damage of the solid, g c is the fracture resistance and γ(d) is the crack energy density, defined by γ(d, ∇d) = 1 2l d 2 + l 2 ∇d • ∇d (see e.g. [START_REF] Miehe | A phasefield model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Nguyen | A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure[END_REF]). Applying the principle of maximum dissipation and energy minimization [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] to (1) yields the set of coupled equations to be solved on the domain Ω associated with the structure, with boundary δΩ and outward normal n, to determine d(x) and u(x), ∀x ∈ Ω:

   2(1 -d)H -gc l { d -l 2 ∆d } = 0 in Ω, d(x) = 1 on Γ, ∇d(x) • n = 0 on ∂Ω, (2) and    ∇ • σ(u, d) = f in Ω, u(x) = u on ∂Ω u , σn = F on ∂Ω F . (3) 
In [START_REF] Bazant | Wave propagation in strain-softening bar: exact solution[END_REF], Γ refers to the crack surface, l is the regularization parameter. The history strain energy density function H(t) is introduced to describe a dependence on history [START_REF] Miehe | A phasefield model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF] and possible loading-unloading. This function reads:

H(x, t) = max τ ∈[0,t] { Ψ + (x, τ ) } , (4) 
In ( 4), Ψ + is the tensile part of the elastic strain density function serving to model unilateral contact. It is defined as

Ψ + (ε) = λ 2 ( ⟨T r(ε)⟩ + ) 2 + µT r { ( ε + ) 2 } , ( 5 
)
where ε is the linearized strain tensor and ⟨x⟩ ± = (x ± |x|) /2 and ε ± are compression and tensile parts of the strain tensor (see e.g. [START_REF] Miehe | A phasefield model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Nguyen | A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure[END_REF]). The choice of the numerical parameter l is a central issue in the method, which is precisely discussed in the present work. In (3), σ = ∂W ∂ε is the second-order Cauchy stress tensor, f are body forces and u and F are prescribed displacements and forces on the corresponding boundaries ∂Ω u and ∂Ω F , respectively. The symbols ∇(.) and ∇ • (.) denote gradient and divergence operators, respectively. The constitutive law is expressed (see e.g. [START_REF] Nguyen | A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure[END_REF]) by:

σ = ( (1 -d) 2 + k ) { λ ⟨T rε⟩ + 1 + 2µε + } + λ ⟨T rε⟩ -1 + 2µε - ( 6 
)
where k is a small numerical parameter to avoid loss of stability in case of fully damaged elements. Eqs. ( 2)-( 3) are solved by a standard FE procedure in a staggered scheme at each time step (load increment). More theoretical and practical details can be found e.g. in [START_REF] Miehe | A phasefield model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Nguyen | A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure[END_REF].

Discussion on the influence of input parameters in the numerical simulations

In this section, we discuss the influence of the numerical parameters on the simulation results. More specifically, we study the influence of: (a) the mesh size, (b) the loading increments size, (c) the regularization parameter l in [START_REF] Bazant | Wave propagation in strain-softening bar: exact solution[END_REF]. For this purpose, we consider a benchmark problem with features similar to that of the experimental tests studied in the following. The benchmark described in Fig. 1 consists into a drilled sample subjected to compression. Compression tests are often preferred to tensile ones in civil engineering because of their better stability during crack propagation (see e.g. [START_REF] Sammis | The failure of brittle porous solids under compressive stress states[END_REF][START_REF] Wong | Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression[END_REF]). More details about the real corresponding experimental test are provided in the following. The geometry of the sample and boundary conditions are depicted in Fig. 1. The material parameters have been chosen as E = 12 GPa, ν = 0.3 and g c = 1.4 N/m from the experimental values provided in [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF]. Plane strain conditions are assumed.
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Fig. 1 Benchmark problem for analyzing the influence of numerical parameters on the simulation results: geometry and boundary conditions.

Influence of the mesh size

In a first test, we investigate the convergence of the mechanical response with respect to mesh refinement. In all examples of this work, linear elements have been used, i.e. triangles in 2D and tetrahedra in 3D. Here, the regularization parameter is fixed to l = 0.1 mm. We discuss in the following how to choose this parameter. It has been shown in [START_REF] Miehe | Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations[END_REF] that given l, the criterion

h ≤ l/2 (7)
must be fulfilled. Monotonic compressive displacement increments of ∆U = -1 × 10 -4 mm have been prescribed for 250 load increments. Then we have performed several simulations using refined meshes, where the characteristic size of the elements vary between h = 0.01 mm and h = 0.1 mm. Let us define the overall critical axial stress σ * as the ratio of the y-component of the resultant force prescribed at the top of the sample to the area of its upper face, when damage reaches the value d = 1 for the first load increment at some node in the mesh (i.e. stress associated to the onset of the first crack).

We study in Fig. 2 the convergence of this quantity with respect to mesh size. A clear convergence is observed, with results becoming mesh independent when condition [START_REF] Borden | A phasefield description of dynamic brittle fracture[END_REF] is fulfilled. This confirms the results of [START_REF] Miehe | Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations[END_REF].

Influence of the load increments

Next, we analyze the influence of the load increment ∆U in the numerical simulation on the mechanical response. We have used several load increments from ∆U = 1.5 × 10 -3 mm to ∆U = 3 × 10 -5 mm. Results are presented in can note the related convergence: the variation of σ * is below 2% when the increment goes from 5.10 -5 to 3.10 -5 mm. This confirms the stability of the easy-to-implement staggered algorithm as soon as sufficiently small loading steps are used. Too large steps tend to delay the initiation of damage and thus harden the overall response of the structure.

Choice of the regularization parameter l

In the following, we show that the regularization parameter l in (2) depends on material parameters. To illustrate this point, we consider a bar under uniaxial traction as depicted in Fig. 4. We assume that the Poisson ration is zero. In s s Fig. 4 1D problem for the analysis of the phase method in an initially homogeneous situation.

this configuration and in the absence of initial defects, the damage distribution is assumed to be homogeneous, i.e. ∇d(x) = 0. Assuming an isothermal process, the reduced form of the Clausius-Duhem inequality can be written as:

A . d ≥ 0 (8) 
where

A = - ∂E ∂d (9)
is the thermodynamic force associated with d and .

d denotes derivative with respect to time t. We assume that the evolution of the damage parameter d is governed by the simple negative threshold function

F (A) = A ≤ 0, ( 10 
)
such that when F (A) < 0 no evolution of damage occurs. The principle of maximum dissipation requires the dissipation A . d to be maximum under the constraint [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF]. By using the method of Lagrange multipliers, we define the Lagrangian as:

L = -A ḋ + λF (A) ( 11 
)
where λ is the Lagrange multiplier associated with the constraint [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF]. Minimizing L under the constraint (10) yields the Kuhn-Tucker equalities:

∂L ∂A = 0, λ ≥ 0, F ≤ 0, λF = 0. ( 12 
)
The left-hand equation in [START_REF] Daux | Arbitrary branched and intersecting cracks with the extended finite element method[END_REF] gives λ = ḋ. Then for ḋ > 0, F (A) = 0 = A = -∂E ∂d , which leads to (see more details in [START_REF] Nguyen | A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure[END_REF]):

F = 2(1 -d)Ψ + -g c δγ(d) = 0. (13) 
In [START_REF] Eastgate | Fracture in mode i using a conserved phase-field model[END_REF], δγ(d) is given by δγ = d l -l∆d [START_REF] Miehe | A phasefield model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF], where ∆d is the Laplacian of d. For a uniform damage parameter as in the considered 1D problem, δγ reduces to δγ = d/l.

For uniaxial tension, and assuming k ≃ 0 we can write from ( 6):

σ = g(d)Eε, Ψ + = 1 2 Eε 2 , ( 14 
)
with g(d) = (1 -d) 2 . Then using [START_REF] Eastgate | Fracture in mode i using a conserved phase-field model[END_REF], we obtain the relation:

(1 -d)Eε 2 - g c l d = 0. ( 15 
)
The strain and stress can then be expressed by:

ε(d, l) = √ g c d lE(1 -d) , ( 16 
)
σ(d, l) = √ d(1 -d) 3 √ Eg c l . ( 17 
)
The maximum value of the stress with respect to d is given by:

σ c = Arg { sup d=[0 1] σ(d, l) } (18) 
which is reached for d = 1/4, corresponding to the critical value of the stress σ c :

σ c = 9 16 √ Eg c 3l (19) 
and of the strain:

ε c = √ g c 3lE (20) 
These obtained formulations are similar with the result in the work of Amor et al [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF]. Analyses leading to similar relationships can also be found in [START_REF] Kuhn | A phase-field description of dynamic brittle fracture[END_REF][START_REF] Benalla | Bifurcation and stability issues in gradient theories with softening[END_REF][START_REF] Borden | A phasefield description of dynamic brittle fracture[END_REF][START_REF] Pham | The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models[END_REF]. From these expressions, it is clear that the critical stress will increase as l decreases. In the limit of l tending to zero, i.e., when the phase-field formulation coincides with the discrete fracture formulation, the crack nucleation stress becomes infinite. This observation is consistent with the predictions of Griffith's theory, which only allows for crack nucleation at stress singularities. Eq. [START_REF] Lasry | Localization limiters in transient problems[END_REF] gives a relationship between l and the material parameters, namely the Young modulus, E, the Griffith critical surface energy, g c , and a value of the tensile strength σ c determined experimentally, and denoted in that case by σ exp c , which now refers to the critical stress leading to rupture in a uniaxial uniform tension test:

l = 27Eg c 256 (σ exp c ) 2 . ( 21 
)
Note that this relation holds for uniaxial traction without damage gradient and only provides an estimation for l but clearly shows that l can be linked to material parameters. From the values of g c and σ exp c identified experimentally in [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF] for a plaster material, i.e. E = 12 GPa, σ c = 3.9 MPa and g c = 1.4 N/m we obtain l ≃ 0.1 mm.

In the next test, we show numerically that the mechanical response does not converge with respect to the parameter l. An unstructured mesh with minimal element size h min = 0.01 mm is employed around the hole where the cracks should initiate, and with maximal element size h max = 1 mm away from the hole, such that mesh size ensures numerical convergence of the computations for all values of l considered hereafter. The displacement increment is chosen as ∆U = 10 -4 mm. In Fig. 5 (a), the evolution of the solution with respect to the regularization parameter l is plotted for different values of l ranging from 0.025 mm to 0.5 mm. In Fig. 5 (b), the stress required to onset the first crack σ * is plotted versus l. While the force-displacement curve in Fig. 5 (a) seems to converge when l decreases (indeed towards a purely elastic response), it is obvious that this is not the case for the value of σ * . This test illustrates the fact that the regularization parameter l must be identified as a material parameter, i.e. each value of l will lead to a different response of the structure. In this test, we validate the phase field solution on an experimental 3-point bending test of a beam containing an initial crack of length 15 mm. The geometry, dimensions, and boundary conditions of the structure are depicted in Fig. 6. The material is dry plaster, composed of plaster powder of the Siniat Company named Prestia Profilia 35 . The plaster sample preparation are detailed in a previous work [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF]. In the mentioned study, the material parameters have been identified experimentally and are the same as in the previous example: E = 12 GPa, ν = 0.3, g c = 1.4 N/m and σ exp c = 3.9 MPa, which give the value of l = 0.1 mm from [START_REF] Leguillon | Strength or toughness? a criterion for crack onset at a notch[END_REF]. Note that here the Poission ratio is non zero and the problem is not one-dimensional, thus [START_REF] Leguillon | Strength or toughness? a criterion for crack onset at a notch[END_REF] only provides an estimation for l. More crucially, the derivation of (21) does only hold for structures with homogeneous displacements and fracture fields before fracture nucleation.

The z-component of displacements U is prescribed along a line in the middle of the upper face, while the all components of displacements are blocked along two lines on the lower face (see Fig. 6).

Three-dimensional simulations have been conducted. A refined mesh was constructed using tetrahedral elements, with h max = 3 mm and h min = 0.05 mm in the region of expected crack path, to satisfy the condition h min ≤ l/2. Monotonic compressive displacement increments of ∆U = -5×10 -4 mm have been prescribed as long as d < 0.9 in all elements and ∆U = -5 × 10 -5 mm as soon as d > 0.9 in one integration point. The crack propagation evolution is depicted in Fig. 7 for two loading stages.

Fig. 8 provides the load-displacement curve obtained from the simulation. The critical load F r is defined as the maximum resultant load before softening due to crack propagation. We compare this critical load with the experimental values provided in [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF] for several samples in Fig. 9 and can note that we obtain a good agreement for the values of F r with respect to experiments.

Un-notched beam

We investigate now the capability of the phase field method to provide a correct estimated value of σ exp c for crack initiation in a structure different from the one in which the critical stress σ num c was identified. For this purpose, we consider an un-cracked beam under three-point bending, as depicted in Fig. 10.

The stress is evaluated numerically during the simulation in an element located on the known path of the crack. The tensile strength σ num c is defined as the maximal stress evaluated numerically before softening in the integration point of an element located in the middle of the lower end, as depicted in Fig. 11. In the present work, we have used linear finite elements, with one Gauss integration point per element. From now on and in all following examples, all material parameters are the same as in the previous example and l is equal to 0.1 mm. Monotonic compressive displacement increments of ∆U = -2 × 10 -3 mm have been used for 180 increments. We obtain a good agreement between the value predicted numerically (σ num c = 4.01 MPa) and the experimental value identified from another experiment in [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF] 

Experimental validation: compression of a drilled plaster specimen containing a single cylindrical hole

In the following, we investigate crack initiation and propagation in a more involved test, and compare the numerical prediction with experimental results provided in [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF]. The objective is to evaluate if the numerical model is able to predict accurately the response of cracked structure in other configurations than the ones used to identify the material parameters.

A drilled sample is considered, as depicted in Figure 12. A thick plate contains one single cylindrical hole with diameter D. Several samples with various hole diameters, ranging from D = 3 to D = 6 mm, have been tested. The dimensions of the plate are 100 mm × 65 mm × 40 mm. The material (plaster) is the same as in the previous example. The sample is loaded in compression. In the experimental tests, the load is applied continuously at a speed of 0.2 mm/min. Consistently, the numerical calculations are run in the quasi static regime, as for previous cases. PMMA plates were used on top and bottom face to reduce the lack of planarity, parallelism and friction conditions [START_REF] Romani | Rupture en compression des structures hétérogènes á base de materiaux quasi-fragiles[END_REF] to avoid stress concentration.

Experimental image correlation data were provided in [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF], together with force measurement to detect the crack experimentally. A high-resolution camera (Baumer HXC20, progressive scan sensor with 2048×1088 pixels), with a pixel size of 5.5 × 5.5 µm 2 , and equipped with a ZEISS Makro-Planar 100 mm macro lens was used to continuously acquire images of the specimen during loading at a frame rate of 20 Hz. As the detection of the crack onset is not possible with naked eye, the recorded images were processed by 2D digital im- age correlation (DIC) techniques. Cracks are detected by high levels of local xx-strain components, measured for a gage length defined by the mesh of correlation points (20 pixels spacing), which is the signature of the presence of displacement discontinuities between two points of the mesh. The 2D technique of digital image correlation 2D-DIC was used. When the sample is subjected to a compressive load, two opposite cracks initiate on top and bottom of the hole and grow from the cavity, in a direction parallel to the load. In [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF], the experimental results have been compared to the semi-analytical model of Leguillon [START_REF] Leguillon | Strength or toughness? a criterion for crack onset at a notch[END_REF], which requires numerical FEM computations to evaluate the stress intensity factors. In the mentioned work, 2D FE simulations with plane strain assumptions were used. In view of the dimensions of the sample and owing to the fact the measurements are performed at the surface of the sample, the plane strain assumption might be questionable. For this purpose, we have performed 2D simulations with both plane strain and plane stress assumption, as well as full 3D simulations. The boundary conditions model the experimental ones on the sample, and are described for the 3D case in Fig. 12: on the lower surface (z = 0), the z-displacements are fixed and the x-and y-displacements are free. On the upper end, the x-and ydisplacements are free, while the z-displacements are prescribed, with an increasing value U during the simulation. Monotonic compressive displacement increments of ∆U = -10 -3 mm are prescribed for first load increments and as soon as d reaches 0.9 in one integration point of the Finite Element mesh, we use ∆U = -10 -4 . A finite element mesh with varying element size (h min = 0.05 mm around the hole and h max = 0.25 mm in the rest of domain) is used.

In Figs. 13 -14, we show a comparison of the experimental digital image correlation technique used to detect the crack evolution and the simulation, were the damage field, associated with the crack, is depicted. This case corresponds to a diameter D = 5 mm. We can note that the numerical solution based on the phase field method can capture the crack initiation on top and bottom of the hole and the vertical path of the two cracks. In addition, the length of the crack for the given load is accurately predicted (Figs. 13 (b) and (c)).

In the simulations, the crack length is computed as the distance between the last point for which d = 1 and the hole boundary, assuming a straight crack. The same procedure is employed in 3D. In Fig. 15 we quantitatively compare the crack length evolution with respect to the applied load computed at the point where the displacement is prescribed. Results for 2D plane strain and plane stress, 3D simulations and experimental DIC results are compared in Fig. 14. Fig. 15 shows that all three models provide a satisfying prediction for the critical load corresponding to the onset of the crack. However, we can note that during propagation, the experimental evolution deviates from 2D predictions. The 3D simulation is in that case in better agreement with the experimental response for both top and bottom cracks.

To analyze the influence of the diameter of the hole on the stress at the time cracks onset, several samples with diameters varying between 3 and 6 mm have been prepared and tested. Simulations have been performed here also in 2D and 3D. Results are provided in Figure 16. They show the good ability of the simulation model to accurately predict the evolution of critical load σ * (onset of the crack) with hole diameters and related size effects. The ability of the phase field method to reproduce size effects has also been discussed in [START_REF] Kuhn | Simulation of size effects by a phase field model for fracture[END_REF]. A general assessment of different models in this context can be found in [START_REF] Li | A criterion study for non-singular stress concentrations in brittle or quasi-brittle materials[END_REF], where the authors find that 2 parameter fracture models can model size effects only to a certain extend. 

Microcracking in a plaster specimen containing a periodic distribution of cylindrical holes

In this last example, we investigate the microcracking of two plaster specimens containing many holes, whose configurations are depicted in Fig. 17. In both cases, the diameter of the holes is D = 4 mm. Configuration of Fig. 17 (a) corresponds to a volume fraction of 12.2 %, and in Fig. 17 (b) to 13.5 %. A adaptive mesh with characteristic size h min = 0.05 mm has been used around the holes, and larger elements whose size are h max = 0.5 mm have been employed away from holes. The whole mesh contains 905437 elements.

2D plane strain simulation was conducted. Monotonic compressive displacement increments are prescribed on the top edge of the specimen, with ∆U = -10 -3 mm in the first 1000 increments and ∆U = -5 × 10 -5 mm in the last 1500 increments. The evolution of microcracking within the specimen In Fig. 19 the microcracking pattern for the case of porous fraction 13.5% is depicted and numerical simulations and digital correlation image obtained in [START_REF] Romani | Rupture en compression des structures hétérogènes á base de materiaux quasi-fragiles[END_REF] are qualitatively compared. Globally speaking, the heterogeneity of the damage map between central and lateral parts of the sample is nicely captured by the computation. In Fig. 20, we compare with more details the microcracking morphology between the simulation and the experiment provided in [START_REF] Romani | Rupture en compression des structures hétérogènes á base de materiaux quasi-fragiles[END_REF], [START_REF] Romani | Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation-theoretical predictions based on a coupled criterion[END_REF], and note that it is qualitatively captured, both regarding the vertical propagation of cracks, and regarding the non uniform propagation of the microcracks within the sample.

To compare more quantitatively the predictions provided by the numerical simulation, we analyze the effects of changing the configuration (volume fraction and distribution) with respect to the stress required to initiate the first cracks in the sample and to generate cracks around all holes. Again, the corresponding experimental values have been provided in [START_REF] Romani | Rupture en compression des structures hétérogènes á base de materiaux quasi-fragiles[END_REF]. Comparisons are provided in Fig. 21. The numerical simulation method is in good agreement with the experimental values.

Conclusion

In this work, we have discussed the choice of the parameters in the phase field method, which is a promising simulation tool for initiation and propagation of cracks in brittle materials. More specifically, we have analyzed the influence of the numerical parameters and have validated the fact that the regularization parameter describing the width of the smeared crack approximation is linked to material parameters. The regularization length then requires experimental measures to be identified. We have shown that the other numerical parameters (load increments, mesh size) lead to convergent responses when they decrease. Then, from the knowledge of the elastic parameters, of the fracture resistance and of the regularization parameter of the phase field method, essentially identified from experimental measurements of critical stress in uniformly stressed samples, we have conducted several simulations, including crack initiation and propagation in three-point bending beam and in drilled samples of plaster in compression. Remarkably, the phase field model is able to predict quantitatively crack paths, crack propagation morphologies, and mechanical response with good agreement regarding experimental results for other geometrical configurations than the ones used to identify the material parameters. Thus, the phase field method constitutes a promising tool for prediction of strength in brittle heterogeneous or lightweight materials for civil engineering.
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 12 Fig.[START_REF] Daux | Arbitrary branched and intersecting cracks with the extended finite element method[END_REF] Plaster sample containing one cylindrical drilled hole: geometry and boundary conditions for both experimental setup and simulation.
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 13 Fig. 13 Crack path evolution near the cylindrical hole (D = 5 mm); (a) and (b): Strain maps obtained with digital image correlation for initial and loaded state [35], for 15.2 MPa and 14.1 MPa, respectively; (c) 2D simulation (plane strain); (d) 3D simulation (damage variable d(x)).
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 14 Fig. 14 Crack propagation at different values of the applied stress around the cylindrical hole: comparison between experiments (digital image correlation) and simulations (damage variable d(x)).
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 15161718 Fig. 15 Evolution of the crack length with respect to the resultant stress on the upper boundary, comparison between models and experimental data: (a) top crack; (b) bottom crack.
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 1920 Fig.[START_REF] Kuhn | A phase-field description of dynamic brittle fracture[END_REF] Crack trajectory comparison between the present simulation (a) and the experiment (b) provided in[START_REF] Romani | Rupture en compression des structures hétérogènes á base de materiaux quasi-fragiles[END_REF] (damage variable d(x)) for U = 0.614 mm.
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 21 Fig.[START_REF] Leguillon | Strength or toughness? a criterion for crack onset at a notch[END_REF] Stress corresponding to crack onset within the specimen: comparison between experimental results and the numerical model for two porosities.
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