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Abstract The phase field method is a versatile simulation framework for
studying initiation and propagation of complex crack networks without de-
pendence to the finite element mesh. In this paper, we discuss the influence
of parameters in the method and provide experimental validations of crack
initiation and propagation in plaster specimens. More specifically, we show by
theoretical and experimental analyses that the regularization length should
be interpreted as a material parameter, and identified experimentally as it.
Qualitative and quantitative comparisons between numerical predictions and
experimental data are provided. We show that the phase field method can
predict accurately crack initiation and propagation in plaster specimens in
compression with respect to experiments, when the material parameters, in-
cluding the characteristic length are identified by other simple experimental
tests.

Keywords Crack initiation · Crack propagation · Simulation · Plaster ·
Digital image correlation

1 Introduction

Simulation of crack initiation and growth in brittle materials such as concrete,
cement or rocks is a major concern for predicting the strength and durability of
structures made of these materials. One issue lies in the prediction of the onset
of cracks in brittle materials: the classical Griffith theory of brittle fracture fails
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Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle MSME UMR
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to predict crack initiation in un-notched specimens [14]. On the other hand,
damage models with softening suffer from strong drawbacks when implemented
in numerical solving methods such as the finite element method, like mesh
dependency and lack of convergence of the fracture energy as the element size
goes to zero [32,2]. This has been shown to yield from a loss of ellipticity
of the associated mechanical problem [38,20,8]. To circumvent these issues,
regularization schemes must be applied, such as nonlocal damage models [33,
3] and higher-order deformation gradient schemes [30,23]. Another possibility
is to introduce cohesive layers in the models which are then numerically solved
via cohesive finite elements [40,10,41]. Cohesive elements require cracks to
follow the element boundaries of the mesh. Other techniques like XFEM [27,
4,12] require a pre-existing crack and are not well adapted to complex cracks
morphologies due to the underlying level-set functions needed to describe the
displacement jump. Finally, we mention a new method, called Thick Level-Set
method (TLS) [6,11] in which a level-set function is employed to separate the
undamaged zone from the damaged one, and where the crack is a consequence
of the damage front motion, allowing crack initiation.

Recently, the phase field method has been proposed in [9,13–17,25,37]
(only to name a few). It employs a diffuse approximation of discontinuities
related to cracks and is consistent with brittle fracture through a modified
variational principle. This technique is able to simulate brittle crack initiation
and propagation without dependence to the mesh in a classical FEM frame-
work. It allows handling very complex, multiple crack fronts and branching in
both 2D and 3D without ad hoc numerical treatment. In [28,29], the authors
have demonstrated the capability of the method to simulate crack onset and
propagation in complex image-based models, as such obtained by segmenting
3D X-Ray computed tomography images of real materials like concrete.

However, the method requires choosing a regularization parameter related
to the smeared approximation of discontinuities. This parameter induces a
characteristic length l in the model which must be chosen by the user. In [1],
Amor et al. have shown that a relationship can be established between l and
at least two other material parameters. This seems consistent with a recent
crack initiation criterion of Leguillon et al. [21] where two material parame-
ters need to be identified for predicting crack onset. In the present work, we
follow this line and show that l may be interpreted as a material parameter
and should be deduced from experimental material parameters identification
when available. We validate this by comparing simulations of crack initiation
with experiments on drilled plaster samples, where the material parameters,
including l, have been identified in other simple experimental tests [35]. Ex-
perimental data provided in [35] have been used to provide reference solutions
associated with onset of cracks in plaster structures containing drilled holes
in compression or in three-point bending of a beam. We also discuss the in-
fluence of other numerical parameters on the solution provided by the phase
field method such as the size of load increments and the mesh size. Note that
complementary results related to this work can be found in a recent paper by
Mary et al. [24].
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In the following, we first give a brief summary of the phase field method
in section 2. In section 3, we discuss the influence of the main parameters in
the numerical method on the predicted mechanical response of cracked struc-
tures and show more specifically the relationship between the regularization
parameter in the phase field method and some material parameters. In sec-
tions 4, 5 and 6, we provide qualitative and quantitative comparisons between
experimental data of crack initiation in plaster samples with simulations.

2 Mechanical model and numerical simulation method

In the following, the basic concepts of the phase field method are briefly sum-
marized. For more details and practical implementation aspects, the interested
reader can refer to [25,28]. The phase field method is based on a regularized
formulation of a sharp crack description. A regularized variational principle
describing both the evolution of the mechanical problem and of an additional
field d describing the damage (called phase field), is discretized by a finite
element procedure and a staggered algorithm , chosen here due to its easier
implementation. The method alleviates the shortcomings of remeshing crack
geometry by using a fixed mesh and a regularized description of the discontinu-
ities. In addition, crack initiation can be modeled in a straightforward manner.
In contrast to volume damage models, usually implemented in nonlinear codes,
such regularized approach is directly connected to the brittle crack theory of
crack propagation. In the present work, the phase field method has been im-
plemented in a in-house code both in 2D and 3D.

In the phase field method, assuming small strains, the regularized form of
the energy describing the cracked structure is expressed by:

E(u, d) =

∫
Ω

W (u, d)dΩ + gc

∫
Ω

γ(d)dΩ, (1)

where W is the density of the elastic energy, depending on the displacements
u(x) and on the phase field d(x) describing the damage of the solid, gc is the
fracture resistance and γ(d) is the crack energy density, defined by γ(d,∇d) =
1
2ld

2 + l
2∇d · ∇d (see e.g. [25,28]).

Applying the principle of maximum dissipation and energy minimization
[14] to (1) yields the set of coupled equations to be solved on the domain Ω
associated with the structure, with boundary δΩ and outward normal n, to
determine d(x) and u(x), ∀x ∈ Ω:2(1− d)H− gc

l

{
d− l2∆d

}
= 0 in Ω,

d(x) = 1 on Γ,
∇d(x) · n = 0 on ∂Ω,

(2)

and
∇ · σ(u, d) = f in Ω,
u(x) = u on ∂Ωu,
σn = F on ∂ΩF .

(3)



4 T.T. Nguyen et al.

In (2), Γ refers to the crack surface, l is the regularization parameter. The
history strain energy density function H(t) is introduced to describe a depen-
dence on history [25] and possible loading-unloading. This function reads:

H(x, t) = max
τ∈[0,t]

{
Ψ+ (x, τ)

}
, (4)

In (4), Ψ+ is the tensile part of the elastic strain density function serving
to model unilateral contact. It is defined as

Ψ+(ε) =
λ

2

(
⟨Tr(ε)⟩+

)2
+ µTr

{(
ε+

)2}
, (5)

where ε is the linearized strain tensor and ⟨x⟩± = (x± |x|) /2 and ε± are
compression and tensile parts of the strain tensor (see e.g. [25,28]). The choice
of the numerical parameter l is a central issue in the method, which is precisely
discussed in the present work.

In (3), σ = ∂W
∂ε is the second-order Cauchy stress tensor, f are body forces

and u and F are prescribed displacements and forces on the corresponding
boundaries ∂Ωu and ∂ΩF , respectively. The symbols ∇(.) and ∇ · (.) denote
gradient and divergence operators, respectively. The constitutive law is ex-
pressed (see e.g. [28]) by:

σ =
(
(1− d)2 + k

) {
λ ⟨Trε⟩+ 1+ 2µε+

}
+ λ ⟨Trε⟩− 1+ 2µε− (6)

where k is a small numerical parameter to avoid loss of stability in case of
fully damaged elements.

Eqs. (2)-(3) are solved by a standard FE procedure in a staggered scheme
at each time step (load increment). More theoretical and practical details can
be found e.g. in [25,28].

3 Discussion on the influence of input parameters in the numerical
simulations

In this section, we discuss the influence of the numerical parameters on the sim-
ulation results. More specifically, we study the influence of: (a) the mesh size,
(b) the loading increments size, (c) the regularization parameter l in (2). For
this purpose, we consider a benchmark problem with features similar to that
of the experimental tests studied in the following. The benchmark described
in Fig. 1 consists into a drilled sample subjected to compression. Compression
tests are often preferred to tensile ones in civil engineering because of their
better stability during crack propagation (see e.g. [36,39]). More details about
the real corresponding experimental test are provided in the following. The
geometry of the sample and boundary conditions are depicted in Fig. 1. The
material parameters have been chosen as E = 12 GPa, ν = 0.3 and gc = 1.4
N/m from the experimental values provided in [35]. Plane strain conditions
are assumed.
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Uy = U
_

Fig. 1 Benchmark problem for analyzing the influence of numerical parameters on the
simulation results: geometry and boundary conditions.

3.1 Influence of the mesh size

In a first test, we investigate the convergence of the mechanical response with
respect to mesh refinement. In all examples of this work, linear elements have
been used, i.e. triangles in 2D and tetrahedra in 3D. Here, the regularization
parameter is fixed to l = 0.1 mm. We discuss in the following how to choose
this parameter. It has been shown in [26] that given l, the criterion

h ≤ l/2 (7)

must be fulfilled. Monotonic compressive displacement increments of ∆U =
−1 × 10−4 mm have been prescribed for 250 load increments. Then we have
performed several simulations using refined meshes, where the characteristic
size of the elements vary between h = 0.01 mm and h = 0.1 mm. Let us
define the overall critical axial stress σ∗ as the ratio of the y-component of
the resultant force prescribed at the top of the sample to the area of its upper
face, when damage reaches the value d = 1 for the first load increment at
some node in the mesh (i.e. stress associated to the onset of the first crack).
We study in Fig. 2 the convergence of this quantity with respect to mesh size. A
clear convergence is observed, with results becoming mesh independent when
condition (7) is fulfilled. This confirms the results of [26].

3.2 Influence of the load increments

Next, we analyze the influence of the load increment ∆U in the numerical
simulation on the mechanical response. We have used several load increments
from ∆U = 1.5 × 10−3 mm to ∆U = 3 × 10−5 mm. Results are presented in
Fig. 3. In Fig. 3 (b), we study the evolution of σ∗ with respect to ∆U and
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Fig. 3 Convergence of the solution with respect to the displacement increments in the
numerical simulation: (a) Load - displacement curve; (b) σ∗ for various displacement incre-
ments.

can note the related convergence: the variation of σ∗ is below 2% when the
increment goes from 5.10−5 to 3.10−5 mm. This confirms the stability of the
easy-to-implement staggered algorithm as soon as sufficiently small loading
steps are used. Too large steps tend to delay the initiation of damage and thus
harden the overall response of the structure.

3.3 Choice of the regularization parameter l

In the following, we show that the regularization parameter l in (2) depends on
material parameters. To illustrate this point, we consider a bar under uniaxial
traction as depicted in Fig. 4. We assume that the Poisson ration is zero. In
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s

s

Fig. 4 1D problem for the analysis of the phase method in an initially homogeneous situ-
ation.

this configuration and in the absence of initial defects, the damage distribution
is assumed to be homogeneous, i.e. ∇d(x) = 0.

Assuming an isothermal process, the reduced form of the Clausius-Duhem
inequality can be written as:

A
.

d ≥ 0 (8)

where

A = −∂E

∂d
(9)

is the thermodynamic force associated with d and
.

d denotes derivative with
respect to time t. We assume that the evolution of the damage parameter d is
governed by the simple negative threshold function

F (A) = A ≤ 0, (10)

such that when F (A) < 0 no evolution of damage occurs. The principle of

maximum dissipation requires the dissipation A
.

d to be maximum under the
constraint (10). By using the method of Lagrange multipliers, we define the
Lagrangian as:

L = −Aḋ+ λF (A) (11)

where λ is the Lagrange multiplier associated with the constraint (10). Mini-
mizing L under the constraint (10) yields the Kuhn-Tucker equalities:

∂L
∂A

= 0, λ ≥ 0, F ≤ 0, λF = 0. (12)
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The left-hand equation in (12) gives λ = ḋ. Then for ḋ > 0, F (A) = 0 =
A = −∂E

∂d , which leads to (see more details in [28]):

F = 2(1− d)Ψ+ − gcδγ(d) = 0. (13)

In (13), δγ(d) is given by δγ = d
l − l∆d [25], where ∆d is the Laplacian

of d. For a uniform damage parameter as in the considered 1D problem, δγ
reduces to δγ = d/l.

For uniaxial tension, and assuming k ≃ 0 we can write from (6):

σ = g(d)Eε, Ψ+ =
1

2
Eε2, (14)

with g(d) = (1− d)2. Then using (13), we obtain the relation:

(1− d)Eε2 − gc
l
d = 0. (15)

The strain and stress can then be expressed by:

ε(d, l) =

√
gcd

lE(1− d)
, (16)

σ(d, l) =
√
d(1− d)3

√
Egc
l

. (17)

The maximum value of the stress with respect to d is given by:

σc = Arg

{
sup

d=[0 1]

σ(d, l)

}
(18)

which is reached for d = 1/4, corresponding to the critical value of the stress
σc:

σc =
9

16

√
Egc
3l

(19)

and of the strain:

εc =

√
gc
3lE

(20)

These obtained formulations are similar with the result in the work of Amor
et al [1]. Analyses leading to similar relationships can also be found in [19,5,
7,31]. From these expressions, it is clear that the critical stress will increase
as l decreases. In the limit of l tending to zero, i.e., when the phase-field for-
mulation coincides with the discrete fracture formulation, the crack nucleation
stress becomes infinite. This observation is consistent with the predictions of
Griffith’s theory, which only allows for crack nucleation at stress singularities.
Eq. (20) gives a relationship between l and the material parameters, namely
the Young modulus, E, the Griffith critical surface energy, gc, and a value of
the tensile strength σc determined experimentally, and denoted in that case
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Fig. 5 Evolution of the solution with respect to the regularization parameter l: (a) Load -
displacement curve; (b) σ∗ versus l.

by σexp
c , which now refers to the critical stress leading to rupture in a uniaxial

uniform tension test:

l =
27Egc

256 (σexp
c )

2 . (21)

Note that this relation holds for uniaxial traction without damage gradient
and only provides an estimation for l but clearly shows that l can be linked to
material parameters. From the values of gc and σexp

c identified experimentally
in [35] for a plaster material, i.e. E = 12 GPa, σc = 3.9 MPa and gc = 1.4
N/m we obtain l ≃ 0.1 mm.

In the next test, we show numerically that the mechanical response does not
converge with respect to the parameter l. An unstructured mesh with minimal
element size hmin = 0.01 mm is employed around the hole where the cracks
should initiate, and with maximal element size hmax = 1 mm away from the
hole, such that mesh size ensures numerical convergence of the computations
for all values of l considered hereafter. The displacement increment is chosen
as ∆U = 10−4 mm. In Fig. 5 (a), the evolution of the solution with respect
to the regularization parameter l is plotted for different values of l ranging
from 0.025 mm to 0.5 mm. In Fig. 5 (b), the stress required to onset the first
crack σ∗ is plotted versus l. While the force-displacement curve in Fig. 5 (a)
seems to converge when l decreases (indeed towards a purely elastic response),
it is obvious that this is not the case for the value of σ∗. This test illustrates
the fact that the regularization parameter l must be identified as a material
parameter, i.e. each value of l will lead to a different response of the structure.
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Fig. 6 3D 3-point bending test: Geometry and boundary conditions.

4 Experimental validation: three-point bending test

4.1 Pre-notched beam

In this test, we validate the phase field solution on an experimental 3-point
bending test of a beam containing an initial crack of length 15 mm. The
geometry, dimensions, and boundary conditions of the structure are depicted
in Fig. 6. The material is dry plaster, composed of plaster powder of the
Siniat Company named Prestia Profilia 35r. The plaster sample preparation
are detailed in a previous work [35]. In the mentioned study, the material
parameters have been identified experimentally and are the same as in the
previous example: E = 12 GPa, ν = 0.3, gc = 1.4 N/m and σexp

c = 3.9 MPa,
which give the value of l = 0.1 mm from (21). Note that here the Poission ratio
is non zero and the problem is not one-dimensional, thus (21) only provides
an estimation for l. More crucially, the derivation of (21) does only hold for
structures with homogeneous displacements and fracture fields before fracture
nucleation.

The z−component of displacements U is prescribed along a line in the
middle of the upper face, while the all components of displacements are blocked
along two lines on the lower face (see Fig. 6).

Three-dimensional simulations have been conducted. A refined mesh was
constructed using tetrahedral elements, with hmax = 3 mm and hmin = 0.05
mm in the region of expected crack path, to satisfy the condition hmin ≤ l/2.
Monotonic compressive displacement increments of ∆U = −5×10−4 mm have
been prescribed as long as d < 0.9 in all elements and ∆U = −5 × 10−5 mm
as soon as d > 0.9 in one integration point. The crack propagation evolution
is depicted in Fig. 7 for two loading stages.

Fig. 8 provides the load-displacement curve obtained from the simulation.
The critical load Fr is defined as the maximum resultant load before softening
due to crack propagation. We compare this critical load with the experimental
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Fig. 7 3-point bending test, crack evolution (damage variable d(x)) for two prescribed
displacements: U = 0.15 mm and U = 0.18 mm.
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Fig. 8 Load - displacement curve for the 3-point bending test: numerical model.

values provided in [35] for several samples in Fig. 9 and can note that we
obtain a good agreement for the values of Fr with respect to experiments.

4.2 Un-notched beam

We investigate now the capability of the phase field method to provide a correct
estimated value of σexp

c for crack initiation in a structure different from the one
in which the critical stress σnum

c was identified. For this purpose, we consider
an un-cracked beam under three-point bending, as depicted in Fig. 10.

The stress is evaluated numerically during the simulation in an element
located on the known path of the crack. The tensile strength σnum

c is defined
as the maximal stress evaluated numerically before softening in the integration
point of an element located in the middle of the lower end, as depicted in Fig.
11. In the present work, we have used linear finite elements, with one Gauss
integration point per element. From now on and in all following examples, all
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Fig. 10 2D 3-point bending test of non cracked beam: Geometry and boundary conditions.

material parameters are the same as in the previous example and l is equal to
0.1 mm. Monotonic compressive displacement increments of ∆U = −2× 10−3

mm have been used for 180 increments. We obtain a good agreement between
the value predicted numerically (σnum

c = 4.01 MPa) and the experimental
value identified from another experiment in [35] (σexp

c = 3.9 MPa).
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5 Experimental validation: compression of a drilled plaster
specimen containing a single cylindrical hole

In the following, we investigate crack initiation and propagation in a more
involved test, and compare the numerical prediction with experimental results
provided in [35]. The objective is to evaluate if the numerical model is able
to predict accurately the response of cracked structure in other configurations
than the ones used to identify the material parameters.

A drilled sample is considered, as depicted in Figure 12. A thick plate
contains one single cylindrical hole with diameter D. Several samples with
various hole diameters, ranging from D = 3 to D = 6 mm, have been tested.
The dimensions of the plate are 100 mm × 65 mm × 40 mm. The material
(plaster) is the same as in the previous example. The sample is loaded in
compression. In the experimental tests, the load is applied continuously at a
speed of 0.2 mm/min. Consistently, the numerical calculations are run in the
quasi static regime, as for previous cases. PMMA plates were used on top and
bottom face to reduce the lack of planarity, parallelism and friction conditions
[34] to avoid stress concentration.

Experimental image correlation data were provided in [35], together with
force measurement to detect the crack experimentally. A high-resolution cam-
era (Baumer HXC20, progressive scan sensor with 2048×1088 pixels), with a
pixel size of 5.5×5.5 µm2, and equipped with a ZEISS Makro-Planar 100 mm
macro lens was used to continuously acquire images of the specimen during
loading at a frame rate of 20 Hz. As the detection of the crack onset is not
possible with naked eye, the recorded images were processed by 2D digital im-
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Fig. 12 Plaster sample containing one cylindrical drilled hole: geometry and boundary
conditions for both experimental setup and simulation.

age correlation (DIC) techniques. Cracks are detected by high levels of local
xx−strain components, measured for a gage length defined by the mesh of
correlation points (20 pixels spacing), which is the signature of the presence
of displacement discontinuities between two points of the mesh.

The 2D technique of digital image correlation 2D-DIC was used. When
the sample is subjected to a compressive load, two opposite cracks initiate on
top and bottom of the hole and grow from the cavity, in a direction paral-
lel to the load. In [35], the experimental results have been compared to the
semi-analytical model of Leguillon [21], which requires numerical FEM com-
putations to evaluate the stress intensity factors. In the mentioned work, 2D
FE simulations with plane strain assumptions were used. In view of the dimen-
sions of the sample and owing to the fact the measurements are performed at
the surface of the sample, the plane strain assumption might be questionable.
For this purpose, we have performed 2D simulations with both plane strain
and plane stress assumption, as well as full 3D simulations. The boundary con-
ditions model the experimental ones on the sample, and are described for the
3D case in Fig. 12: on the lower surface (z = 0), the z− displacements are fixed
and the x− and y− displacements are free. On the upper end, the x− and y−
displacements are free, while the z− displacements are prescribed, with an in-
creasing value U during the simulation. Monotonic compressive displacement
increments of ∆U = −10−3 mm are prescribed for first load increments and
as soon as d reaches 0.9 in one integration point of the Finite Element mesh,
we use ∆U = −10−4. A finite element mesh with varying element size (hmin =
0.05 mm around the hole and hmax = 0.25 mm in the rest of domain) is used.

In Figs. 13 -14, we show a comparison of the experimental digital image
correlation technique used to detect the crack evolution and the simulation,
were the damage field, associated with the crack, is depicted. This case cor-
responds to a diameter D = 5 mm. We can note that the numerical solution
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Fig. 13 Crack path evolution near the cylindrical hole (D = 5 mm); (a) and (b): Strain
maps obtained with digital image correlation for initial and loaded state [35], for 15.2 MPa
and 14.1 MPa, respectively; (c) 2D simulation (plane strain); (d) 3D simulation (damage
variable d(x)).

based on the phase field method can capture the crack initiation on top and
bottom of the hole and the vertical path of the two cracks. In addition, the
length of the crack for the given load is accurately predicted (Figs. 13 (b) and
(c)).

In the simulations, the crack length is computed as the distance between
the last point for which d = 1 and the hole boundary, assuming a straight
crack. The same procedure is employed in 3D. In Fig. 15 we quantitatively
compare the crack length evolution with respect to the applied load computed
at the point where the displacement is prescribed. Results for 2D plane strain
and plane stress, 3D simulations and experimental DIC results are compared
in Fig. 14. Fig. 15 shows that all three models provide a satisfying prediction
for the critical load corresponding to the onset of the crack. However, we can
note that during propagation, the experimental evolution deviates from 2D
predictions. The 3D simulation is in that case in better agreement with the
experimental response for both top and bottom cracks.

To analyze the influence of the diameter of the hole on the stress at the
time cracks onset, several samples with diameters varying between 3 and 6 mm
have been prepared and tested. Simulations have been performed here also in
2D and 3D. Results are provided in Figure 16. They show the good ability
of the simulation model to accurately predict the evolution of critical load σ∗

(onset of the crack) with hole diameters and related size effects. The ability
of the phase field method to reproduce size effects has also been discussed in
[18]. A general assessment of different models in this context can be found in
[22], where the authors find that 2 parameter fracture models can model size
effects only to a certain extend.
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Fig. 14 Crack propagation at different values of the applied stress around the cylindrical
hole: comparison between experiments (digital image correlation) and simulations (damage
variable d(x)).

6 Microcracking in a plaster specimen containing a periodic
distribution of cylindrical holes

In this last example, we investigate the microcracking of two plaster specimens
containing many holes, whose configurations are depicted in Fig. 17. In both
cases, the diameter of the holes is D = 4 mm. Configuration of Fig. 17 (a)
corresponds to a volume fraction of 12.2 %, and in Fig. 17 (b) to 13.5 %. A
FE adaptive mesh with characteristic size hmin = 0.05 mm has been used
around the holes, and larger elements whose size are hmax = 0.5 mm have
been employed away from holes. The whole mesh contains 905437 elements.

2D plane strain simulation was conducted. Monotonic compressive dis-
placement increments are prescribed on the top edge of the specimen, with
∆U = −10−3 mm in the first 1000 increments and ∆U = −5 × 10−5 mm in
the last 1500 increments. The evolution of microcracking within the specimen
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Fig. 15 Evolution of the crack length with respect to the resultant stress on the upper
boundary, comparison between models and experimental data: (a) top crack; (b) bottom
crack.
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Fig. 16 Stress associated with the cracks onset with respect to the cylindrical hole diameter:
comparison between experiments and numerical simulation.

is depicted in Fig. 18. The simulation model captures well the vertical prop-
agation of the different microcracks. The microcracks propagate faster near
the left and right boundaries than in the central region, probably because of
the influence of the free boundary conditions on the lateral surfaces. In addi-
tion, there is also a slight dissymmetry between upper and lower parts of the
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(a) (b)

Fig. 17 Plaster specimen containing a regular distribution of cylindrical holes: (a) surface
fraction 12.2 % and (b) surface fraction 13.5 % [34].

(a) (b)

(c) (d)

Fig. 18 Plaster specimen containing regular distribution of cylindrical holes: evolution of
the microcracking for different compressive loads (damage variable d(x)): (a) U = 0.544
mm; (b) U = 0.594 mm; (c) U = 0.64 mm; (d) U = 0.67 mm;

sample (a), whose successive damage maps are reproduced in figure 18. This
is linked to the absence of horizontal symmetry for this sample. For sample
(b), the hole distribution is symmetric between upper and lower parts, and
the resulting simulated damage map is also symmetric.
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(a) (b)

Fig. 19 Crack trajectory comparison between the present simulation (a) and the experiment
(b) provided in [34] (damage variable d(x)) for U = 0.614 mm.

Fig. 20 Qualitative comparison of the microcracking propagation between the present sim-
ulation and the experiment provided in [34] (damage variable d(x)) for U = 0.64 mm.

In Fig. 19 the microcracking pattern for the case of porous fraction 13.5%
is depicted and numerical simulations and digital correlation image obtained
in [34] are qualitatively compared. Globally speaking, the heterogeneity of the
damage map between central and lateral parts of the sample is nicely captured
by the computation. In Fig. 20, we compare with more details the microcrack-
ing morphology between the simulation and the experiment provided in [34],
[35], and note that it is qualitatively captured, both regarding the vertical
propagation of the different cracks, and regarding the non uniform propaga-
tion of the microcracks within the sample.

To compare more quantitatively the predictions provided by the numerical
simulation, we analyze the effects of changing the configuration (volume frac-
tion and distribution) with respect to the stress required to initiate the first
cracks in the sample and to generate cracks around all holes. Again, the cor-
responding experimental values have been provided in [34]. Comparisons are
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Fig. 21 Stress corresponding to crack onset within the specimen: comparison between ex-
perimental results and the numerical model for two porosities.

provided in Fig. 21. The numerical simulation method is in good agreement
with the experimental values.

7 Conclusion

In this work, we have discussed the choice of the parameters in the phase field
method, which is a promising simulation tool for initiation and propagation of
cracks in brittle materials. More specifically, we have analyzed the influence of
the numerical parameters and have validated the fact that the regularization
parameter describing the width of the smeared crack approximation is linked
to material parameters. The regularization length then requires experimental
measures to be identified. We have shown that the other numerical parameters
(load increments, mesh size) lead to convergent responses when they decrease.
Then, from the knowledge of the elastic parameters, of the fracture resistance
and of the regularization parameter of the phase field method, essentially iden-
tified from experimental measurements of critical stress in uniformly stressed
samples, we have conducted several simulations, including crack initiation and
propagation in three-point bending beam and in drilled samples of plaster in
compression. Remarkably, the phase field model is able to predict quantita-
tively crack paths, crack propagation morphologies, and mechanical response
with good agreement regarding experimental results for other geometrical con-
figurations than the ones used to identify the material parameters. Thus, the
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phase field method constitutes a promising tool for prediction of strength in
brittle heterogeneous or lightweight materials for civil engineering.
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