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Non-symmetrized noise in a quantum dot: interpretation in terms of photon emission

and coherent superposition of scattering paths
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We calculate the non-symmetrized current noise in a quantum dot connected to two reservoirs
in the presence of interactions in the dot by using non-equilibrium Green function technique. We
show that both the self-noise (inside a single reservoir) and the cross-noise (between both reservoirs)
are expressed in terms of transmission amplitude and coefficient through the barriers. We identify
the different photon emission processes involved in each contribution to the self-noise and highlight
the fact that when there are several physical processes, the contribution results from a coherent
superposition of scattering paths. Varying the gate and bias voltages, we discuss the profile of the
differential Fano factor in the light of recent experiments.

Since the beginning of the 2000s, it is known that
to characterize finite-frequency current fluctuations in
quantum conductors, one has to measure and calcu-
late the non-symmetrized noise which corresponds to the
emission noise at positive frequency and to the absorp-
tion noise at negative frequency [1, 2]. This is related to
the fact that the current operators do not commute for
quantum systems [3]. In taking the symmetrized noise,
one mixes the emission and absorption noises and the
relevant information is lost. Despite a growing inter-
est for non-symmetrized finite-frequency (NSFF) noise
in quantum system both experimentally [4–12] and the-
oretically [13–27], there is no clear interpretation of the
physical processes that contribute to the noise, even for
non- interacting systems. Here we show that it makes
sense to interpret each contribution to the NSFF self-
noise in terms of photon emission process, following the
ideas developed by several authors [28–34]. To address
this issue from a theoretical point of view, one can use ei-
ther the scattering theory [35, 36] or the non-equilibrium
Green function (NEGF) technique [37, 38]. Whereas the
former method applies to non-interacting systems, the
latter can be extended to interacting ones. However, the
NEGF technique has been used until now to calculate
the symmetrized noise only [39].

In this Letter, we present two methods to derive the
non-symmetrized noise spectrum of a quantum dot (QD)
connected to two reservoirs. The first method is based on
the NEGF technique and allows us to express the NSFF
self-noises and cross-noises in terms of the transmission
amplitude and transmission coefficient through the barri-
ers which themselves incorporate both transfer and inter-
action effects. The second method is based on a detailed
analysis of all the different physical processes that con-
tribute to the self-noises, paying attention to considering
the coherent superposition of scattering paths when more
than one process are involved. The cross-noises cannot

be obtained within the second method, but for the self-
noises the two methods lead to the same expressions. We
benchmark our results with the known results existing in
the literature in some given limits, notably in the non-
interacting limit when the scattering theory can be used.
We consider a single level QD connected to two reser-

voirs described by the Hamiltonian H = HL + HR +
HT + HD, where Hα =

∑

k∈α εkc
†
kck is the Hamilto-

nian of the left (α = L) and right (α = R) reservoirs,

HT =
∑

α=L,R

∑

k∈α(Vkc
†
kd+h.c.) is the transfer Hamil-

tonian, and HD = ε0d
†d is the Hamiltonian of the QD.

c†k(d
†) and ck(d) are the creation and annihilation opera-

tors of one electron in the reservoirs (QD). The quantities
ε0, εk and Vk are respectively the QD energy level, the
energy of an electron with momentum k in the reservoirs
and the transfer matrix element between the correspond-
ing states. The spin degree of freedom can be included
without any complication.
The objective is to calculate the NSFF noise defined

as Sαβ(ω) =
∫∞

−∞
Sαβ(t, 0)e

−iωtdt, where Sαβ(t, 0) =

〈∆Îα(t)∆Îβ(0)〉 is the current correlator and ∆Îα(t) =

Îα(t) − 〈Îα〉 with Îα, the current operator from the α
reservoir to the central region through the α barrier given
by: Îα = (ei/~)

∑

k∈α

(

Vkc
†
kd−V ∗

k d
†ck

)

, and 〈Îα〉 its av-
erage value.
Following Haug and Jauho [38], we first substitute the

expression of the current operator in the correlator and
get [40]

Sαβ(t, t
′) =

e2

~2

∑

k∈αk′∈β

[

VkVk′Gcd,>
1 (t, t′)

−VkV
∗
k′G

cd,>
2 (t, t′)− V ∗

k Vk′Gcd,>
3 (t, t′)

+V ∗
k V

∗
k′G

cd,>
4 (t, t′)

]

− 〈Îα〉〈Îβ〉 , (1)

where Gcd,>
i (t, t′), with i = 1 to 4, are the greater

components of the two-particle Green functions mixing
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ck and d operators [41]. We introduce Gcd
i (τ, τ ′), the

contour-ordered (along the Keldysh contour C) counter-

parts of Gcd,>
i (t, t′) as well as Sαβ(τ, τ

′), the contour-
ordered counterpart of Sαβ(t, t

′). We then derive and
solve the equations of motion for Gcd

i (τ, τ ′) in order to
express them in terms of: (i) the contour-ordered one-
particle Green function for the disconnected reservoirs
defined as gk(τ, τ

′) = −i〈TCck(τ)c
†
k′ (τ ′)〉0, where TC is

the contour-ordering operator, (ii) the contour-ordered
one-particle Green function for the QD connected to
the reservoirs, G(τ, τ ′) = −i〈TCd(τ)d

†(τ ′)〉, and (iii) the
contour-ordered two-particle Green functions for the QD,

G
(2)
i (τ, τ ′, τ1, τ2) [42]. After a series of manipulations, we

get

Sαβ(τ, τ
′) = δαβS̃α(τ, τ

′) +
e2

~2

∑

k∈α,k′∈β

|VkVk′ |2

×
x

dτ1dτ2

[

− gk(τ1, τ)gk′ (τ2, τ
′)G

(2)
1 (τ, τ ′, τ1, τ2)

+gk(τ2, τ)gk′ (τ ′, τ1)G
(2)
2 (τ, τ ′, τ1, τ2)

−gk(τ, τ1)gk′(τ2, τ
′)G

(2)
3 (τ, τ ′, τ1, τ2)

−gk(τ, τ1)gk′(τ ′, τ2)G
(2)
4 (τ, τ ′, τ1, τ2)

]

− 〈Îα〉〈Îβ〉 ,(2)

where S̃α(τ, τ
′) = (e2/~2)

∑

k∈α |Vk|
2
[

gk(τ
′, τ)G(τ, τ ′) +

gk(τ, τ
′)G(τ ′, τ)

]

. To go further, one needs to write and
solve the equation of motion for the two-particle Green
functions for the QD, which is an ambitious task. By
making a Hartree-Fock level approximation to the QD
two-particle Green functions which consists in factorizing
it into a product of two QD one-particle Green functions,
we get [43]

Sαβ(τ, τ
′) = δαβS̃α(τ, τ

′) +
e2

~2

∑

k∈α,k′∈β

|VkVk′ |2

×
x

dτ1dτ2

[

− gk(τ1, τ)gk′ (τ2, τ
′)G(τ, τ2)G(τ ′, τ1)

+gk(τ2, τ)gk′ (τ ′, τ1)G(τ, τ ′)G(τ1, τ2)

+gk(τ, τ1)gk′(τ2, τ
′)G(τ ′, τ)G(τ1, τ2)

−gk(τ, τ1)gk′(τ ′, τ2)G(τ2, τ)G(τ1, τ
′)
]

. (3)

Next, we perform an analytical continuation of Eq. (3),
we substitute the one-particle Green functions for the
reservoirs and the QD by their expressions given in
Ref. 38 and we make a Fourier transform, assuming that
all the Green functions are time translation invariant
(steady state). Moreover, the coupling strength between
the QD and the reservoirs, Γα(ε) = 2π|Vα(ε)|

2ρα(ε), with
ρα(ε) the density of states in the reservoir α and Vα(ε)
the Fourier transform of Vk∈α, is assumed to be energy
independent (exact in the wide band limit). In addition,
we take symmetric coupling: ΓL = ΓR = Γ [44]. Within

these assumptions, we obtain the NSFF noise

Sαβ(ω) =
e2

h

∑

γδ

∫ ∞

−∞

dεMγδ
αβ(ε, ω)f

e
γ(ε)f

h
δ (ε− ~ω) , (4)

where fe
γ(ε) is the Fermi-Dirac distribution function,

fh
δ (ε) = 1 − fe

δ (ε), and where the matrix elements

Mγδ
αβ(ε, ω) are listed in Table 1. They are expressed in

terms of the transmission amplitude t(ε) = iΓGr(ε), with
Gr(ε) the QD retarded Green function, and of the trans-
mission coefficient T (ε) = t(ε)t∗(ε) through the barriers.
The NSFF noise is made of four contributions, each of
which being given by the integral over the energy ε of
the matrix elements Mγδ

αβ(ε, ω) weighted by the product
of the electron distribution function fe

γ(ε) and hole distri-
bution function fe

δ (ε − hω). Equation (4) is the central
result of this Letter: when α = β, it gives the expres-
sions of the NSFF self-noises SLL(ω) and SRR(ω); when
α 6= β, it gives the expressions of the NSFF cross-noises
SLR(ω) and SRL(ω). We emphasize the fact that Eq. (4)
holds even in the presence of Coulomb interactions in the
dot (included in Gr(ε)), the only assumption being the
Hartree-Fock approximation.
Since Sαβ(ω) = S∗

βα(ω), the sum of Sαβ(ω) over the
indexes α, β of the two reservoirs, is a real quantity equal
to

∑

αβ

Sαβ(ω) =
e2

h

∫ ∞

−∞

dε|t(ε− ~ω)− t(ε)|2

×
∑

γδ

fe
γ(ε)f

h
δ (ε− ~ω) . (5)

The above double sum is related to the charge fluctu-
ations in the QD [19, 35]. Indeed, for a Breit-Wigner
type transmission amplitude (non-interacting case), i.e.
t(ε) = iΓ/(ε− ε0 + iΓ), Eq. (5) leads to

∑

αβ Sαβ(ω) =

ω2SQ(ω), with SQ(ω) =
∫

dte−iωt〈∆Q̂(t)∆Q̂(0)〉, the

noise associated with the fluctuations of the charge Q̂ =
ed†d in the QD. At zero-frequency or for an energy-
independent transmission amplitude,

∑

αβ Sαβ(ω) van-
ishes. The charge fluctuations are non-zero only when
t(ε) acquires an energy dependence as it is the case for
example when the system is coupled to an electromag-
netic environment [45].
It is important to underline that our result for SLL(ω)

differs from the expression of the NSFF noise given in
Ref. 46 in which the term |t(ε) − t(ε − ~ω)|2 is miss-
ing. However, when we symmetrize Eq. (4) with re-
spect to the frequency, we get an expression that ex-
actly coincides with the result obtained by Büttiker us-
ing scattering theory [47] in which the emblematic term
|t(ε)− t(ε− ~ω)|2 is also present. Moreover at zero tem-
perature, our result coincides with the expressions ob-
tained by Hammer and Belzig in Ref. 22, and at equilib-
rium, the fluctuation-dissipation theorem holds since we
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get S(ω) = 2~ωN(ω)G(ω) with N(ω), the Bose-Einstein
distribution function and G(ω), the ac-conductance (the
reservoir indexes can be removed in that limit). This
confirms the validity of our calculations. We have also
checked that by using scattering theory (non-interacting

limit) we get an expression for the NSFF noise in terms

of the matrix elements Mγδ
αβ(ε, ω), identical to that ob-

tained in Eq. (4) using NEGF technique.

Mγδ
αβ(ε, ω) γ = δ = L γ = δ = R γ = L, δ = R γ = R, δ = L

α = L T (ε)T (ε− ~ω) T (ε)T (ε− ~ω) T (ε− ~ω)[1− T (ε)] T (ε)[1− T (ε− ~ω)]

β = L +|t(ε)− t(ε− ~ω)|2

α = R T (ε)T (ε− ~ω) T (ε)T (ε− ~ω) T (ε)[1− T (ε− ~ω)] T (ε− ~ω)[1− T (ε)]

β = R +|t(ε)− t(ε− ~ω)|2

α = L t(ε)t∗(ε− ~ω) t∗(ε)t(ε− ~ω) t(ε)t(ε− ~ω)[1− t∗(ε)] t∗(ε)t∗(ε− ~ω)[1− t(ε)]

β = R ×[(1− t∗(ε))(1− t(ε− ~ω))− 1] ×[(1− t(ε))(1− t∗(ε− ~ω))− 1] ×[1− t∗(ε− ~ω)] ×[1− t(ε− ~ω)]

α = R t∗(ε)t(ε− ~ω) t(ε)t∗(ε− ~ω) t∗(ε)t∗(ε− ~ω)[1− t(ε)] t(ε)t(ε− ~ω)[1− t∗(ε)]

β = L ×[(1− t(ε))(1− t∗(ε− ~ω))− 1] ×[(1− t∗(ε))(1− t(ε− ~ω))− 1] ×[1− t(ε− ~ω)] ×[1− t∗(ε− ~ω)]

TABLE I: Expressions of the matrix elements Mγδ
αβ(ε, ω) appearing in Eq. (4).

Let us now move on to the second method that we de-
velop to calculate the NSFF self-noises, i.e., SLL(ω) and
SRR(ω) which correspond at positive frequency to the
emission noises in the left and right reservoir respectively.
It consists in identifying the physical processes involved
in the generation of current noises. For this, one must go
back to the definition of the noise given above, stating
that it is the Fourier transform of a two-particle corre-
lator, say for instance SLL(t, 0) = 〈∆ÎL(t)∆ÎL(0)〉 for
the self-noise in the left reservoir. From this and due to
charge and energy conservation, one can see that SLL(ω)
corresponds to the transition probability from an initial
state formed by adding a pair of one electron with energy
ε and one hole with energy ε−~ω in either the left or the
right reservoir, to a final state where the electron-hole
pair is located in the left reservoir and then recombines
emitting a photon of energy ~ω on the left reservoir side.
Fig. 1 illustrates all the possible processes along which
the system transits from such an initial state to that fi-
nal state. Note that in order to contribute to the noise,
the physical process must let either the electron or the
hole of the electron-hole pair experience an excursion into
the QD.

We first discuss the contributions to SLL(ω) when
one starts from an initial state with an electron-hole
pair located in the left reservoir, i.e., proportional to
fe
L(ε)f

h
L(ε− ~ω). In this case, there exists three distinct

processes allowing the electron or the hole to experience
an excursion into the QD: in the first process illustrated
in Fig. 1(a1), the hole of the initial electron-hole pair is re-
flected by the left barrier while its electron partner moves
back and forth between the left reservoir and the QD be-
fore emitting a photon of energy ~ω by recombining with
its hole partner in the left reservoir. The corresponding
transition probability amplitude is t1 = t(ε)r∗(ε − ~ω).

FIG. 1: Illustration of the processes that contribute to SLL(ω)
with emission of one photon with energy ~ω (yellow wave line)
in the left reservoir. The full (empty) black circle represents
an electron (hole) with energy ε (ε− ~ω). The solid (dashed)
red curved arrow line represents a transmission process with
probability amplitude t (t∗). The solid (dashed) blue circular
arrow line represents a reflection process with probability am-
plitude r (r∗). The coherent superposition of processes (a1),
(a2) and (a3) leads to the MLL

LL contribution, process (b) to
the MRR

LL contribution, process (c) to the MLR
LL contribution,

and process (d) to the MRL
LL contribution.

In the second process illustrated in Fig. 1(a2), the hole
of the electron-hole pair moves back and forth between
the left reservoir and the QD while its electron partner
is reflected by the left barrier before emitting a photon
of energy ~ω by recombining with the hole present in the
left reservoir. Its amplitude reads as t2 = r(ε)t∗(ε− ~ω).
Finally in the third process illustrated in Fig. 1(a3), both
the hole and the electron of the electron-hole pair move
back and forth between the left reservoir and the QD
before emitting a photon of energy ~ω by recombining
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together. Its amplitude is t3 = t(ε)t∗(ε − ~ω). These
three processes lead to the following contribution to the

noise:
∣

∣t1 + t2 + t3
∣

∣

2
corresponding to the coherent su-

perposition of the three transmission processes in ques-
tion. We have checked that |t1 + t2 + t3|

2 is identical to
MLL

LL (ε, ω) = T (ε)T (ε−~ω)+ |t(ε)−t(ε−~ω)|2 using the
relations r(ε) = 1 − t(ε) and t(ε) + t∗(ε) = 2T (ε) guar-
anteed by the unitarity of the S-matrix in the scattering
theory.
The physical processes involved in the three other

contributions to the noise SLL(ω) can be identified in
the same way. For the contribution proportional to
fe
R(ε)f

h
R(ε − ~ω), one has to start from an initial state

where both the electron and the hole of the pair are
in the right reservoir. There is a single process as il-
lustrated in Fig. 1(b). Both the electron and the hole
have to move across the entire structure from the right
to the left reservoir through the QD before recombin-
ing to emit one photon of energy ~ω in the left reser-
voir. The latter process leads to the following contribu-
tion to the noise: |t(ε)t∗(ε − ~ω)|2 which is identical to
MRR

LL (ε, ω) = T (ε)T (ε− ~ω). The same analysis can be
carried out for the last two contributions proportional
to fe

L(ε)f
h
R(ε − ~ω) and fe

R(ε)f
h
L(ε − ~ω) leading to the

identification of processes (c) and (d) of Fig. 1 and to the
expressions of MLR

LL (ε, ω) and MRL
LL (ε, ω).

Note that these processes describe the contributions to
SLL(ω) up to any order in the coupling strength Γ. In
the weak coupling limit, the processes (a1), (a2), (c) and
(d) are of order Γ2, whereas the processes (a3) and (b)
are of order Γ4. Similar physical processes can be found
to explain the contributions to SRR(ω). It is however
not possible to find such a simple picture for the NSFF
cross-noises SLR(ω) and SRL(ω) since they are not real
quantities.

FIG. 2: Differential Fano factor F as a function of gate
energy ε0 and bias voltage VS (both normalized by Γ) at
kBT/Γ = 0.1 for two values of the frequency : (a) ~ω1/Γ = 0.1
(low frequency) and (b) ~ω2/Γ = 1 (high frequency).

To illustrate our results, we calculate the differen-
tial Fano factor in the non-interacting limit consider-
ing a Breit-Wigner type transmission amplitude: t(ε) =
iΓ/(ε − ε0 + iΓ). This quantity was introduced in
recent experimental works [9] and defined as F =

∣

∣[dSLL/dV ]VS
/[ed〈ÎL〉/dV ]VS−~ω/e

∣

∣. It corresponds to
the ratio of the derivative of the noise with bias volt-
age at V = VS , to the differential conductance at V =
VS − ~ω/e, where ω is the frequency at which the noise
is measured. We plot F in Fig. 2 as a function of gate
energy ε0 and bias voltage VS at two values of the fre-
quency, ~ω1/Γ = 0.1 and ~ω2/Γ = 1. In agreement with
the fact that the system cannot emit photon at energy
larger than the supplied energy eVS , we observe that F
is strongly reduced for bias voltages VS smaller than the
frequency in absolute value (see the black horizontal band
in both graphs of Fig. 2). At low frequency (Fig. 2(a)),
F is always smaller than one, meaning that the noise is
sub-Poissonian. At higher frequency (Fig. 2(b)), F takes
values higher than one in some regions, meaning that
the noise is super-Poissonian with an upper limit equal
to F = 2 in agreement with Ref. [22]. Such an increase of
F with increasing frequency has been measured in a car-
bon nanotube QD when placed in the Kondo regime [9].
Even if the analysis carried out in this Letter is not in-
tended to describe the Kondo effect, it is worth noticing
that this increase of F with increasing frequency consti-
tutes a general trend. At both low and high frequencies,
F is reduced in the bands surrounding the first bisec-
tors, ε0 = ±eVS/2 in the case of a symmetric profile of
the chemical potentials on either sides of the QD, i.e.
µL,R = ±eVS/2. These bands correspond to a maximal
conductance with a transmission close to one. The re-
sults reported in the two graphs show similarities with
what has been observed experimentally in Ref. [9] with a
characteristic pattern made of six areas of non-zero dif-
ferential Fano factor separated by narrow bands in which
the differential Fano factor is strongly reduced. Experi-
mentally in the presence of the Kondo effect, the bands
surrounding the bisectors are no longer straight but be-
come curved resulting from the effect of the interactions.

In summary, we have derived the expression of the
NSFF noises in a single level interacting QD connected to
reservoirs using the NEGF technique. Both the self- and
cross- noises are expressed in terms of the transmission
amplitude t and coefficient T in which the Coulomb in-
teractions are included. We have identified the physical
processes at the origin of the contributions to the self-
noises. We have shown that when the electron-hole pair
is initially present in the reservoir emitting the photon,
the contributions to the noise can be interpreted in terms
of a coherent superposition of three distinct processes.
On the contrary, when the electron and/or the hole of
the pair is initially in the non-emitting reservoir, only
one type of physical process exists and contributes to the
noise. We have also shown that for a non-interacting QD,
the differential Fano factor as a function of gate and bias
voltages presents interesting features reminding of the ex-
perimental measurements. The methods presented and
tested in this Letter can be used to treat many situations
involving other transmission amplitudes and coefficients,
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such as multiple channel systems, QD with multiple en-
ergy levels or quantum point contacts embedded in an
electromagnetic environment.
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[24] R. Zamoum, A. Crépieux, and I. Safi, Phys. Rev. 85,

125421 (2012).
[25] S.Y. Müller, M. Pletyukhov, D. Schuricht, and S. Ander-

gassen, Phys. Rev. B 87, 245115 (2013).
[26] E.A. Rothstein, B. Horovitz, O. Entin-Wohlman, and

A. Aharony, Phys. Rev. B 90, 245425 (2014).
[27] B. Roussel, P. Degiovanni, and I. Safi, arXiv:1505.02116.
[28] C.W.J. Beenakker and H. Schomerus, Phys. Rev. Lett.

86, 700 (2001).
[29] J. Gabelli, L.-H. Reydellet, G. Fève, J.-M. Berroir,
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