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We calculate the nonsymmetrized current noise in a quantum dot connected to two reservoirs by
using the non-equilibrium Green function technique. We show that both the current auto-correlator
(inside a single reservoir) and the current cross-correlator (between the two reservoirs) are expressed
in terms of transmission amplitude and coefficient through the barriers. We identify the different
energy-transfer processes involved in each contribution to the auto-correlator, and we highlight
the fact that when there are several physical processes, the contribution results from a coherent
superposition of scattering paths. Varying the gate and bias voltages, we discuss the profile of the
differential Fano factor in light of recent experiments, and we identify the conditions for having a
distinct value for the auto-correlator in the left and right reservoirs.

I. INTRODUCTION

Since the beginning of the 2000s, it has been known
that to characterize finite-frequency current fluctuations
in quantum conductors, one has to measure and calcu-
late the nonsymmetrized noise, which corresponds to the
emission noise at positive frequency and to the absorp-
tion noise at negative frequency1,2. This is related to
the fact that the current operators do not commute for
quantum systems3,4. In taking the symmetrized noise,
one mixes the emission and absorption parts and the
relevant information is lost. Despite the growing inter-
est in nonsymmetrized finite-frequency (NSFF) noise in
quantum systems both experimentally5–13 and theoret-
ically14–29, there is no clear and direct interpretation
of the physical processes that contribute to the noise,
even for non-interacting systems. Here we show that it
makes sense to interpret each contribution to the NSFF
auto-correlators in terms of the energy-transfer process,
following the ideas developed by several authors. In-
deed, it has been shown that the frequency at which
the NSFF noise is evaluated corresponds to the energy
provided or absorbed by the detector14 or by the electro-
magnetic environment, and that current fluctuations pro-
duce radiation of photons/plasmons in a phase-coherent
conductor30–42. To address this issue from a theoreti-
cal point of view, one can use either the scattering the-
ory43–46 or the non-equilibrium Green function (NEGF)
technique47,48. Whereas the former method applies to
non-interacting systems, the latter can be extended to
interacting ones. However, the NEGF technique has
been used so far only for the calculation of symmetrized
noise49.

In this article, we present two methods to derive the
noise spectrum for a quantum dot (QD) connected to two
reservoirs. The first method is based on the NEGF tech-
nique and allows us to express the NSFF auto-correlators

and cross-correlators in terms of the transmission am-
plitude and transmission coefficient through the barri-
ers. The second method is based on a detailed analysis
of all the different physical processes that contribute to
the auto-correlators by emitting energy in one reservoir,
paying attention to considering the coherent superpo-
sition of scattering paths when more than one process
is involved. The cross-correlators cannot be obtained
within the second method, but we check that for the auto-
correlators the two methods lead to the same expressions.
We benchmark our results with the known results exist-
ing in the literature in some given limits, notably in the
non-interacting limit when the scattering theory can be
used, and we discuss the charge fluctuations in the QD.

The paper is organized as follows: in Sec. II, we present
the system, the model, and the details of the NSFF noise
calculation within the NEGF technique, and we discuss
the results. In Sec. III, we present a new method for the
determination of the NSFF auto-correlators based on a
careful analysis of the various scattering processes that
lead to energy transfer. For an Anderson-type transmis-
sion amplitude, we identify in Sec. IV the conditions to
get distinct auto-correlators in the left and right reser-
voirs, and we discuss the differential Fano factor profile.
We conclude in Sec. V.

II. NONSYMMETRIZED NOISE

We consider a QD connected to two reservoirs de-
scribed by the non-interacting single-level Anderson
Hamiltonian H = HL + HR + HT + HD, where Hα =∑

k∈α εkc
†
kck is the Hamiltonian of the left (α = L) and

right (α = R) reservoirs, HT =
∑

α=L,R

∑
k∈α(Vkc

†
kd +

h.c.) is the transfer Hamiltonian, and HD = ε0d
†d is the

Hamiltonian of the QD. c†k(d
†) and ck(d) are the cre-

ation and annihilation operators of one electron in the
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reservoirs (QD). The quantities ε0, εk and Vk are respec-
tively the QD energy level, the energy of an electron with
momentum k in the reservoir and the transfer matrix ele-
ment between the corresponding states. The spin degree
of freedom can be included without any complication.
The objective is to calculate the NSFF noise defined

as

Sαβ(ω) =

∫ ∞

−∞
Sαβ(t, 0)e

−iωtdt , (1)

where Sαβ(t, 0) = ⟨∆Îα(t)∆Îβ(0)⟩ is the current correla-

tor and ∆Îα(t) = Îα(t)−⟨Îα⟩ with Îα, the current opera-
tor from the α reservoir to the central region through the

α barrier given by: Îα = (ei/~)
∑

k∈α

(
Vkc

†
kd− V ∗

k d
†ck

)
,

and ⟨Îα⟩ its average value.

A. Noise calculation using the NEGF technique

Following Haug and Jauho48, we first substitute the
expression of the current operator in the correlator and
obtain50

Sαβ(t, t
′) =

e2

~2
∑

k∈α,k′∈β

[
VkVk′Gcd,>

1 (t, t′)

−VkV
∗
k′G

cd,>
2 (t, t′)− V ∗

k Vk′Gcd,>
3 (t, t′)

+V ∗
k V

∗
k′G

cd,>
4 (t, t′)

]
− ⟨Îα⟩⟨Îβ⟩ , (2)

where Gcd,>
i (t, t′), with i = 1–4, are the greater compo-

nents of the two-particle Green functions mixing ck and
d operators defined as

Gcd,>
1 (t, t′) = −⟨c†k(t)d(t)c

†
k′(t

′)d(t′)⟩ , (3)

Gcd,>
2 (t, t′) = −⟨c†k(t)d(t)d

†(t′)ck′(t′)⟩ , (4)

Gcd,>
3 (t, t′) = −⟨d†(t)ck(t)c†k′(t

′)d(t′)⟩ , (5)

Gcd,>
4 (t, t′) = −⟨d†(t)ck(t)d†(t′)ck′(t′)⟩ . (6)

We introduce Gcd
i (τ, τ ′) with τ > τ ′, the contour-

ordered (along the Keldysh contour C51) counterparts

of Gcd,>
i (t, t′), as well as Sαβ(τ, τ

′), the contour-ordered
counterpart of Sαβ(t, t

′). We then derive and solve
the equations of motion for Gcd

i (τ, τ ′) in order to ex-
press them in terms of: (i) the contour-ordered one-
particle Green function for the disconnected reservoirs

defined as gk(τ, τ
′) = −i⟨TCck(τ)c

†
k′(τ ′)⟩0, where TC is

the contour-ordering operator, (ii) the contour-ordered
one-particle Green function for the QD connected to
the reservoirs, G(τ, τ ′) = −i⟨TCd(τ)d

†(τ ′)⟩, and (iii) the
contour-ordered two-particle Green functions for the QD,

G
(2)
i (τ, τ ′, τ1, τ2), defined as

G
(2)
1 (τ, τ ′, τ1, τ2) = −⟨TCd(τ)d(τ

′)d†(τ1)d
†(τ2)⟩ , (7)

G
(2)
2 (τ, τ ′, τ1, τ2) = −⟨TCd(τ)d

†(τ ′)d(τ1)d
†(τ2)⟩ , (8)

G
(2)
3 (τ, τ ′, τ1, τ2) = −⟨TCd

†(τ)d(τ ′)d(τ1)d
†(τ2)⟩ , (9)

G
(2)
4 (τ, τ ′, τ1, τ2) = −⟨TCd

†(τ)d†(τ ′)d(τ1)d(τ2)⟩ .(10)

After a series of manipulations, we get

Sαβ(τ, τ
′) = δαβS̃α(τ, τ

′) +
e2

~2
∑

k∈α,k′∈β

|VkVk′ |2

×
x

dτ1dτ2

[
− gk(τ1, τ)gk′(τ2, τ

′)G
(2)
1 (τ, τ ′, τ1, τ2)

+gk(τ2, τ)gk′(τ ′, τ1)G
(2)
2 (τ, τ ′, τ1, τ2)

−gk(τ, τ1)gk′(τ2, τ
′)G

(2)
3 (τ, τ ′, τ1, τ2)

−gk(τ, τ1)gk′(τ ′, τ2)G
(2)
4 (τ, τ ′, τ1, τ2)

]
− ⟨Îα⟩⟨Îβ⟩ ,

(11)

where S̃α(τ, τ
′) = (e2/~2)

∑
k∈α |Vk|2

[
gk(τ

′, τ)G(τ, τ ′) +

gk(τ, τ
′)G(τ ′, τ)

]
. To go further, one needs to write and

solve the equation of motion for the two-particle Green
functions for the QD, which is an ambitious task. How-
ever, for a non-interacting system, the QD two-particle
Green functions can be decouple into a product of two
QD one-particle Green functions. We get

Sαβ(τ, τ
′) = δαβS̃α(τ, τ

′) +
e2

~2
∑

k∈α,k′∈β

|VkVk′ |2

×
x

dτ1dτ2

[
− gk(τ1, τ)gk′(τ2, τ

′)G(τ, τ2)G(τ ′, τ1)

+gk(τ2, τ)gk′(τ ′, τ1)G(τ, τ ′)G(τ1, τ2)

+gk(τ, τ1)gk′(τ2, τ
′)G(τ ′, τ)G(τ1, τ2)

−gk(τ, τ1)gk′(τ ′, τ2)G(τ2, τ)G(τ1, τ
′)
]
. (12)

The different terms appearing on the right-hand side of
Eq. (12) correspond to the connected part of the noise
(the last four terms being the ones where the two in-
tegrals over τ1 and τ2 are intertwined). The last term

−⟨Îα⟩⟨Îβ⟩ appearing on the right-hand side of Eq. (11) is
no longer present since it is exactly canceled by the dis-
connected part of the noise (in which the two integrals
over τ1 and τ2 can be done separately).

Next, we perform an analytical continuation of
Eq. (12), we substitute the one-particle Green functions
for the reservoirs and the QD by their expressions given
in Ref. 48 and we make a Fourier transform, assuming
that all the Green functions are time translation invari-
ant (see Appendix A for the details of the calculations).
Moreover, the coupling strength between the QD and the
reservoirs, Γα(ε) = 2π|Vα(ε)|2ρα(ε), with ρα(ε) the den-
sity of states in the reservoir α and Vα(ε) = Vk∈α, is as-
sumed to be energy independent (exact in the wide band
limit). In addition, we consider symmetric coupling52,
i.e., ΓL = ΓR = Γ .
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B. Results and discussion

Within these assumptions, we obtain the following ex-
pression for the NSFF noise

Sαβ(ω) =
e2

h

∑
γδ

∫ ∞

−∞
dεMγδ

αβ(ε, ω)f
e
γ (ε)f

h
δ (ε− ~ω) ,

(13)

where fe
γ (ε) is the Fermi-Dirac distribution function,

fh
δ (ε) = 1 − fe

δ (ε), and where the matrix elements

Mγδ
αβ(ε, ω) are listed in Table I. They are expressed in

terms of the transmission amplitude t(ε) = iΓGr(ε), with
Gr(ε) the QD retarded Green function, and of the trans-
mission coefficient T (ε) = t(ε)t∗(ε) through the barriers.
The NSFF noise is composed of four contributions, each
of which is given by the integral over the energy ε of the

matrix elements Mγδ
αβ(ε, ω) weighted by the product of

the electron distribution function fe
γ (ε) and hole distri-

bution function fh
δ (ε− hω). When α = β, Eq. (13) gives

the expressions of the NSFF auto-correlators SLL(ω)
and SRR(ω); when α ̸= β, it gives the expressions for
the NSFF cross-correlators SLR(ω) and SRL(ω). The
calculations presented here apply for a non-interacting
QD. However, Eq. (13) holds even in the presence of
Coulomb interactions in the QD provided that the QD
two-particles Green function can be decoupled into a
product of two QD one-particle Green functions as dis-
cussed above (equivalent to neglecting the vertex correc-
tions). The effects of the interactions will then be entirely
contained in the transmission amplitude t(ε) and the co-
efficient T (ε).
Since Sαβ(ω) = S∗

βα(ω), the sum of Sαβ(ω) over the
indexes α, β of the two reservoirs, is a real quantity equal
to ∑

αβ

Sαβ(ω) =
e2

h

∫ ∞

−∞
dε|t(ε− ~ω)− t(ε)|2

×
∑
γδ

fe
γ (ε)f

h
δ (ε− ~ω) . (14)

The above double sum is related to the charge
fluctuations21,44,53 in the QD as shown in Appendix B.
Indeed, for an Anderson-type transmission ampli-
tude, i.e., t(ε) = iΓ/(ε − ε0 + iΓ), Eq. (14)
leads to

∑
αβ Sαβ(ω) = ω2SQ(ω), with SQ(ω) =∫

dte−iωt⟨∆Q̂(t)∆Q̂(0)⟩, the noise associated with the

fluctuations of the charge Q̂ = ed†d in the QD. At zero-
frequency or for an energy-independent transmission am-
plitude,

∑
αβ Sαβ(ω) vanishes. This sum is non-zero only

when t(ε) acquires an energy dependence, as it is the case
for example when the system is coupled to an electromag-
netic environment54.

It is important to stress that our result for SLL(ω)
differs from the expression of the NSFF noise given in
Ref. 46 in which the term |t(ε) − t(ε − ~ω)|2 is ab-
sent. However, when we symmetrize Eq. (13) with re-
spect to the frequency, we get an expression that coin-
cides exactly with the result obtained by Büttiker us-
ing scattering theory43 in which the emblematic term
|t(ε)− t(ε−~ω)|2 is also present. Moreover, at zero tem-
perature, our result coincides with the expressions ob-
tained by Hammer and Belzig in Ref. 24, and at equilib-
rium, the fluctuation-dissipation theorem holds since we
get S(ω) = 2~ωN(ω)G(ω), with N(ω), the Bose-Einstein
distribution function and G(ω), the ac-conductance (the
reservoir indexes can be removed in that limit). This
confirms the validity of our calculations. We have also
checked that by using scattering theory (non-interacting
limit), we get an expression for the NSFF noise in terms

of the matrix elements Mγδ
αβ(ε, ω), identical to that ob-

tained in Eq. (13) using the NEGF technique.

Mγδ
αβ(ε, ω) γ = δ = L γ = δ = R γ = L, δ = R γ = R, δ = L

α = L T (ε)T (ε− ~ω) T (ε)T (ε− ~ω) T (ε− ~ω)[1− T (ε)] T (ε)[1− T (ε− ~ω)]
β = L +|t(ε)− t(ε− ~ω)|2

α = R T (ε)T (ε− ~ω) T (ε)T (ε− ~ω) T (ε)[1− T (ε− ~ω)] T (ε− ~ω)[1− T (ε)]

β = R +|t(ε)− t(ε− ~ω)|2

α = L t(ε)t∗(ε− ~ω) t∗(ε)t(ε− ~ω) t(ε)t(ε− ~ω)[1− t∗(ε)] t∗(ε)t∗(ε− ~ω)[1− t(ε)]

β = R ×[(1− t∗(ε))(1− t(ε− ~ω))− 1] ×[(1− t(ε))(1− t∗(ε− ~ω))− 1] ×[1− t∗(ε− ~ω)] ×[1− t(ε− ~ω)]
α = R t∗(ε)t(ε− ~ω) t(ε)t∗(ε− ~ω) t∗(ε)t∗(ε− ~ω)[1− t(ε)] t(ε)t(ε− ~ω)[1− t∗(ε)]

β = L ×[(1− t(ε))(1− t∗(ε− ~ω))− 1] ×[(1− t∗(ε))(1− t(ε− ~ω))− 1] ×[1− t(ε− ~ω)] ×[1− t∗(ε− ~ω)]

TABLE I: Expressions of the matrix elements Mγδ
αβ(ε, ω) appearing in Eq. (13).
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FIG. 1: Illustration of the processes that contribute to SLL(ω)
with the transfer of energy ~ω (yellow wavy line) in the left
reservoir. The green [blue] circle represents an electron [hole]
with energy ε [ε − ~ω]. The solid [dashed] red arrow line
represents a transmission process with probability amplitude
t(ε) [t∗(ε − ~ω)]. The solid [dashed] black arrow line rep-
resents a reflection process with probability amplitude r(ε)
[r∗(ε − ~ω)]. The coherent superposition of processes (a1),
(a2), and (a3) leads to theM

LL
LL (ε, ω) contribution, process (b)

to the MRR
LL (ε, ω) contribution, process (c) to the MLR

LL (ε, ω)
contribution, and process (d) to the MRL

LL (ε, ω) contribution.

III. COHERENT SUPERPOSITION OF
SCATTERING PATHS

Let us now proceed on to the second method that
we develop to calculate the NSFF auto-correlators, i.e.,
SLL(ω) and SRR(ω), which correspond at positive fre-
quency to the emission noises in the left and right reser-
voir, respectively1,2. It consists in identifying the physi-
cal processes involved in the generation of current noises.
For this, one must go back to the definition of the noise
given above, stating that it is the Fourier transform of
a two-particle correlator, say, for instance, SLL(t, 0) =

⟨∆ÎL(t)∆ÎL(0)⟩ for the auto-correlator in the left reser-
voir. From this and due to charge and energy conserva-
tion, one can see that SLL(ω) corresponds to the transi-
tion probability from an initial state formed by creating
a pair of one electron with energy ε and one hole with
energy ε− ~ω in either the left or the right reservoir, to
a final state where the electron-hole pair is located in the
left reservoir and then recombines emitting energy ~ω on
the left reservoir side. Fig. 1 illustrates all the possible
processes along which the system transits from such an

initial state to that final state. Note that in order to
contribute to the noise, the physical process must allow
either the electron or the hole of the electron-hole pair to
experience an excursion into the QD.

We first discuss the contributions to SLL(ω) when
one starts from an initial state with an electron-hole
pair located in the left reservoir, i.e., proportional to
fe
L(ε)f

h
L(ε − ~ω). In this case, there exist three distinct

processes allowing the electron or the hole to experience
an excursion into the QD: in the first process, illustrated
in Fig. 1(a1), the hole of the initial electron-hole pair is re-
flected by the left barrier while its electron partner moves
back and forth between the left reservoir and the QD
before emitting energy ~ω by recombining with its hole
partner in the left reservoir. The corresponding transi-
tion probability amplitude is t1(ε, ω) = t(ε)r∗(ε − ~ω).
In the second process, illustrated in Fig. 1(a2), the hole
of the electron-hole pair moves back and forth between
the left reservoir and the QD while its electron partner is
reflected by the left barrier before emitting energy ~ω by
recombining with the hole present in the left reservoir.
Its amplitude reads t2(ε, ω) = r(ε)t∗(ε − ~ω). Finally
in the third process, illustrated in Fig. 1(a3), both the
hole and the electron of the electron-hole pair move back
and forth between the left reservoir and the QD before
emitting energy ~ω by recombining together. Its am-
plitude is t3(ε, ω) = t(ε)t∗(ε − ~ω). These three pro-
cesses lead to the following contribution to the noise:∣∣t1(ε, ω) + t2(ε, ω) + t3(ε, ω)

∣∣2 corresponding to the co-
herent superposition of the three transmission processes
in question. The amplitudes rather than the probabilities
have to be summed over the different processes since the
wave function of the system is anti-symmetric under ex-
change of particles due to the Pauli principle. As a result,
the processes in which electrons or holes are either trans-
mitted or reflected are not distinguishable16,44. We have
checked that |t1(ε, ω)+ t2(ε, ω)+ t3(ε, ω)|2 is identical to
MLL

LL (ε, ω) = T (ε)T (ε−~ω)+ |t(ε)−t(ε−~ω)|2 using the
relations: r(ε) = 1− t(ε) and t(ε)+ t∗(ε) = 2T (ε). These
latter two relations hold for the non-interacting single-
impurity model with symmetric barriers. The former re-
lation arises from the matrix relation Ŝ(ε) = 1̂− t̂(ε) con-

necting the Ŝ matrix and the scattering matrix, whereas
the latter relation corresponds to the generalized optical
theorem55 resulting from the unitarity property of the Ŝ
matrix – holding when only elastic scattering of electrons
occurs, as is the case here – providing that the former re-
lation is satisfied.

The physical processes involved in the three other
contributions to the noise SLL(ω) can be identified in
the same way. For the contribution proportional to
fe
R(ε)f

h
R(ε − ~ω), one has to start from an initial state

in which both the electron and the hole of the pair are
in the right reservoir. There is a single process as illus-
trated in Fig. 1(b). Both the electron and the hole have
to move across the entire structure from the right to the
left reservoir through the QD before recombining to emit
energy ~ω in the left reservoir. The latter process leads to
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the following contribution to the noise: |t(ε)t∗(ε− ~ω)|2,
which is identical to MRR

LL (ε, ω) = T (ε)T (ε − ~ω). The
same analysis can be carried out for the last two contribu-
tions proportional to fe

L(ε)f
h
R(ε−~ω) and fe

R(ε)f
h
L(ε−~ω)

leading to the identification of processes (c) and (d)
of Fig. 1 and to the expressions of MLR

LL (ε, ω) and
MRL

LL (ε, ω).
Note that these processes describe the contributions to

SLL(ω) up to any order in the coupling strength Γ. In
the weak-coupling limit, the processes (a1), (a2), (c), and
(d) are of order Γ2, whereas the processes (a3) and (b)
are of order Γ4. Similar physical processes can be found
to explain the contributions to SRR(ω). It is not possible,
however, to find such a simple picture for the NSFF cross-
correlators SLR(ω) and SRL(ω) since they are not real,
and thus they are nonobservable quantities14.

IV. OUT-OF-EQUILIBRIUM NOISE
SPECTRUM AND FANO FACTOR

To illustrate our results, we use the following exact
form for the dot electron Green function in the non-
interacting Anderson single-impurity model, Gr(ε) =
(ε − ε0 + iΓ)−1. This expression leads to a Lorentzian-
type expression for the transmission amplitude t(ε) =
iΓ/(ε − ε0 + iΓ), where we recall that Γ is the cou-
pling strength between the QD and the reservoirs and
ε0 is the QD energy level. The auto-correlator and the
cross-correlator spectrum, as well as the Fano factor de-
fined as the ratio between the zero-frequency noise and
the current, are quantities that are well discussed in the
literature14,21,24. Here, we choose to focus on the fol-
lowing features: the conditions to observe distinct auto-
correlators in the left and right reservoirs, and the profile
of the differential Fano factor.

A. NSFF noise in left and right reservoirs

From Table I, we see that the expressions for the auto-
correlators in the left and the right reservoirs are dis-
tinct. For example, in the zero-temperature limit and
at positive frequency and positive bias voltage, the auto-
correlators are given by

SLL(ω) =
e2

h

∫ µL

µR+~ω
dεT (ε− ~ω)

[
1− T (ε)

]
, (15)

and

SRR(ω) =
e2

h

∫ µL

µR+~ω
dεT (ε)

[
1− T (ε− ~ω)

]
, (16)

which are non-equal when the frequency is non-zero and
when the transmission coefficient is energy-dependent.
Such a difference between the left and right auto-
correlators is also reported in Refs. [28,39]. Its origin is
the distinct energy of the carriers contributing to SLL(ω)

or to SRR(ω) when transferred through the junction
(ε− ~ω versus ε). There is an additional condition that
appears when one plots the noise spectrum: the poten-
tial profile through the junction has to be non symmetric
in the sense that the dot energy should not stand in the
middle of the potential barrier, i.e. ε0 ̸= (µL + µR)/2.
Indeed, in Fig. 2 (in which we take ε0 = 0), we see that
when µL + µR ̸= 0, the auto-correlators in the left and
right reservoirs are different (compare orange, red and
purple lines) and that it is only when µL + µR = 0,
that these two quantities coincide (compare black lines).
Thus, SLL(ω) differs from SRR(ω) provided that the fol-
lowing three conditions are fulfilled: non-zero frequency,
energy dependent transmission and non-symmetric po-
tential profile.

FIG. 2: Auto-correlators in units of e2Γ/~ in (a) the left
reservoir and (b) the right reservoir at kBT/eV = 0.01,
Γ/eV = 0.02 and ε0 = 0 for {µL = eV, µR = 0} (orange lines),
{µL = 0.8eV, µR = −0.2eV } (red lines), {µL = 0.6eV, µR =
−0.4eV } (purple lines) and {µL = 0.5eV, µR = −0.5eV }
(black lines).

As expected in the zero temperature limit, the emis-
sion noises SLL(ω) and SRR(ω) (at positive frequency)
drop to zero for frequency higher than voltage: the sys-
tem can not supply energy larger than the energy pro-
vided to it (here the voltage). The absorption noise (at
negative frequency) has no such limitation. We observe
that for ~ω < −eV , SLL(ω) and SRR(ω) converge to the
same value (equal to e2Γ/~), even when the above condi-
tions meet. Finally, SLL(ω) and SRR(ω) differ from each
other in the interval ~ω ∈ [−eV, 0[ ∪ ]0, eV ] provided
that T (ε) is energy-dependent and ε0 ̸= (µL +µR)/2. In
any other situations, the auto-correlators in the left and
right reservoirs coincide.

B. Differential Fano factor

The differential Fano factor was introduced in re-
cent experimental works10 and defined as F (VS , ω) =∣∣[dSLL/dV ]VS/[ed⟨ÎL⟩/dV ]VS−~ω/e

∣∣. It corresponds to
the ratio of the derivative of the noise with bias volt-
age at V = VS , to the differential conductance at V =
VS − ~ω/e, where ω is the frequency at which the noise
is measured. We plot F (VS , ω) in Fig. 3 as a function
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of gate energy ε0 and bias voltage VS at two values of
the frequency, ~ω1/Γ = 0.1 and ~ω2/Γ = 1. In agree-
ment with the fact that the system cannot emit energy
larger than the supplied energy eVS , we observe that
F (VS , ω) is strongly reduced for bias voltages VS smaller
than the frequency in absolute value (see the black hori-
zontal band in both graphs of Fig. 3). At low frequency
(Fig. 3(a)), F (VS , ω) is always smaller than 1, meaning
that the noise is sub-Poissonian. At higher frequency
(Fig. 3(b)), F (VS , ω) takes values higher than 1 in some
regions, meaning that the noise is super-Poissonian with
an upper limit for F (VS , ω) equal to 2, in agreement with
Ref. 24. Such an increase of F (VS , ω) with increasing
frequency has been measured in a carbon nanotube QD
when placed in the Kondo regime10. Even if the analysis
carried out here is not intended to describe the Kondo
effect, it is worth noticing that this increase of F (VS , ω)
with increasing frequency constitutes a general trend. At
both low and high frequencies, F (VS , ω) is reduced in
the bands surrounding the first bisectors, ε0 = ±eVS/2
in the case of a symmetric profile of the chemical poten-
tials on either sides of the QD, i. e. µL,R = ±eVS/2.
These bands correspond to a maximal conductance with
a transmission close to 1. The results reported in the two
graphs show similarities with what has been observed
experimentally in Ref. 10 with a characteristic pattern
composed of six areas of the non-zero differential Fano
factor separated by narrow bands in which the differen-
tial Fano factor is strongly reduced. Experimentally in
the presence of the Kondo effect, the bands surrounding
the bisectors are no longer straight but become curved
due to the effect of the interactions.

FIG. 3: Differential Fano factor F (VS , ω) as a function of
gate energy ε0 and bias voltage VS (both normalized by Γ) at
kBT/Γ = 0.1 for two values of the frequency : (a) ~ω1/Γ = 0.1
(low frequency) and (b) ~ω2/Γ = 1 (high frequency).

V. CONCLUSION

In summary, we have derived the expression of the
NSFF noises in a single-level QD connected to reservoirs
using the NEGF technique. Both the auto- and cross-
correlators are expressed in terms of the transmission am-
plitude t(ε) and coefficient T (ε). We have identified the
physical processes at the origin of the contributions to the

auto-correlators. We have shown that when the electron-
hole pair is initially present in the reservoir emitting the
energy, the contributions to the noise can be interpreted
in terms of a coherent superposition of three distinct pro-
cesses. On the contrary, when the electron and/or the
hole of the pair is initially in the non-emitting reservoir,
only one type of physical process exists and contributes to
the noise. We have also shown that for a non-interacting
QD, the differential Fano factor as a function of gate and
bias voltages presents interesting features reminiscent of
the experimental measurements. The methods presented
and tested here could be extended to treat many situa-
tions involving Coulomb interactions and other transmis-
sion amplitudes and coefficients, such as multiple channel
systems, QDs with multiple energy levels, or quantum
point contacts embedded in an electromagnetic environ-
ment.
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APPENDIX A: CURRENT NOISE

From Eq. (12), we have Sαβ(τ, τ
′) =

∑5
i=1 C

(i)
αβ(τ, τ

′)
with

C(1)
αβ (τ, τ

′) =
e2

~2
∑
k∈α

|Vk|2
[
gk(τ

′, τ)G(τ, τ ′)

+gk(τ, τ
′)G(τ ′, τ)

]
δαβ , (A1)

C(2)
αβ (τ, τ

′) = − e2

~2
∑

k∈α,k′∈β

|VkVk′ |2
x

dτ1dτ2

×G(τ, τ2)gk′(τ2, τ
′)G(τ ′, τ1)gk(τ1, τ) , (A2)

C(3)
αβ (τ, τ

′) =
e2

~2
∑

k∈α,k′∈β

|VkVk′ |2
x

dτ1dτ2

×G(τ, τ ′)gk′(τ ′, τ1)G(τ1, τ2)gk(τ2, τ) , (A3)

C(4)
αβ (τ, τ

′) =
e2

~2
∑

k∈α,k′∈β

|VkVk′ |2
x

dτ1dτ2

×gk(τ, τ1)G(τ1, τ2)gk′(τ2, τ
′)G(τ ′, τ) , (A4)
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C(5)
αβ (τ, τ

′) = − e2

~2
∑

k∈α,k′∈β

|VkVk′ |2
x

dτ1dτ2

×gk(τ, τ1)G(τ1, τ
′)gk′(τ ′, τ2)G(τ2, τ) . (A5)

Performing the analytical continuation48 of the previous

equations, we obtain Sαβ(t, t
′) =

∑5
i=1 C

(i)
αβ(t, t

′) with

C(1)
αβ (t, t

′) =
e2

~2
∑
k∈α

|Vk|2
[
g<k (t

′, t)G>(t, t′)

+g>k (t, t
′)G<(t′, t)

]
δαβ , (A6)

C(2)
αβ (t, t

′) = − e2

~2
∑

k∈α,k′∈β

|VkVk′ |2
x

dt1dt2

×
[
Gr(t′, t1)g

<
k (t1, t) +G<(t′, t1)g

a
k(t1, t)

]
×
[
G>(t, t2)g

a
k′(t2, t

′) +Gr(t, t2)g
>
k′(t2, t

′)
]
, (A7)

C(3)
αβ (t, t

′) =
e2

~2
∑

k∈α,k′∈β

|VkVk′ |2G>(t, t′)
x

dt1dt2

×
[
grk′(t′, t1)G

r(t1, t2)g
<
k (t2, t)

+grk′(t′, t1)G
<(t1, t2)g

a
k(t2, t)

+g<k′(t′, t1)G
a(t1, t2)g

a
k(t2, t)

]
, (A8)

C(4)
αβ (t, t

′) =
e2

~2
∑

k∈α,k′∈β

|VkVk′ |2G<(t′, t)
x

dt1dt2

×
[
g>k (t, t1)G

a(t1, t2)g
a
k′(t2, t

′)

+grk(t, t1)G
>(t1, t2)g

a
k′(t2, t

′)

+grk(t, t1)G
r(t1, t2)g

>
k′(t2, t

′)
]
, (A9)

C(5)
αβ (t, t

′) = − e2

~2
∑

k∈α,k′∈β

|VkVk′ |2
x

dt1dt2

×
[
g>k (t, t1)G

a(t1, t
′) + grk(t, t1)G

>(t1, t
′)
]

×
[
grk′(t′, t2)G

<(t2, t
′) + g<k′(t′, t2)G

a(t2, t
′)
]
.

(A10)

Considering the Fourier transform of the Green functions
in the latter expressions in the case of a time translation

invariance (steady state), we get Sαβ(ω) =
∑5

i=1 C
(i)
αβ(ω)

with

C(1)
αβ (ω) =

e2

h

∑
k∈α

|Vk|2
∫ ∞

−∞
dε
[
g<k (ε)G

>(ε− ~ω)

+g>k (ε− ~ω)G<(ε)
]
δαβ , (A11)

C(2)
αβ (ω) = −e2

h

∑
k∈α,k′∈β

|VkVk′ |2

×
∫ ∞

−∞
dε
[
Gr(ε)g<k (ε)G

r(ε− ~ω)g>k′(ε− ~ω)

+Gr(ε)g<k (ε)G
>(ε− ~ω)gak′(ε− ~ω)

+G<(ε)gak(ε)G
r(ε− ~ω)g>k′(ε− ~ω)

+G<(ε)gak(ε)G
>(ε− ~ω)gak′(ε− ~ω)

]
, (A12)

C(3)
αβ (ω) =

e2

h

∑
k∈α,k′∈β

|VkVk′ |2

×
∫ ∞

−∞
dε
[
G>(ε− ~ω)grk′(ε)Gr(ε)g<k (ε)

+G>(ε− ~ω)grk′(ε)G<(ε)gak(ε)

+G>(ε− ~ω)g<k′(ε)Ga(ε)gak(ε)
]
, (A13)

C(4)
αβ (ω) =

e2

h

∑
k∈α,k′∈β

|VkVk′ |2

×
∫ ∞

−∞
dε
[
G<(ε)g>k (ε− ~ω)Ga(ε− ~ω)gak′(ε− ~ω)

+G<(ε)grk(ε− ~ω)G>(ε− ~ω)gak′(ε− ~ω)

+G<(ε)grk(ε− ~ω)Gr(ε− ~ω)g>k′(ε− ~ω)
]
, (A14)

C(5)
αβ (ω) = −e2

h

∑
k∈α,k′∈β

|VkVk′ |2

×
∫ ∞

−∞
dε
[
Ga(ε− ~ω)g>k (ε− ~ω)G<(ε)grk′(ε)

+Ga(ε− ~ω)g>k (ε− ~ω)Ga(ε)g<k′(ε)

+G>(ε− ~ω)grk(ε− ~ω)G<(ε)grk′(ε)

+G>(ε− ~ω)grk(ε− ~ω)Ga(ε)g<k′(ε)
]
. (A15)

In the expressions of each contribution C(i)
αβ(ω) to the

noise, we report the bar Green functions of the reservoir

g<k∈α(ε) = 2iπfe
α(ε)δ(ε− εk) , (A16)

g>k∈α(ε) = −2iπfh
α(ε)δ(ε− εk) , (A17)

grk∈α(ε) = [ε− εk + i0+]−1 , (A18)

gak∈α(ε) = [ε− εk − i0+]−1 , (A19)

where fe
α(ε) is the Fermi-Dirac distribution function as-

sociated with the reservoir α, and fh
α(ε) = 1 − fe

α(ε).
In the wide-band approximation limit, where Γα(ε) =
2πρα(ε)|V (ε)|2 is independent of energy, we obtain the
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following expression for the NSFF noise

Sαβ(ω) =
e2

h
Γαδαβ

∫ ∞

−∞
dε
[
− ifh

α(ε− ~ω)G<(ε)

+ife
α(ε)

[
Gr(ε− ~ω)−Ga(ε− ~ω) +G<(ε− ~ω)

]]
+
e2

h
ΓαΓβ

∫ ∞

−∞
dε
[
G<(ε)G>(ε− ~ω)

−fe
α(ε)f

h
β (ε− ~ω)Gr(ε)Gr(ε− ~ω)

−fe
β(ε)f

h
α(ε− ~ω)Ga(ε)Ga(ε− ~ω)

+
[
fe
α(ε)G

r(ε)− fe
β(ε)G

a(ε)
]
G>(ε− ~ω)

+
[
fh
α(ε− ~ω)Ga(ε− ~ω)

−fh
β (ε− ~ω)Gr(ε− ~ω)

]
G<(ε)

]
. (A20)

For a non-interacting QD, we have48

Gr(ε)−Ga(ε) = −iGr(ε)
[
ΓL + ΓR

]
Ga(ε) ,

(A21)

G<(ε) = iGr(ε)
[
ΓLf

e
L(ε) + ΓRf

e
R(ε)

]
Ga(ε) .

(A22)

Using iΓGr(ε) = t(ε) and G>(ε) = Gr(ε) − Ga(ε) +
G<(ε), and considering symmetrical barriers, ΓL = ΓR =
Γ, we get

Gr(ε)−Ga(ε) = −2it(ε)t∗(ε)

Γ
, (A23)

G<(ε) =
it(ε)t∗(ε)

Γ

[
fe
L(ε) + fe

R(ε)
]
, (A24)

G>(ε) = − it(ε)t∗(ε)

Γ

[
fh
L(ε) + fh

R(ε)
]
. (A25)

Incorporating the latter expressions into Eq. (A20), we

get Eq. (13) with matrix elements Mγδ
αβ(ε, ω) given in

Table 1.

APPENDIX B: CHARGE NOISE

The charge noise is defined as the Fourier transform of
the charge fluctuations on the QD

SQ(ω) =

∫ ∞

−∞
dte−iωt⟨∆Q̂(t)∆Q̂(0)⟩ , (B1)

where ∆Q̂(t) = Q̂(t) − ⟨Q̂⟩, with Q̂(t) = eN̂(t) =
ed†(t)d(t). Performing the decoupling of the QD two-
particles Green function, we get

⟨∆Q̂(t)∆Q̂(0)⟩ = ⟨d†(t)d(0)⟩⟨d(t)d†(0)⟩ , (B2)

which leads to

SQ(ω) = e2
∫ ∞

−∞
dte−iωtG<(0, t)G>(t, 0)

=
e2

h

∫ ∞

−∞
dεG<(ε)G>(ε− ~ω) . (B3)

Using Eqs. (A24) and (A25) and introducing the trans-
mission amplitude t(ε) = iΓGr(ε), we finally obtain

SQ(ω) =
e2

hΓ2

∫ ∞

−∞
dεT (ε)T (ε− ~ω)

×
∑
γδ

fe
γ (ε)f

h
δ (ε− ~ω) . (B4)

In the case of an Anderson-type transmission amplitude,
t(ε) = iΓ/(ε− ε0 + iΓ), we have

|t(ε)− t(ε− ~ω)|2 =
ω2

Γ2
T (ε)T (ε− ~ω) , (B5)

which leads when one compare Eq. (B4) to Eq. (14) to
the equality

∑
αβ

Sαβ(ω) = ω2SQ(ω) . (B6)
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39 J.-T. Lü, R.B. Christensen, and M. Brandbyge, Phys. Rev.
B 88, 045413 (2013).

40 A. Bednorz, C. Bruder, B. Reulet, and W. Belzig, Phys.
Rev. Lett. 110, 250404 (2013).

41 K. Kaasbjerg and A. Nitzan, Phys. Rev. Lett. 114, 126803
(2015).

42 A.L. Grimsmo, F. Qassemi, B. Reulet, and A. Blais, Phys.
Rev. Lett. 116, 043602 (2016).
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