
HAL Id: hal-01257956
https://hal.science/hal-01257956v1

Submitted on 21 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal variability and tidal modulation of
hydrothermal exit–fluid temperatures at the Lucky

Strike deep–sea vent field, Mid–Atlantic Ridge,
Thibault Barreyre, Javier Escartin, Rob Sohn, Mathilde Cannat, Valérie

Ballu, Wayne Crawford

To cite this version:
Thibault Barreyre, Javier Escartin, Rob Sohn, Mathilde Cannat, Valérie Ballu, et al.. Temporal
variability and tidal modulation of hydrothermal exit–fluid temperatures at the Lucky Strike deep–
sea vent field, Mid–Atlantic Ridge,. Journal of Geophysical Research, 2014, 119 (4), pp.2543-2566.
�10.1002/2013JB010478�. �hal-01257956�

https://hal.science/hal-01257956v1
https://hal.archives-ouvertes.fr


Temporal variability and tidal modulation
of hydrothermal exit-fluid temperatures
at the Lucky Strike deep-sea vent field,
Mid-Atlantic Ridge
Thibaut Barreyre1,2, Javier Escartín1, Robert A. Sohn2, Mathilde Cannat1, Valérie Ballu3,
and Wayne C. Crawford1,3

1Marine Geosciences Group, Institut de Physique du Globe de Paris, CNRS, UMR 7154, Univ. Paris Diderot, Sorbonne Paris
Cité, Paris Cedex 5, France, 2Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, 3LIENSs, Université
de La Rochelle, CNRS, UMR 7266, La Rochelle, France

Abstract We deployed autonomous temperature sensors at black smoker chimneys, cracks, and diffuse
flow areas at the Lucky Strike hydrothermal field (Mid-Atlantic Ridge, ~37°17’N) between summer 2009
and summer 2012 and contemporaneously measured tidal pressures and currents as part of the long-term
MoMAR experiment to monitor hydrothermal activity. We classify the temperature data according to the
hydrogeologic setting of the measurement sites: a high-temperature regime (>190°C) representing discharge
of essentially unmixed, primary hydrothermal fluids through chimneys, an intermediate-temperature regime
(10–100°C) associated with mixing of primary fluids with cold pore fluids discharging through cracks, and
a low-temperature regime (<10°C) associated with a thermal boundary layer forming over bacterial mats
associated with diffuse outflow of warm fluids. Temperature records from all the regimes exhibit variations at
semi-diurnal tidal periods, and cross-spectral analyses reveal that high-temperature discharge correlates to
tidal pressure while low-temperature discharge correlates to tidal currents. Intermediate-temperature discharge
exhibits a transitional behavior correlating to both tidal pressure and currents. Episodic perturbations, with transient
temperature drops of up to ~150°C, which occur in the high-temperature and intermediate-temperature
records, are not observed on multiple probes (including nearby probes at the same site), and they are not
correlated with microearthquake activity, indicating that the perturbation mechanism is highly localized at
the measurement sites within the hydrothermal structures. The average temperature at a given site may
increase or decrease at annual time scales, but the average temperature of the hydrothermal field, as a whole,
appears to be stable over our 3 year observation period.

1. Introduction

The space-time variability of exit-fluid temperatures measured at deep-sea vent fields provides important
information regarding the hydrogeology and subsurface circulation patterns of hydrothermal flow in young
oceanic crust. This is critical for understanding the fluid-dynamical interaction between vents and the
overlying ocean and to constrain associated heat, mass, and chemical fluxes. For modeling purposes,
hydrothermal systems are often conceptualized as steady-state flow environments [e.g., Lister, 1980; Cann
and Strens, 1989; Sleep, 1991] or as varying [Lowell and Burnell, 1991; Fontaine et al., 2008; Han et al., 2013] over
longer time scales than those of the field observations (e.g., discharge rates and temperatures), which also
exhibit significant spatial variability [e.g. Fornari et al., 1998; Lilley et al., 2003; Scheirer et al., 2006; Sohn, 2007a;
Larson et al., 2007, 2009].

Time series temperature measurements made at mid-ocean ridge hydrothermal vents have demonstrated
two distinct modes of temporal variability: episodic responses to perturbations from tectonic, magmatic, or
mineralization processes [e.g., Sohn et al., 1998; Johnson et al., 2000; Sohn, 2007b; Gribbin et al., 2012] and
periodic oscillations related to tidal processes [e.g., Kinoshita et al., 1998; Davis and Becker, 1999; Tivey et al.,
2002; Jupp and Schultz, 2004; Crone and Wilcock, 2005; Scheirer et al., 2006; Sohn, 2007a].

Crustal permeability and vertical flow velocity, which are difficult to measure in the field, are fundamental
parameters of the hydrothermal system [e.g., Wilcock and McNabb, 1996; Jupp and Schultz, 2004; Crone and
Wilcock, 2005] and may be constrained from the response of the system to external forcing. On this point,
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however, progress has been limited by the paucity of deep-sea vent exit-fluid data and uncertainties over the
nature of the perturbation processes [e.g., Lowell and Germanovich, 1994; Germanovich et al., 2000, 2001;
Ramondenc et al., 2006].

The existing data also demonstrated that there are broadly two types of hydrothermal venting: focused, high-
temperature discharge from chimney structures (>100°C and often between 300°C and up to ~400°C) and
diffuse, low-temperature (<100°C) discharge from cracks, through the seafloor, or at mineral deposits [Corliss
et al., 1979]. Temperature measurements from sites of focused flow can be remarkably stable over time
periods of up to a few years [Langmuir et al., 1997; Fornari et al., 1998; Scheirer et al., 2006; Larson et al., 2007,
2009], whereas temperature measurements from diffuse flow are much variable [Tivey et al., 2002; Scheirer
et al., 2006; Sohn, 2007a]. This difference may result from the two types of discharge being associated with
different circulation systems: focused flow and venting being associated with primary (deep) circulation and
diffuse venting being associated with either secondary (shallow) circulation or leaking and mixing of primary
fluids. Up until now, however, there have not been enough observatory-style measurements to determine if
and how geological factors (e.g., ridge spreading rate, spreading modality, substrate type) and hydrogeological
differences impact the nature of hydrothermal discharge.

Long-term (up to several years) temperature measurements have only been carried out at a few, geologically
distinct mid-ocean ridge hydrothermal fields: the fast-spreading and volcanically active East Pacific Rise (EPR)
at 9°50′N [Fornari et al., 1998; Sohn et al., 1998; Scheirer et al., 2006], the slow-spreading, detachment fault
environment of the TAG segment of the Mid-Atlantic Ridge (MAR) [Sohn, 2007a], and the intermediate-
spreading Cleft Segment [Tivey et al., 2002] and Main Endeavour Field (MEF) [Larson et al., 2007, 2009] along
the Juan de Fuca Ridge (JdFR). Exit-fluid temperature records from all of these experiments have spatially
complex episodic variability that is attributed to local geological or hydrogeological processes, and periodic
variability at tidal frequencies (which could be caused by the tides themselves or tidally induced currents).

All long-term (on the order of a year or more) exit-fluid records from diffuse discharge sites exhibit some
degree of periodic variability at tidal frequencies, but the details vary among sites. While poroelastic models
predict tidal modulation of discharge velocity and temperature via the propagation of pressure transients
into the shallow crust [e.g., Jupp and Schultz, 2004; Crone andWilcock, 2005], discharge temperatures may also
be affected by tidal and inertial bottom currents [JdFR, Tivey et al., 2002; MAR, Kinoshita et al., 1998].
Poroelastic theory predicts that periodic variability at tidal periods should be observed at sites of focused
discharge, but, to date, this effect has only been reported at the MEF along the intermediate-spreading JdFR
[Larson et al., 2007, 2009]. Exit-fluid temperature variations at tidal periods were observed over an
approximately 2month observation period for some of the focused discharge sites at the MEF, which were
interpreted as resulting from subsurface mixing between non-seawater end-member fluids at, or just
beneath, the interface between crustal layers 2A and 2B (i.e., 550m under MEF [Van Ark et al., 2007]).

Here we report results from a 3 year field program to measure exit-fluid temperatures at nine sites from the
Lucky Strike hydrothermal field on the slow-spreading MAR. This experiment benefits from contemporaneous
measurements of exit-fluid temperature, bottom pressure, bottom currents, and local seismicity. First, these
time series allow us to investigate the nature of temporal variability at sites of focused and diffuse outflow and
to consider the hydrogeological implications for deep-sea vent fields and their interaction with the overlying
water column. We apply a spectral analysis to objectively determinewhether periodic variations of temperature
records are forced by tidal currents or pressure. Second, these temperature records provide information
regarding discharge stability at individual vent sites and at the scale of the hydrothermal field as a whole, over a
time period of 3 years. Our analysis allows us to refine the hydrothermal discharge model for the Lucky Strike
hydrothermal field, with implications for other basalt-hosted hydrothermal systems within the rift valley of
slow-spreading ridge segments.

2. The Lucky Strike Hydrothermal Field

The Lucky Strike hydrothermal field (LSHF) is located at the summit of a central volcano on the ~80 km long
Lucky Strike ridge segment, which extends along the MAR between 37°03’N and 37°37’N (Figure 1a). The
central volcano is underlain at 3–4 km depth by an axial magma chamber (AMC) [Singh et al., 2006; Combier,
2007], which is the presumed heat source driving hydrothermal circulation at the LSHF. The southeastern
vents have significantly lower Cl/Mg and higher 86Sr/87Sr than the northeastern and western vents
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[Charlou et al., 2000], which could result from either two chemically distinct hydrothermal cells or phase separation
of a similar source fluid [Pester et al., 2012]. Microearthquakes at LSHF, interpreted to have a hydrothermal origin,
suggest that the maximum depth of fluid penetration is ~3 km below the rift valley immediately north of the
hydrothermal field, and somewhat shallower (~2.5km) immediately to the south [Crawford et al., 2013].

(a)

(b)

Figure 1. (a) Location of themain hydrothermal sites (boxed labels) at the Lucky Strike Hydrothermal Field (LSHF), and position
of different geophysical instruments installed during Bathyluck’09, MoMARSAT10, MoMARSAT11 cruises: high-temperature
probes (circles), high-temperature probes associated with low-temperature probes (triangles), the two MoMAR observatory
nodes SEAMON E and W (stars), the pressure gauge (diamond), and the current meter 2009–2010 (square). Names of sites: TE:
Tour Eiffel, MS: Montsegur, CI: Cimendef, IS: Isabel, SI: Sintra, WC: White Castle, CY: Cypress, BC: Benchmark C, CR: Crystal, and
SC: South Crystal. The contour interval is 10m. Multibeam bathymetry data from Ondréas et al. [2009]. (b) Photomosaics of the
Montsegur (MS, left) and South Crystal (SC, right) sites, and location of temperature sensors. High-temperature probes are
indicated by a white square (1 year probe recording) or a white circle (cruise-long probe recording). Low-temperature probes
are indicated by a white triangle. Hydrothermal outflow is indicated by white areas (bacterial mats), which allow us to ascertain
the geometry of fluid exit. X and Y axes are in Universal Transverse Mercator (UTM, meters). Resolution of photomosaic is up to
5mm/pixel. Photomosaics from Barreyre et al. [2012]. Names of probes are shown “shorter” on the figure for better visibility; H is
for high temperature (L for low temperature), and DXX gives year of the deployment. Sensor names corresponding to those
reported in Table 2 are as follows. MS: H1D09: HW0007D09, H2D10: HW0014D10, H3D11: HW0020D11, H4D09: HW0009D09,
H5D09: HN29007D09, H6D11: HN29014D11, H7D09: HN29013D09, H8D09: HN29014D09, L1D09: LW0004D09, L2D09:
LW0001D09, L3D10: LW0005D10, L4D10: LW0002D10, L5D11: LW0015D11. SC: H1D10: HW0006D10, H2D11: HW0018D11,
H3D11: HW0005D11, H4D09: HN29010D09, H5D11: HN30008D11, L1D11: LW0014D11, L2D10: LW0004D10.
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The LSHF hosts several active hydrothermal sulfide structures, extending over an area of ~1 km2 and surrounding
a lava-filled depression 1740m beneath the sea surface, often referred to as the “lava lake” (Figure 1a) [Fouquet
et al., 1995;Ondréas et al., 2009;Humphris et al., 2002; Barreyre et al., 2012]. Extensive video imagery and seafloor
imagemosaics have revealed that hydrothermal discharge occurs through chimneys, mounds, and surrounding
areas of diffuse outflow (i.e., patches, cracks) [Barreyre et al., 2012]. Based on the videographic and photomosaic
data, the total heat flux associatedwith the LSHF is estimated to be between ~200 and 1000MW, with themajor
fraction on the east side of the field, primarily through diffuse flow [Barreyre et al., 2012].

Throughout the LSHF, discharge tends to localize into discrete areas of both diffuse and focused flow. Image
mosaics have been used to constrain the spatial limits of each site [Barreyre et al., 2012;Mittelstaedt et al., 2012].
The discharge zones are often located along fault scarps and fractures associated with the ~1 km wide axial
graben that dissects the volcano. In this experiment, we instrumented nine hydrothermally active sites between
2009 and 2012 and obtained complete temporal coverage for four sites and partial coverage for the other five.
Belowweprovide a brief description of each study site and the instrumentation strategy (Figure 1a and Table 1).

2.1. Montsegur (MS)

It extends over a 24m×16 m area in the SE of the LSHF and features two prominent sulfide mounds. The
larger mound, in the north, is 10m×15 m and rises>5m above the adjacent seafloor. The smaller mound, to
the south, is 5m× 6 m and rises ~3–4m above the seafloor. Both are conical and are emplaced on a flat
hydrothermal slab [Langmuir et al., 1997; Cooper et al., 2000; Humphris et al., 2002; Ondréas et al., 2009; and
Barreyre et al., 2012] composed of consolidated volcaniclastic material and hydrothermal minerals [Gribbin
et al., 2012]. We identified at least seven high-temperature vents in addition to extensive diffuse low-
temperature discharge through cracks and the mounds flanks. This site was continuously monitored for
outflow temperatures between 2009 and 2012.

2.2. Tour Eiffel (TE)

Located in the SE of the LSHF, it extends over a 24m×20m area. A detailed description of this site and the
heat fluxes associated with both diffused and localized flow is available in Mittelstaedt et al. [2012]. TE is
dominated by a massive hydrothermal structure that rises ~20m above surrounding seafloor [Langmuir et al.,
1997], located at the edge of a small fault scarp. Diffuse flow is mainly observed both on the walls of the
edifice and around a crack network at the base of the hydrothermal structure. During our experiment, the
hydrothermal edifice displayed at least eight clearly identified high-temperature vents, in addition to
widespread diffuse flow through its surface and cracks. We continuously monitored this site for outflow
temperatures between 2009 and 2012.

2.3. Cimendef (CI)

Located ~30mwest of Montsegur in the SE part of the LSHF, this site is emplaced on a hydrothermal slab and
covers an area ~5m in diameter. We identified only one small active chimney (~1m high) and an associated

Table 1. Summary of Autonomous Temperature Probe Deployments at Each Site for the 3 Years of Monitoring

Deployment Period

Sitea 2009–2010 2010–2011 2011–2012 Total Monitoring Length

MS 5 HT 3 LTb 1 HT 2 LT 2 HT 1 LT 3 years
TE 4 HT 3 LT 3 LTb 1 HT 1 LT 3 years
CI — — 1 HT 1 year
IS 1 HT — 1 HT 2 years
SI 2 HT — 2 HT 2 years
CR 3 HT 1 HT 1 HT 3 years
SC 1 HT 1 HT 1 LT 3 HT 1 LT 3 years
CY — 2 HT 1 LTb 1 HT 2 years
WC 3 HT — 1 HT 2 years
BC 1 LT — 2 years

aLocation and names of sites are given in Figure 1 and Table 2, and geological settings and characteristics of the sites
are given in section 2.

bLT sensors include one Starmon probe installed with a colonizer on bacterial mats.
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high-temperature vent, in addition to extensive diffuse flow and cracks around the structure. We monitored
this site for outflow temperatures in 2011–2012.

2.4. Isabel (IS)

Located ~160m west of Tour Eiffel in the SE part of the LSHF, this site covers an area ~5m wide × 8m long.
We identified two small active chimneys (<1m high) at the base of the edifice and three associated high-
temperature vents, in addition to diffuse flow on the flank of the edifice, which is emplaced on hydrothermal
slab. We monitored this site for outflow temperatures in 2009–2010 and in 2011–2012.

2.5. Sintra (SI)

This is a massive sulfide complex located in the north of the LSHF extending over an area ~7m wide ×~5m
high [Langmuir et al., 1997]. High-temperature dischargemainly occurs along the top of a ridge formed by the
complex. We identified at least four high-temperature vents, in addition to pervasive diffuse flow through
most of the edifice’s surface, which is largely covered bymussel beds. The high-temperature vent Sintra is the
only active site in this NNE area of LSHF, and visual inspections suggest that it may be waning (observations
from the yearly 2009 through 2012 cruises). We monitored outflow temperatures at this site in 2009–2010
and 2011–2012.

2.6. Crystal (CR)

Located in the west of the LSHF, this site extends over an area ~5m in diameter. We identified at least three
high-temperature vents on two parallel ridges, in addition to limited diffuse flow on these two ridges [Von
Damm et al., 1998; Humphris et al., 2002]. A zone of remobilized hydrothermal deposits is located in between
the ridges (observations from the yearly 2009 through 2012 cruises). We continuously monitored outflow
temperatures from 2009 to 2012.

2.7. South Crystal (SC)

A ~2m high conical hydrothermal complex located ~25m SW of Crystal in the west part of the LSHF, it covers
an area ~2m diameter. We identified two high-temperature vents, in addition to an extensive diffuse flow
zone and crack network about 7m south of the mound (observations from the yearly 2009 through 2012
cruises). We continuously monitored outflow temperatures from 2009 to 2012.

2.8. Cypress (CY)

Located in the SW border of the lava lake in the central part of the LSHF, this site extends over an area
~5m wide×~10m long. It includes a diffuse flow zone and several small (<1m) high-temperature chimney
structures. We identified at least three high-temperature vents, in addition to an extensive diffuse flow
(observations from the yearly 2009 through 2012 cruises). We continuously monitored outflow temperatures
from 2010 to 2012.

2.9. White Castle (WC)

Located in the SW part of the LSHF, this site extends over an area of 5m× 6m. We identified four high-
temperature vents on the main active ridge, in addition to limited diffuse flow on both flanks, which are
mainly composed of remobilized hydrothermal deposits (observations from the yearly 2009 through 2012
cruises). We monitored outflow temperatures between 2009–2010 and 2011–2012.

2.10. Benchmark C (BC)

This site corresponds to the ENE border of the lava lake, where a pressure gauge is installed over a benchmark.
Temperature is measured in association with a geomicrobiological colonizator. There are no bacterial mats
associated with hydrothermal activity at this site, and these data are used as a reference.

3. Instrumentation, Deployment Strategy, and Data Records
3.1. Instrumentation for Temperature Monitoring

We used four sets of instruments to monitor hydrothermal outflow temperature throughout the LSHF: MISO
high-temperature probes, MISO low-temperature probes, NKE S2T6000 probes, and Starmon probes
(Figure 2). The instrument-independent consistency of temperature measurements (i.e., repeatability) was
assured by both factory and laboratory calibrations.
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WHOI MISO high-temperature probes (HW) consist of a titanium body (~10 cm diameter × ~20 cm long),
equipped with a ~75 cm-long titanium (Ti) rod. The housing hosts two Omega data loggers connected to a
J-Type thermocouple located at the rod tip [Fornari et al., 1994, 1996, 1998]. These instruments can record
temperatures of up to 450°C with a precision and resolution of ±1.1°C and 0.21°C, respectively. The sampling
interval was typically 24min for our yearlong records. Each probe contained two loggers for redundancy,
with the sampling times offset by 12min to provide complementary temperature records (see Table 2).

10/14/2010(a) South Crystal (b) South Crystal 07/03/2011

(d) South Crystal 07/03/2011(c) South Crystal 10/14/2010

(f ) Cypress 14/10/2010(e) Montsegur 22/09/2009

Figure 2. ROV dive video frames of probes deployed in 2010 (MoMARSAT10, left) and recovered in 2011 (MoMARSAT11, right)
for Figures 2a–2d. (a) Example of high-temperature Woods Hole MISO probe deployment in black smoker at the South Crystal
sulfide mound. (b) Video frame of the recovery of this high-temperature probe. Note that the vent orifice where HT probe was
installed in 2010 has grown a 1m chimneywhile probe is still recording fluid temperatures (see record in Figure 3). (c) Example
of low-temperature Woods Hole probe deployment in diffuse crack hosted by South Crystal crack network. (d) Video frame of
the recovery of this low-temperature probe. Note that the LT probe is still at the same place as in 2010 during its deployment.
(e) Example of a low-temperature Starmon probe (associated to a colonizer) deployment on diffuse outflow at the Montsegur
site in 2009. (f) Other example of a low-temperature Starmon probe (associated to a colonizer) deployment on diffuse outflow
at the Cypress site in 2010. In Figures 2c, 2d, 2e, and 2f, white bacterial mats and mussels are visible in 2010 and are still
present in 2011, indicating continuous outflow through a crack (c and d), and diffuse flow through the seafloor and bac-
terial mat (e and f), as indicated by the corresponding temperature records (Figure 3).
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WHOI MISO low-temperature minilog probes
(LW) have a smaller Ti housing (~2.5 cm
diameter × ~11 cm long) and a ~13 cm Ti rod.
These instruments are equipped with a single
data logger connected to a thermistor located
at the rod tip. These low-temperature instruments
can record temperatures of up to 125°C with a
precision and a resolution of ±0.22°C and 0.025°C,
respectively. The sampling frequency was set to
15min for instruments deployed in 2009 and
24min for those deployed in 2010–2011 (Table 2).

NKE S2T6000 high-temperature probes (HN)
consist of a cylindrical Ti housing (12.8 cm length
and 2.3 cm in diameter) and a 40 cm long rod. The
data logger is connected to a P-T thermistor at
the rod tip and can record temperatures ranging
between 0°C and 450°C with a precision and a
resolution of ±0.5°C (at less than 100°C) and 0.1°C,
respectively. Sampling intervals were set at either
90 s or 3min for the yearlong records, and at 10 s
for the weeklong records (see Table 2).

Starmon low-temperature sensors (LS), which
were designed to measure ambient bottom water
temperature in the proximity of diffuse outflow,
have a cylindrical (2.5 cm diameter×10.8 cm long)
Ti housing with a thermistor located at the tip of a
1.9 cm long rod. These sensors were installed
within microbiological colonizers placed on
bacterial mats. The probes are equipped with one
data logger, recording temperature at a sampling
rate of 3min and over a temperature range of 0°C
to 100°C with a precision and a resolution of
±0.05°C (at less than 40°C) and 0.013°C, respectively.

3.2. Bottom Pressure and Current Monitoring

The pressure and near-bottom current (speed
and direction) were monitored during the
deployment of the temperature sensors. A
Seabird 53BPR pressure gauge was installed, as
part of a larger seafloor geodesy experiment to
monitor vertical deformation at Lucky Strike
volcano [Ballu et al., 2009], on the lava lake near
the SEAMON-W EMSO (European
Multidisciplinary Subsea Observatory) observatory
node (Figure 1a). The site is near the foot of the
western fault scarp bounding the axial graben.
The sampling interval was 30 s for the entire
observation period (2009–2012), and the
accuracy and repeatability are, respectively,
0.01% and 0.005% of full scale (i.e., 4000m).

A NORTEK Aquadopp current meter was deployed
14m above the seafloor at a site ~60m E of the TE
site in 2009–2010, ~450m SSE of the TE site inTa
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2010–2011, and ~900m SSE of the TE site in 2011–2012 (Figure 1a). Sampling intervals for the 3 years were set at
10, 3, and 6min, respectively. Nominal velocity uncertainties are 1.4 cm/s in the vertical direction and 0.9 cm/s for
the horizontal direction. Both pressure and current measurements instruments are serviced yearly for calibration.

3.3. Monitoring Strategy

We obtained exit-fluid time series data from 54 probes between September 2009 and July 2012, with record
lengths varying from several weeks to about a year (Tables 1 and 2). Temperature sensors were deployed and
recovered using the ROV Victor during annual cruises: Bathyluck’09, MoMARSAT’10, MoMARSAT’11, and
MoMARSAT’12 (Figure 2). We targeted high-temperature vents (>190°C and up to ~350°C), cracks discharging
lower-temperature, shimmering fluids (<100°C), and bacterial mats associated with low-temperature diffuse
fluids (typically <10°C). Fifteen additional instruments were deployed but failed to return data because they
were either burned by high-temperature fluids or lost due to chimney collapse or growth of hydrothermal
deposits. Successful deployments yielding data and reported in Tables 1 and 2 are used in this study and
represent a combined total of ~36.5 years of recording. Four sites (TE, MS, SC, CR) were instrumented for all
3 years of the monitoring experiment, five sites (IS, SI, CY, WC, BC) were instrumented for 2 years, and one site
(CI) was instrumented for only the year 2011–2012 (see Table 1 for details). The raw temperature data are
publicly available (doi:10.1594/PANGAEA.820343).

We conducted a nested monitoring approach in order to investigate variability across a spectrum of length
scales (field scale, site to site, and site scale) and to provide redundancy in case of instrument failure or loss. At
high-temperature vents, the HW and HN sensors were deployed with the sensor tip placed up to 10–15 cm
inside the vent orifice in order to minimize variability associated with turbulent mixing of hydrothermal fluids
with ambient seawater (Figures 2a and 2b). In lower temperature outflows, the tips of the LW sensors were
placed within cracks discharging shimmering water (Figures 2c and 2d). At themicrobial mat sites (TE, MS, BC,
CY), the tips of the LS were placed in shimmering water at the surface of the mats (Figures 2e and 2f).
Whenever possible, probes were redeployed in the same orifice or crack at each measurement site during the
annual site visits (see Table 2 for details).

Instrument installation and temperature record interpretation are coupled with seafloor images derived from
photomosaics [Barreyre et al., 2012; Mittelstaedt et al., 2012], allowing us to better understand the spatial
relationships among temperature records, and with the overall fluid outflow throughout the site (Figure 1b).
Seafloor imagery provides a complete view of actively venting areas, which allow us to determine the
association of temperature records with specific venting structures to properly place our observations at the
scale of the site, and to evaluate their representativeness.

3.4. Data Preprocessing and Time Series

The autonomous clocks for each probe were synchronized to GPS time before deployment and after recovery,
and the timing of each temperature record was corrected assuming a linear drift. The average clock drift for HW
probes was ~15min over 1 year, which is comparable to one sampling interval. Each temperature record was
visually inspected and trimmed to remove data acquired after the probewas dislodged from its deployment site.
In most cases this corresponds to recovery by the ROV, but in some cases the probes became dislodged (e.g., fell
out of the chimney or crack) prior to recovery, as verified by ROV video. A few probes became cemented within
thewall of hydrothermal structures or chimneys, and these records display a gradual decay, likely associatedwith
the migration of the hydrothermal conduit (i.e., flow) away from the probe tip. In such cases we terminated the
record prior to the gradual decrease in temperature. In this paper we only present and analyze those portions of
the temperature records that faithfully measured exit-fluid temperatures for a period of 10 days or more.

The bottom pressure and current-meter records were handled in a similar fashion to the exit-fluid records. The
timing was corrected assuming a linear clock drift during the duration of deployments, and the records were
inspected for spurious data. While the pressure sensor returned 3 years of continuous data (with yearly services),
the current meter returned a complete record for the first year (2009–2010) and partial records (~110days) for
the second and third years of monitoring (2010–2011 and 2011–2012), due to data logging issues.

The ensemble set of the 54 temperature records, the bottom pressure record, and the current-meter data
used in our analyses are shown in Figure 3. The number of temperature records available for a given time
window varies depending on yearly instrumentation strategy, logistical deployment issues, loss of sensors,
and truncation of records (see Table 2).
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4. Results

The temperature records we acquired from the LSHF can be divided into three categories corresponding to
the average temperature and the hydrogeological setting (Figures 3 and 4): (1) High-temperature records
acquired from chimneys of focused discharge display average temperatures >195°C; (2) Intermediate-
temperature records acquired from cracks discharging shimmering fluids at average temperatures ranging
between ~10°C and 100°C; and (3) Low-temperature records acquired from diffuse discharge zones
populated by microbial mats, with average temperatures <10°C (Table 2 and Figures 4a and 4b).
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Figure 4c illustrates differences in behavior for selected temperature records in each of these three categories.
High-temperature (HT) records are overall stable and display a low variability; one out of 22 high-temperature
records longer than 100days displays a standard deviation >4°C, while 14 display instead standard deviations
of <2°C (<1% of the average temperature). These records typically exhibit unimodal temperature histograms
with small (a few °C) deviations (Figure 4c). Intermediate-temperature (IT) records display more complex
patterns, with higher standard deviations overall (with a maximum of >30°C), and episodic changes in
discharge temperature. This is illustrated in Figure 4c (middle panel), where changes in both the average
temperature and the standard deviation appear, yielding a multimodal histogram. Low-temperature (LT)
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records display average temperatures that are close to that of ambient seawater with low-amplitude (standard
deviations of<1°C) continuous variability. While the absolute value of temperature deviations is lower than that
observed for intermediate and high-temperature records, they represent up to 25% of the average temperature,
compared to <3% for the high-temperature records. LT temperature histograms are unimodal and typically
asymmetric (skewed to lower temperatures) (Figure 4c). As described below, these temperature records
provide information on the temporal evolution of the LSHF at time scale of months to years (section 4.1) and
both episodic and periodic variability on shorter time scales (sections 4.2 and 4.3, respectively).

4.1. Long-Term Evolution of Effluent Temperature

Table 2 reports the long-term temperature trends for all the records used in this study estimated using least
squares linear regression. For the 38 records longer than 100 days, the annual trends vary between �65 and
+41°C/yr, although most of them (20 out of 38) display trends less than 3°C/yr in magnitude. For the high-
temperature records, the range in trends, shown in Figure 5a, is significantly reduced (�16 to +8°C/yr, 13 out
22 records with trends <3°C/yr in magnitude), with an average of �0.62°C/yr (Figure 5a and Table 2). We
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find that the magnitude and even the sign of the temperature trends can vary for records obtained from
individual vent sites. For example, the temperature record acquired from vent #1 at Montsegur in 2009
exhibits a positive trend of 0.96°C/yr, whereas the record acquired from vent #2, located 6m away (Figure 1b),
exhibits a negative trend of�0.92°C/yr. Furthermore, vent #1 in Montsegur (Figure 1b, MS), displayed average
temperatures and trends for each of the deployments of 312.35°C and 0.9°C/yr in 2009–2010, 310.88°C and 6°
C/yr in 2010–2011, and 312.30°C and 7°C/yr in 2011–2012, respectively (Table 2).

Given the variability in long-term trends at individual sites and throughout the whole field, we have generated a
composite temperature record at the scale of the LSHF for each of the deployments. We have selected the HT
records from nine studied sites with durations of >100days (Table 2). We have discarded intermediate- and
low-temperature records, which exhibit complex patterns and changes in outflow regime (e.g., Figure 4c). To
generate this composite record, we applied a 14day running median filter to each record to remove short-term
perturbations. We then removed the mean from each smoothed record. Finally, we average these resulting
records to obtain a zero-mean composite temperature record and the corresponding standard deviation
(Figure 5b). We note temporal variations in the number of sensors contributing to these composite records
(Figure 5c), particularly during recovery and re-deployment. We consider that robust and meaningful estimates
of temperature trends can only be obtained fromcomposite records derived from six instruments ormore (black
line, Figure 5b, black circles, Figure 5c); the remaining records (thick dark gray line in Figures 5b and 5c) are not
considered in this analysis. Note that some of the temporal variations of the composite record clearly correspond
to changes in the number of instruments (e.g., temperature changes around days 360 and 410 in Figure 5a).

The trends obtained for 2009–2010 and 2011–2012 are 0.1 and 0.7°C/yr, and within the observed standard
deviation of <2°C (Figure 5b). These values are comparable to the average of individual trends reported in
Table 2, which yield �1.6 and 0.6°C/yr for 2009–2010 and 2010–2011 respectively. While it is not possible to
derive a continuous composite record for the 3 years of monitoring, the average of trends from individual HT
records is <1°C/yr (Figure 5a).

Temporal variability in temperature at longer time scales (up to two decades) can only be derived from
historical, discrete temperature measurements from different sites throughout the LS hydrothermal field. The
highest temperatures measured at any given year for each of the sites reported in the literature or measured
during recent cruises to the LSHF are given in Table 3. We have excluded anomalously low values, with
temperatures of several tens to more than a hundred degrees below historical values, and that we attribute to

Table 3. In Situ Measurements of High-Temperature Outflow at Selected Hydrothermal Vents (see Ondréas et al. [2009]
and Barreyre et al. [2012] for Sites Locations) From the Lucky Strike Field (Temperatures in °C)a

1993b 1994c 1996d 1997e 2008fg 2009g 2010g 2011g 2012g Average± Stdh

Tour Eiffel 325 324 323 324 184g 317 296 325 322 322.8±2.8
Sintra 212 215 222 176 200f 196/217 – 209 203 211.1±7.8
Y3 333 324 328 – 319f 321 – 325 326 325.1±4.6
Statue of Liberty 202 185 – – – Extinct –
Crystal – – 281 – – 327 327 335 – 329.7±4.6
M.7/Cimendef 302 310 – 306 – – – 308CI – 306.5±3.4
South Crystal – – – – – 340 – 342 340 340.7±1.1
White Castle – – – – – 310 313 317 319 314.7±4.0
Isabel – 175 – – – – – 305.6 304 304.8±1.1
Montsegur 303i 310j 318j 294j – 296k 306k 316k 322k 308.1±10.2

aNumbers in italics correspond to values significantly lower than the average, and that we attribute to measurements
within the mixing zone of seawater and hydrothermal fluids.

bFAZAR cruise [Langmuir et al., 1997].
cDIVA 1 cruise [Charlou et al., 2000].
dLUSTRE cruise [Von Damm et al., 1998].
eFlores cruise [Charlou et al., 2000; Donval et al., 1997].
fKNOX18RR cruise (data fromWHOI Deep Submergence database, JASON VirtualVan available at http://4dgeo.whoi.

edu/jason/).
gThis study, from cruises MoMAR (2008), Bathyluck (2009), MoMARSAT (2010, 2011, and 2012).
hAverage and standard deviation do not include the temperatures in italics, which are considered anomalously low.

i, j, k: Sites at Montsegur: M6 (i), M4(j), and vents measured during MoMAR cruise, reported as Montsegur (k) and that may
be distinct from M4 and M6, see Barreyre et al. [2012].
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temperature measurements performed within the mixing zone and thus cooler than the high-temperature
fluids. At sites monitored for ~20 years (TE, SIN, Y3, SL, CI, and MS), temperatures are very stable and display
no apparent or significant decline or increase over time (trends in magnitude <1°C/yr). In the case of
Montsegur (MS), this temporal evolution may not be well constrained, as there is ambiguity regarding sites of
measurements (M4/U.S.4 and M6/U.S.6 vents, both at Montsegur mounds, see Langmuir et al. [1997]; Von
Damm et al. [1998]; Barreyre et al. [2012]). For sites inspected since 2009 and with temperature measurements
in the same vent (SC and WC), the temperatures are stable within <5°C of the mean.

4.2. Episodic Variability: Stochasticity of Abrupt Temperature Excursions
4.2.1. High Temperature
Asmentioned above, some of the HT records andmost of the IT records exhibit abrupt, episodic, temperature
excursions. Episodic perturbations observed in HT records consist primarily of abrupt temperature drops
followed by a gradual recovery to the original exit temperature. Figure 6a shows four representative
examples from the set of 52 episodic events observed in the HT records, with temperature drops (DT) ranging
from 3 to ~160°C from the initial temperature T0. We characterize the events by identifying the time required
to reach the minimum temperature (t1) and then the time required for the temperature to recover 95% of
temperature drop DT (t2). The HT episodic events have typical durations of a few hours (with a few lasting up
to ~2–3 days) with t2/t1 typically<20 (70% of t2/t1<10, Figures 6b and 6c). We do not observe any correlation
between the magnitude of the temperature drop with neither the event duration nor t2/t1.

The HT records also display a few temperature increases, as shown in Figure 6d for the Montsegur site in
the 2009–2010 deployment. These events are markedly different from the cooling events, and displaying
temperature increases of up to 10°C spanning over 4–6 days. In contrast, the temperature drop is sudden and
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Figure 6. (a) Four selected examples of cooling events, with the Y axis showing the temperature minus the temperature
(T0) before the drop. (b) Plot showing the ratio between the time of recovery to the 95% of the temperature drop (t2)
and the time of the temperature drop (t1) and the corresponding drop of temperature (DT). (c) Corresponding histogram of
the ratio t2/t1. (d) The two warming events that have been observed in HT records. (e, f, g) Three different panels zooms
corresponding to different examples of variability into IT records.
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spans over ~1day, with the temperature returning to that at the start of the event. Owing to the scarce number
of such events, it is not possible to statistically characterize them.
4.2.2. Intermediate Temperature
In Figures 6e, 6f, and 6g, we show examples of 40 day-long IT records displaying both warming and cooling
events. Exit-fluid temperatures in the IT records exhibit rapid increases and decreases of up to several tens of
°C but with no subsequent recovery to pre-event levels. In Figure 6e, following a sharp drop of ~80°C (black
line), there is a succession of warming events with excursions of several tens of degrees and of a shape that is
similar to that observed in the HT records (Figure 6d). Figure 6f shows in contrast a warming event followed
up by temperature variations spanning over ~20°C, where no clear baseline can be defined. Finally, Figure 6g,
a third type of variability in IT records is characterized by recurrent temperature peaks above background
seawater temperature (baseline).
4.2.3. Site and Inter-Site Variability and Link With Microseismicity
We illustrate the lack of intra- and inter-sites correlation in the episodic temperature perturbations by showing a
~25day interval of records from the Montsegur (Figure 7a) and Tour Eiffel sites (Figure 7b). Although the
records from each site were acquired from closely spaced sensors at different outflows, there is no relationship
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between the observed variations in discharge temperature. We note that the numerous temperature drops in
HT record HN29016b (TE, Figure 7b) are not correlated with any events in the other HT and IT records acquired
nearby (horizontal distances of<10m) at this site. The HT records at the MS site (Figure 7a) are very stable and
lack any temperature excursions during this period of time that may be correlated with those observed at TE.

Figure 8 illustrates the only instance where we observed correlation of temperature events between two
records, one at its summital vent, and the other at a vent a fewmeters below on the flank of the same chimney
at Sintra (Figures 8a and 8b). These records show a periodic, tidal variability of ~0.5–1°C. Over-imposed,
there are cooling and warming events that are anti-correlated, and with excursions of up to ~5°C and ~2°C
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in amplitude, respectively (Figure 8c). A more
pronounced cooling of up to 10°C is observed in
both temperature records at day ~1215. This more
pronounced cooling event likely represents a
perturbation taking place below the two sensors
and affecting both of them.

We also document an apparent lack of correlation
between temperature events and microseismicity
recorded by Ocean Bottom Seismometer (OBS)
network deployed contemporaneously [Crawford
et al., 2013]. Figure 7 shows the origin time for the
eight largest microearthquakes (Mw > �1) observed
in the study area above the melt lens for this time
window. None of the microearthquakes affected
discharge temperatures at the measurement sites,
even taking into account a delay response to the
temperature records (4–5days delay following a
seismic event at the EPR [Sohn et al., 1998]). Several
HT records lack any temperature excursions and
therefore demonstrate that the observed seismicity
did not impact the outflow at these sites (Figure 7).
Thus, we find that the episodic temperature
variations in the HT and IT records are uncorrelated
between measurement sites at field and inter-site
length scales, and they are also uncorrelated with
microearthquake activity underlying LSHF.

4.3. Periodic Variability at Tidal Frequencies

All of the temperature records exhibit periodic
variability at tidal frequencies as shown in selected
HT and IT time series data and spectral estimates
(Figures 9 and 10). While the full range of tidal
frequencies (fortnightly, diurnal, semi-diurnal, etc.)
are found in the pressure and current records, the
temperature records only exhibit variability at semi-
diurnal frequencies (Figure 9b). We also note the
lack of power in the inertial or 4 cpd bands in both
current and temperature records. The detailed
frequency response at semi-diurnal periods is
shown in Figure 10, including the principal lunar
semi-diurnal (M2), the major lunar elliptic (N2), the
principal solar (S2), and the luni-solar declination

(K2) frequencies. The four main semi-diurnal tidal frequencies are observed in the HT records (M2, S2, N2, and
K2) and are also visible in the IT records although with an overall lower power (Figure 10). In contrast, both S2
and K2 are absent from LTand current records. The amplitude of temperature variations at tidal frequencies is
<0.5°C for the HT records (Figure 9a) and somewhat larger for the LT and IT records. We note that similar
semi-diurnal temperature oscillations have been previously reported for IT and LT records from other
hydrothermal fields (MEF at JdFR [Tivey et al., 2002]; 9°50’N at EPR [Scheirer et al., 2006]; TAG at MAR [Sohn,
2007a, 2007b]), and for HT records from an additional site (MEF at JdFR, [Larson et al., 2007, 2009]).

We evaluated the relationship between tidal processes (pressure and current variations) and the temperature
records by conducting cross-spectral analyses using the multi-taper method [Thomson, 1982]. Coherent
variability between tidal processes (pressure and current) and the exit-fluid temperature records is restricted
to the semi-diurnal band. For tidal pressure, the highest levels of coherency are observed with HT records at
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the M2 frequency, although coherency with HT records is also observed at the N2, S2, and K2 tidal frequencies
(Figure 11a, left). IT records show significantly lower coherency at the M2 frequency than HT records and lack
coherency at the S2 and K2 tidal frequencies (Figure 11a, left). For tidal currents, the coherence for the IT
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records is similar to that with the pressure and lack coherency at the N2 constituent (Figure 11a, right). HT
records exhibit lower coherency with currents than with pressure but display coherency peaks at the N2, S2,
and K2 constituents (Figure 11a, right).

Figure 11b reports the set of coherency estimates at the M2 frequency between discharge temperature and
both tidal pressure and current for different sites throughout the LSHF for each of the three annual deployment
intervals (coherency estimates for 2010–2011 and 2011–2012 limited to ~110days of data owing to logging
issues, as described in section 3.4). These data demonstrate that semi-diurnal variability in the HT records is in all
cases significantly more coherent with tidal pressure than tidal current.

By contrast, the results for the ITand LT records are less systematic. Coherency levels for IT records are consistently
lower than those observed for HT records for both pressure and currents, with some records showing higher
coherency with pressure, others with currents, and the remaining displaying indistinguishable coherency.

We only have coherency estimates for four LT temperature records (installed over algal mats, Figures 2e and 2f):
two from the 2009–2010 deployments at MS and BC, and two from the 2010–2011 deployments at TE and CY.
The LT records fromMS and BC in 2009 are clearlymore coherentwith tidal currents compared to pressure, while
the LT records from TE and CY in 2010 are equally or more coherent with pressure. We consider the 2009
estimates to bemore robust because they are derived from a full year of data (compared to ~110days of data for
2010), but it is clear that we do not have enough records (4) to establish systematic LT behavior at tidal periods.

5. Discussion

Our results provide new information regarding the impact of tidal processes on exit-fluid temperatures at
deep-sea vent fields, and they also provide new constraints on the nature of episodic excursions observed in
the temperature records. We discuss these topics and the overall implications for hydrothermal circulation
and discharge at the LSHF, below.

5.1. Temperature Records and the Subseafloor Circulation System at Lucky Strike

Hydrothermal circulation in young oceanic crust at MORs is typically conceptualized as consisting of a
primary system, which extracts heat from a deep-seated, likely magmatic heat source (i.e., AMC) (Figure 12a),

(a) (b)

Figure 12. (a) Conceptual model of the Lucky Strike hydrothermal plumbing system structure at depth, with the upwelling
of a single plume above the AMC that is focused along high-porosity areas associated with the main faults bounding axial
graben. Figure 12b is a zoom at the hydrothermal edifice (black box on Figure 12a), showing our interpretation of the origin
of the LT, IT, and HT regimes. With HT outflow directly fed by the high-temperature upflow zone (here represented as an
anastomosing, interconnected series of conduits), IT outflow fed from leakage from the HT pipe and mixed with cold water
into the porous matrix (i.e., hypothesis (1)) and LT outflow fed from either hypothesis (1) or conductively heated bottom
water drawn into the seafloor as part of the secondary circulation system (i.e., hypothesis (2)).
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and a secondary circulation system driven by conductive heat transfer across impermeable (e.g., mineralized)
conduit walls from hot fluid in the primary system to cold pore fluids in the shallow subsurface [e.g., Lister,
1980; Cann and Strens, 1989; Lowell et al., 1995, 2007; Van Dover, 2000; 2007; Germanovich et al., 2011].
A model of hydrothermal circulation and discharge at the seafloor for the Lucky Strike hydrothermal field,
based on the temperature records analyzed here and prior work on photomosaics, is illustrated on
Figure 12. Analysis of seafloor mosaics has shown that hydrothermal outflow is clustered into two major
zones, east and west of LSHF (Figure 12a) [Barreyre et al., 2012]. Based on the association of individual
outflow zones to fault scarps, this clustering of sites is consistent with the axial graben faults acting as
permeable pathways for ascending fluids [Barreyre et al., 2012]. Primary hydrothermal fluids in a mature
hydrothermal system such as Lucky Strike are believed to rise essentially unmixed and nearly adiabatically
from a water-rock reaction zone above the roof of the magmatic heat source to the shallow crust [Bischoff
and Rosenbauer, 1989;Wilcock, 1998]. Some of these fluids may pass through the shallow, permeable crust
along a zone of anastomosing conduits or a single one that is isolated from the host rock, discharging at
the seafloor at high temperatures with essentially no mixing. The rest of the fluids may leak into fractures
and porosity within the rock hosting the plumbing system of the hydrothermal field. This geometry may
promote mixing with cold pore fluids (seawater) prior to discharge. Based on the overall stability of some of
the HT records acquired at the LSHF (Figure 4c, top, and Table 2), we attribute these to the unmixed,
primary fluids. Mixing in the upper crust is likely to lead not only to lower outflow temperatures but also to
a more unstable and variable flow pattern, consistent with the characteristics of the IT records. Fluid
temperatures in the IT records may thus be controlled by the mixing proportions of primary hydrothermal
fluid and cold fluid (either pore fluids or seawater). The proportion of hydrothermal end-member fluid may
range from ~30% to<5% (assuming temperatures of ~350°C and ~4°C for hydrothermal end-member fluid
and seawater, respectively), consistent with prior estimates of <10% of hydrothermal end-members in the
area [Cooper et al., 2000].

The LT records, acquired over bacterial mats, display tidal modulated temperature variations associated with the
interaction between currents and the seepage of warm fluids through the seafloor, thus strongly controlling the
environmental condition where bacterial mats develop [e.g., Crépeau et al., 2011]. These temperature variations
are associated with the evolution of the thermal boundary layer formed by these warmer fluids, which can have
two different origins. The warm fluids could representmixing of primary, high-temperature fluids with cold pore
fluids due to near-surface leaks in primary conduits (hypothesis (1) in Figure 12b). Alternatively, they could
represent conductively heated bottomwater drawn into the seafloor as part of the secondary circulation system
(hypothesis (2) in Figure 12b) [Lowell et al., 2007, 2013; Cooper et al., 2000].

5.2. Tidal Modulation of Exit-Fluid Temperature

All of the temperature records that we acquired at the LSHF exhibit variability at tidal frequencies and lunar
semi-diurnal periods, in particular. This is consistent with previous results from other deep-sea vent fields
[e.g., Tivey et al., 2002; Scheirer et al., 2006; Sohn, 2007a; Larson et al., 2007, 2009]. In addition, and in contrast
with these previous studies, we contemporaneously measured bottom pressure, bottom currents, and
discharge temperatures, allowing us to distinguish between the competing effects of tidal pressure and
current as forcing functions for the temperature records.

Our cross-spectral analyses demonstrate that there are systematic relationships between tidal forcing and
exit-fluid temperature that vary according to the hydrogeology of the measurement site (Figure 11). The
most striking result is the systematic relationship between tidal pressure and exit-fluid temperature in the HT
records. All of the HT records are significantly more coherent with tidal pressure than tidal currents at semi-
diurnal frequencies, providing strong evidence that the poroelastic effects of tidal loading modulate
discharge temperatures, and therefore vertical flow velocities [Jupp and Schultz, 2004; Crone and Wilcock,
2005]. Our cross-spectral analyses represent the first time that this relationship has been unequivocally
established for a deep-sea vent field.

In contrast to the HT records, the IT and LT records exhibit more complex behaviors at tidal periods, with
overall lower coherencies between discharge temperature and tidal forcing and no systematic behavior
relative to tidal pressure vs. current. The IT records exhibit a transitional type behavior, with some correlating
more strongly with tidal pressure, others correlating more strongly with tidal current, and the remaining
displaying a control by both tidal currents and pressures. Although the data available from the LT sites is limited,
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the cross-spectral analyses suggest that these records are most strongly correlated with tidal currents. More
data are clearly needed to test this assertion, but the LT records clearly do not respond to tidal pressure in the
same systematic way as the HT records.

We interpret the cross-spectral results in terms of the hydrogeology of themeasurement sites and the presence
of two end-member fluids. If tidal pressure affects vertical flow velocities and thus exit-fluid temperatures in the
rising limb of the primary circulation system as hypothesized and modeled previously [Jupp and Schultz, 2004;
Crone and Wilcock, 2005], then the hot hydrothermal end-member (that does not mix during ascent to the
seafloor) will exhibit discharge temperatures that correlate most strongly with tidal pressure (i.e., the HT
records). By contrast, the temperature of ambient seawater (the cold end-member, and therefore of the
boundary layer) in the deep sea is primarily controlled by currents. Thus, the LTand IT records can be sensitive to
both tidal pressure and current, as they measure fluids discharging with variable mass fractions of the ambient
seawater end-member, or modify the efficiency of conductive heating.

Based on limited existing studies, the observed patterns of coherence between temperature and both
pressure and current may to some degree be specific to the LSHF because tidal loading and bottom currents
can have very different signatures in other oceanographic settings. For example, on the Cleft segment of the
Juan de Fuca Ridge, Tivey et al. [2002] report that diffuse outflow is modulated by bottom currents, but the
period of variability corresponded to inertial, rather than tidal, currents. This suggests that the local
hydrography controlling tides and associated currents will play a major role on the temporal variability of
diffuse outflow. Furthermore, no tidal signals were observed in the high-temperature records from this same
Cleft site [Tivey et al., 2002], which could reflect differences in the amplitude of tidal forcing, in subsurface
hydrogeology, crustal permeability, or any combination of these.

5.3. Origin of Episodic Variability

The sudden, episodic changes in temperature observed both in HT and IT records are likely related to very
shallow processes that modify the overall mass fraction of the cold water end-member at a given
measurement site. The primary argument for shallow perturbation processes is the lack of correlation
between episodic changes observed both across the field and between closely spaced probes at different
vents within a given site (Figure 7). Second, there is no correlation with deep-seated processes such as
microearthquakes occurring near the inferred reaction zone, above the AMC roof [Crawford et al., 2013]. Owing
to their small magnitude (typically Mw<1), the microearthquake rupture length is likely to be very small
(<10m [Tomic et al., 2009]) and therefore insufficient to modify circulation at the scale of the LSHF. We
would expect a field-wide perturbation to occur only if larger magnitude events, or swarms, occurred within
the circulation system. The only temperature records showing event correlations were acquired in the same
chimney (Sintra, Figure 8). The anti-correlated temperature excursions are likely linked to perturbation of flow
within the chimney itself and therefore recorded by both sensors. We therefore conclude that these
perturbations are the result of highly localized processes near the measurement site, at length scales smaller
than individual hydrothermal sites (e.g., at the scale of individual outflow conduits).

At the high-temperature sites, the episodic perturbations are transient, such that the discharge temperature
eventually returns to pre-drop levels (Figure 6a) over a period of up to a few days (<10 days for most of the
events identified). The episodic changes at the high-temperature sites are almost exclusively negative (i.e.,
temperatures drop) because the stable temperatures represent essentially unmixed primary fluids, such that
an increase in the cold-water end-member causes temperatures to drop. These changes are likely due to
mineralization and/or small-scale changes in chimney morphology (e.g., partial collapse, small-scale cracking),
suddenly modifying the hydrothermal outflow. For example, if a chimney partially collapses the fluid flowmay
be temporarily perturbed resulting in a mixing with seawater and a related temperature drop. Subsequent
recovery of temperature could be achieved by mineralization and rebuilding of the perturbed area or broken
chimneys, restoring the unmixed high-temperature fluid flow regime.

Episodic temperature perturbations in the IT records are different in that they can be either positive or negative,
are muchmore frequent than in HT records, and the temperature does not recover to pre-perturbation levels.
The episodic perturbations are essentially step functions that change the mean discharge temperature until
the next episodic event and that are superimposed on higher-frequency variability at time scales of a few
minutes to few hours.
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If the discharge temperature in IT records is controlled by themixing of hot, primary, hydrothermal fluids with
colder seawater, as we propose, then these sudden temperature changes most likely represent a change in
the mixing proportions of the two end-member fluids. As with the HT perturbations, the IT perturbations are
not correlated among probes within a single site or across sites, suggesting again that the perturbations in
hydrothermal outflow are highly localized and in the shallowest part of the system. The higher-frequency
variability can therefore correspond to turbulent mixing, either arising from turbulent flow and therefore
inhomogeneous mixing in the shallowest subseafloor, or to turbulence at the seafloor and within the
boundary layer, resulting in seawater mixing with hydrothermal fluids.

The lack of episodic variability in the LT records can be explained largely by the fact that there is always a high
proportion of cold bottom water in these measurements and that they are not deployed in mineralized cracks
or chimneys that can change morphology over short periods of time. The lack of sudden perturbations may
also support interpretation of the LT records as representing conductively heated fluids in the secondary
circulation system, since conductive heating will not be sensitive to small details in the permeability structure.

5.4. Long-Term Variation of Discharge Temperatures

The ensemble set of HT temperature records over a 3 year period acquired from the Lucky Strike hydrothermal
field suggest that the average outflow temperature associated with primary hydrothermal circulation is overall
stable. Measured trends from individual records display variability even at a single site but are typically<3°C/yr
(Table 2). These gradients are consistent with those inferred from the composite records for each of the
deployments (Figure 5), which display gradients of 0.1 and 0.7°C for the 2009–2010 and 2011–2012
deployments. These values can be considered as reflecting a stable temperature, as the standard deviation of
the composite records is large relative to the gradients (~1.5°C, Figure 5). This stability is also supported by the
discrete temperature measurements at individual vents during the last ~20 years, reported in Table 3. Of all the
vents monitoring since the mid-1990s, all are stable except for Statue of Liberty, which became inactive
sometime between 1996 and 2009 (Table 3) [Barreyre et al., 2012]. From both the temperature records and the
historical temperature measurements, we conclude that the temperature of fluid discharge associated with the
primary hydrothermal circulation at Lucky Strike has been stable at time scales from 3 to 20 years.

Optical photomosaics throughout the Lucky Strike hydrothermal field [Escartín et al., 2008; Garcia et al., 2011;
Barreyre et al., 2012] document a slight decrease of diffuse hydrothermal outflow at time scales of 1–10years.
This decrease is indicated by a decline in the surface area of diffuse discharge [Barreyre et al., 2012] at numerous
sites throughout LSHF. The overall constant outflow temperature (this work) and the apparent decrease in the
diffuse hydrothermal outflow [Barreyre et al., 2012] can be explained by an overall mild decrease in themass flux
and associated heat flux, (e.g., associated with a focusing of flow), which does not impact the temperature of
the end-member hydrothermal fluid. Other observations supporting this decrease are the extinction of certain
vents over time (e.g., Statue of Liberty [Langmuir et al., 1997; Barreyre et al., 2012]) and visual reports of overall
decrease in activity, particularly at the diffuse outflow sites (2009 through 2012 yearly cruises to LHSF). Lacking
systematic and extensive flowmeter measurements over time, we are unable to independently verify these
apparent mass and heat fluxes decrease at the ~20 to 3 year time scales investigated.

6. Conclusions

1. We identify three distinct hydrothermal outflow regimes: (1) HT (>~200°C) sites representing essentially
unmixed, primary, hydrothermal fluids, (2) IT (10–100°C) sites representing variable mixing proportions
of primary fluids with cold seawater within permeable shallow crust, and (c) LT (<10°C) sites representing
the thermal boundary layer at the seafloor formed by diffuse discharge of warm fluids interacting with
cold bottom water.

2. Cross-spectral analyses reveal that HT discharge is modulated by tidal pressure rather than current, while
the low-temperature fluids are influenced by tidal currents instead. IT discharge is variably modulated by
both pressure and current, consistent with higher mass fractions of the cold seawater end-member.

3. Episodic perturbations observed in HTand IT records are generated by shallow, highly localized processes
at the measurement sites that affect the mixing proportions of the end-member fluids.

4. The average temperature of the HT records, which are believed to represent end-member fluids, vary
(both positive and negative) over annual time-scales, but the average temperature of the LSHF, as a whole,
appears to have been stable over the 3 year observation period.
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