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Approximation of a compressible Navier-Stokes

system by non-linear acoustical models

ANNA ROZANOVA-PIERRAT∗

January 18, 2016

Abstract

We analyse the existing derivation of the models of non-linear acoustics such as
the Kuznetsov equation, the NPE equation and the KZK equation. The technique
of introducing a corrector in the derivation ansatz allows to consider the solutions
of these equations as approximations of the solution of the initial system (a com-
pressible Navier-Stokes/Euler system). The validation of the approximation ansatz

is given for the KZK equation case.

1 Introduction

There is a renewed interest in the study of wave propagation, in particular because of
recent applications to ultrasound imaging (i.e. HIFU) or technical and medical appli-
cations such as lithotripsy or thermotherapy. Such new techniques rely heavily on the
ability to model accurately the nonlinear propagation of a finite-amplitude sound pulse
in thermo-viscous elastic media.

We analyse the derivation of different models of non-linear acoustics such as the
Kuznetzov [1], the Nonlinear Progressive wave Equation (NPE) [2] and the Khokhlov-
Zabolotskaya-Kuznetzov (KZK) [3] equations which are perturbative and paraxial ap-
proximations of small perturbations around a given state of a compressible nonlinear
isentropic Navier-Stokes (for viscous media) and Euler (for the non-viscous case) systems.
The direct derivation shows that the Kuznetzov equation is the first order approximation
of the Navier-Stokes system, the KZK and NPE equations are the first order approxima-
tions of the Kuznetzov equation and the second order approximations of the Navier-Stokes
system. In addition, the NPE equation can be considered as an approximation of the KZK
equation.

To be able to validate the approximation of the exact solution of the Navier-Stokes/Euler
systems by the solution of the Kuznetsov/KZK/NPE equation, we need to ensure that the
derivation of our model, the Kuznetsov/KZK/NPE equation, allows us to reconstruct the
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solution of the initial Navier-Stokes system from the solution of the Kuznetsov/KZK/NPE
equation. In this aim, following the ideas of Refs. [4, 6], we modify the initial physical
derivation, given in Refs. [1, 3] for the KZK and the Kuznetsov equations and given in
Ref. [2] for the NPE equation, introducing a corrector function in the derivation ansatz.

We also improve the validation of the KZK-approximation for the non-viscous and
viscous cases obtained in Ref. [4], by the precision of the speed order of divergence between
the solutions of the approximate and the exact systems.

Let us introduce some notations used throughout the paper. For a positive fixed small
enough real number ǫ , we suppose that R+ consists of classes, which are characterized
by the power of ǫ :

. . . , ǫ2, . . . , ǫ, . . . ,
√
ǫ, . . . , ǫ0 = 1, . . . ,

1

ǫ
, . . . ,

1

ǫ2
, . . .

O(1) denotes the class of constants.

2 Approximation of the hydro-dynamic system by an

isentropic Navier-Stokes system

We start from the Navier-Stokes system in R
n :

∂tρ+ div(ρu) = 0, (1)

ρ[∂tu+ (u · ∇)u] = −∇p+ β∇ divu, (2)

ρT [∂tS + (u · ∇)S] = κ△T + ζ(divu)2

+
η

2

(
∂xk

ui + ∂xi
uk −

2

3
δik∂xi

ui

)2

, (3)

p = p(ρ, S), (4)

where S is the entropy and the state law p = p(ρ, S) is the pressure. The density
ρ , the velocity u , the temperature T and the entropy are unknown functions in the
system (1)–(4). The coefficients β , κ and η are constant viscosity coefficients.

First, we assume that the temperature T and the entropy S have small increments
T = T0 + ǫT̃ and S = S0 + ǫ2S̃ . With the hypothesis of potential motion, we introduce
constant states

ρ = ρ0, u = u0.

Next, we assume that the density fluctuations (around the constant state ρ0 ) and the
velocity fluctuations (around u0 , which can be taken equal to zero using a Galilean
transformation), are of the same order of ǫ :

ρǫ = ρ0 + ǫρ̃ǫ , uǫ = ǫũǫ , (5)

where ǫ is a dimensionless parameter which characterizes the smallness of the perturba-
tion. For instance, in water with an initial power of the order of 0.3W/cm2 ǫ is equal to
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10−5 . We also suppose that all viscosity coefficients, for instance, β, ζ , η and κ , are
small of the order ǫ :

β = ǫβ̃.

Using the transport heat equation up to the terms of the order of ǫ3

ǫ2ρ0T0∂tS̃ = ǫ2κ̃△T̃ +O(ǫ3),

the approximate state equation

p = p0 + c2ǫρ̃ǫ +
1

2

(
∂2
ρp
)
S
ǫ2ρ̃2ǫ + (∂Sp)ρ ǫ

2S̃ +O(ǫ3)

(where the notation (·)S means that the expression in brackets is constant in S ), can be
replaced [3, 7, 8] by

p = p0 + c2ǫρ̃ǫ +
(γ − 1)c2

2ρ0
ǫ2ρ̃2ǫ − ǫκ̃

(
1

Cv

− 1

Cp

)
∇.uǫ +O(ǫ3). (6)

Here γ = Cp/Cv denotes the ratio of the heat capacities at constant pressure and at
constant volume respectively. System (1)–(4) becomes an isentropic system

∂tρǫ + div(ρǫuǫ) = 0 , (7)

ρǫ[∂tuǫ + (uǫ · ∇)uǫ] = −∇p(ρǫ) + ǫν∆uǫ , (8)

with the approximate state equation

p(ρǫ) = p0 + c2(ρǫ − ρ0) +
(γ − 1)c2

2ρ0
(ρǫ − ρ0)

2 (O(ǫ3)) (9)

and with a small enough and positive viscosity coefficient:

ǫν = β + κ

(
1

Cv

− 1

Cp

)
.

3 Perturbative approach: Kuznetsov equation

First derived by Kuznetsov [1] from the isentropic Navier-Stokes system (7)–(9), the
Kuznetsov equation

∂2
t φ̃− c2△φ̃ = ∂t

(
(∇φ̃)2 +

γ − 1

2c2
(∂tφ̃)

2 +
ǫν

ρ0
∆φ̃

)
, (10)

written for the velocity potential

u(x, t) = −∇φ̃(x, t), x ∈ R
n, t ∈ R

+,

was latter derived by other methods and was discussed by a lot of authors (see for exam-
ples [8, 9]).
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Here we focus on the introduction of the corrector ǫ2ρ2 in the ansatz of Kuznetsov

ρǫ(x, t) = ρ0 + ǫρ1(x, t) + ǫ2ρ2(x, t) (11)

uǫ(x, t) = −ǫ∇φ(x, t), (12)

which allows to open the question about the approximation between the exact solution of
the isentropic Navier-Stokes system (7)–(9) and its approximation given by the solution
of the Kuznetsov equation, as it was done for the KZK equation in [4].

Puting expressions for the density and the velocity (11)–(12) into the isentropic Navier-
Stokes system (7)–(9), we directely obtain

∂tρǫ + div(ρǫuǫ) = ǫ
ρ0
c2

[
∂2
t φ− c2△φ−

ǫ∂t

(
(∇φ)2 +

γ − 1

2c2
(∂tφ)

2 +
ν

ρ0
∆φ

)]
+O(ǫ3), (13)

ρǫ[∂tuǫ + (uǫ · ∇)uǫ] +∇p(ρǫ)− ǫν∆uǫ =

ǫ∇
[
ρ1 −

ρ0
c2
∂tφ

]
+ ǫ2∇

[
c2ρ2 +

ρ0(γ − 2)

2c2
(∂tφ)

2

+
ρ0
2
(∇φ)2 + ν∆φ

]
+O(ǫ3). (14)

We see that the Kuznetsov equation

∂2
t φ− c2△φ = ǫ∂t

(
(∇φ)2 +

γ − 1

2c2
(∂tφ)

2 +
ν

ρ0
∆φ

)
, (15)

is the first order approximation, obtained from the equation of mass conservation up
to the terms O(ǫ3) with the relations for the density perturbations, found from the
momentum conservation also up to the terms O(ǫ3) with the help of the Sommerfeld
radiation boundary condition at infinity:

ρ1(x, t) =
ρ0
c2
∂tφ(x, t), (16)

ρ2(x, t) = −ρ0(γ + 2)

2c4
(∂tφ)

2 − ρ0
2c2

(∇φ)2 − ν

c2
∆φ. (17)

Since initially, we consider the state equation for the pressure p up to the terms of the
order of ǫ3 , we conclude that the ansatz of the Kuznetsov equation gives the optimal
approximation error of the same order.

Let us also notice, as it was originaraily mentionned by Kuznetsov, that the Kuznetsov
equation (15) contains terms of different orders, and hence, it is a wave equation with
small size non-linear perturbations ∂t(∇φ)2 , ∂t(∂tφ)

2 and viscosity term ∂t∆φ . A way
to obtain an approximate equation containning all terms of the same order without mod-
ification of the order of remainder terms is to perform a paraxial approximation, which
we introduce in the next section. This time the approximation becomes the second order
approximation and will be given by the KZK equation.
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x1

x′

t

Navier-Stokes/
Euler (x1,x

′, t)

z = ǫx1

y =
√
ǫx′

τ = t− x1

c

KZK (τ, z,y)

Figure 1: Paraxial change of variables for the profiles U(t− x1/c, ǫx1,
√
ǫx′) .

4 Paraxial approximation

4.1 KZK equation

In the present Section we focus on the derivation of the KZK equation (19) in non-linear
media using the following acoustical properties of beam’s propagation

1. The beams are concentrated near the x1 -axis ;

2. The beams propagate along the x1 -direction;

3. The beams are generated either by an initial condition or by a forcing term on the
boundary x1 = 0 .

It is assumed that the variation of beam’s propagation in the direction

x′ = (x2, x3, . . . , xn)

perpendicular to the x1 -axis is much larger than its variation along the x1 -axis, i.e. we
suppose that the beam has the form U(t− x1/c, ǫx1,

√
ǫx′) . The first argument t− x1/c

describes the wave propagation in time along the x1 -axis with the sound speed c , two
last arguments ǫx1 and

√
ǫx′ describe respectively the speed of the deformation of the

wave along the x1 -axis and along the x′ -axis. We remark that ǫ ≪ 1 and consequently,
ǫ ≪ √

ǫ .
We notice that if we perform the paraxial change of variables (see Fig. 1), the wave

operator ∂2
t − c2∆ becomes

∂2
t − c2∆ = ǫ

[
2c∂2

τz − c2∆y

]
− ǫ2c2∂2

z .

Therefore, if we suppose that the velocity potential φ(x, t) = Φ(t − x1/c, ǫx1,
√
ǫx′) , we

directely obtain from the Kuznetsov equation (15) (see also [1]) that

∂2
t φ− c2△φ− ǫ∂t

(
(∇φ)2 +

γ − 1

2c2
(∂tφ)

2 +
ν

ρ0
∆φ

)

= ǫ

[
2c∂2

τzΦ− γ + 1

4c2
c2∂τ (∂τΦ)

2

− ν

ρ0c2
∂3
τΦ−∆yΦ

]
+O(ǫ2). (18)
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Therefore, returning to the derivation of the Kuznetsov equation, after the paraxial
approximation of φ , ρ1 and ρ2 with profiles Φ , I and J

uǫ(x, t) = −ǫ

(
−1

c
∂τΦ + ǫ∂zΦ;

√
ǫ∇yΦ

)
(τ, z,y)

ρ1(x, t) = I(τ, z,y) =
ρ0
c2
∂τΦ(τ, z,y),

ρ2(x, t) = J(τ, z,y) =

− (γ − 1)ρ0
2c4

(∂τΦ)
2 − ν

c4
∂2
τΦ +O(ǫ),

we find that the right-hand ǫ -order terms in Eq. (18) is exactly the KZK equation,
originally written in Ref. [3] for the (first) perturbation I of the density ρǫ :

c∂2
τzI −

(γ + 1)

4ρ0
∂2
τ I

2 − ν

2c2ρ0
∂3
τ I −

c2

2
∆yI = 0. (19)

We notice that this model still contains terms describing the wave propagation ∂2
τzI ,

the non-linearity ∂2
τ I

2 and the viscosity effects ∂3
τ I of the medium, as the Kuznetsov

equation and adds a diffraction effects by the tranversal laplacian ∆yI .
In addition, performing the paraxial approximation in the right-hand side of equa-

tions (13)–(14), we obtain that the KZK equation is the second order approximation of
the isentropic Navier-Stokes system up to term of O(ǫ3) . In this sense, since the entropy
and the pressure are approximated up to terms of the order of ǫ3 , the Kuznetsov-type
ansatz (for the Kuznetsov or the KZK equations) is optimal, as the equations of the
Navier-Stokes system also approximated up to O(ǫ3) -terms. For instance, the ansatz ini-
tially proposed by Khokhlov and Zabolotskaya [3] to derive the KZK equation, corrected
with ǫ2v1 [4] for the velocity perturbation along the propagation axis,

ρǫ(x1,x
′, t) = ρ0 + ǫI(t− x1

c
, ǫx1,

√
ǫx′) ,

uǫ(x1,x
′, t) = ǫ(v + ǫv1;

√
ǫw)(t− x1

c
, ǫx1,

√
ǫx′)

is not optimal since the equation of momentum in tranversal direction keeps the non-zero
terms of the order of ǫ

5

2 [4].

4.2 NPE equation

The NPE equation (Nonlinear Progressive wave Equation), initially derived by McDonald
and Kuperman [2], gives another example of a paraxial approximation in the aim to
describe short-time pulses and a long-range propagation (see Fig. 2), for instance, in an
ocean waveguide, where the refraction phenomena are important. To compare to the
KZK-ansatz, the role of propagation distance and time was reversed [2]:

zNPE = −cτKZK, τNPE = ǫτKZK +
zKZK

c
.
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x1

x′

t

Navier-Stokes/
Euler (x1,x

′, t)

z = x1 − ct

y =
√
ǫx′

τ = ǫt

NPE (τ, z,y)

Figure 2: Paraxial change of variables for the profiles U(ǫt, x1 − ct,
√
ǫx′) .

Consequently, from the KZK equation we directely have the NPE equation with the error
O(ǫ) :

c∂2
τzI −

(γ + 1)

4ρ0
∂2
τ I

2 − ν

2c2ρ0
∂3
τ I −

c2

2
∆yI =

− c∂2
τNPEzNPE

I − c2(γ + 1)

4ρ0
∂2
zNPE

I2 +
cν

2ρ0
∂3
zNPE

I

− c2

2
∆yNPE

I +O(ǫ).

The fact that the NPE equation is an approximation of the KZK equation does not
allow to keep, by the analogy to the derivation of the KZK, the Kuznetsov-ansatz of
perturbations (11)–(12) just by introducing the new paraxial profiles Ψ for φ , P1 for
ρ1 and P2 for ρ2 . Indeed, if we do this, the Kuznetsov equation, appeared in the
conservation of mass, gives the NPE equation for the potential profile Ψ [compare with
Eq. (18)]

∂2
t φ− c2△φ− ǫ∂t

(
(∇φ)2 +

γ − 1

2c2
(∂tφ)

2 +
ν

ρ0
∆φ

)

= ǫ

[
−2c∂2

τzΨ+
γ + 1

2
c∂z(∂zΨ)2

+
νc

ρ0

2

∂3
zΨ− c2∆yΨ

]
+O(ǫ2), (20)

but in the conservation of momentum, we obtain that the corrector P1 has a term of the
order of ǫ :

ρ1(x, t) = P1(τ, z,y) = −ρ0
c
∂zΨ+ ǫ

ρ0
c2
∂τΨ,

what will not allow to keep equal to zero just the terms of the same order without any
arrangement between the first and the second order terms. Thus we need to suppose that

uǫ(x, t) = −ǫ∇φ(x, t) = −ǫ
(
∂zΨ;

√
ǫ∇yΨ

)
(τ, z,y),

ρǫ(x, t) = ρ0 + ǫP1(τ, z,y) + ǫ2P2(τ, z,y),
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where

P1(τ, z,y) =
ρ0
c
∂zΨ(τ, z,y),

P2(τ, z,y) =
ρ0
c4
∂τΨ− ρ0(γ + 3)

2c2
(∂zΨ)2 − ν

c2
∂2
zΨ,

to obtain the NPE equation for the profile of the potential

∂2
τzΨ− γ + 1

4
∂z(∂zΨ)2 − ν

2ρ0
∂3
zΨ+

c

2
∆yΨ = 0 (21)

as the second order approximation of the isentropic Navier-Stokes system up to the terms
of the order of O(ǫ3) .

5 Approximation results

We precise the approximation results for the KZK equation, given in Ref. [4], by the
evaluation of the size of the difference between the exact and the approximate solutions.
As it was explained in Ref. [4], the isentropic Euler system for Ũǫ = (ρǫ, ρǫuǫ) and

F(Ũǫ) = (ρǫuǫ, ρǫu
2
ǫ + p(ρǫ))

T can be written as a system of conservation laws

∂tŨǫ +∇.F(Ũǫ) = 0. (22)

The KZK-ansatz allows to find from the solution I of the KZK equation (19) the correc-
tors v , w , v1 and to obtain for

Uǫ = (ρǫ, ρǫuǫ), (23)

with

ρǫ = ρ0 + ǫI(t− x1

c
, ǫx1,

√
ǫx′),

uǫ = ǫ(v + ǫv1,
√
ǫw))(t− x1

c
, ǫx1,

√
ǫx′),

the approximate system
∂tUǫ +∇.F(Uǫ) = ǫ

5

2R. (24)

More precisely, for the non-viscous case, we have the following theorem:

Theorem 1 Let I0(τ, 0,y) ∈ Hs′(Rn) , s′ > [n
2
] + 5 be the initial data for the KZK

equation (19) L -periodic and with mean value zero with respect to τ . Then there exists
a unique solution I of the KZK equation such that

• I(τ, z,y) is L -periodic and with mean value zero with respect to τ and defined
for |z| ≤ K (K is a positive constant depending only on s′, L and ‖I0‖Hs′ ) and
y ∈ R

n−1 ,

• for Ω = R/LZ×R
n−1
y z 7→ I(τ, z,y) ∈ C(]−K,K[;Hs′(Ω))∩C1(]−K,K[;Hs′−2(Ω)).
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Let U ǫ be the approximate solution of the isentropic Euler system deduced from a
solution of the KZK equation with the help of the correctors v , w , v1 , found by I
following the formulae of the derivation KZK-ansatz, ensuring the remainder term of the
order of ǫ

5

2 . Then the function U ǫ(x1,x
′, t) = U ǫ(t− x1

c
, ǫx1,

√
ǫx′) given by formula (23)

is defined in

Rt × (Ωǫ = {|x1| <
K

ǫ
− ct} × R

n−1
x′ )

and is smooth enough according to the above procedure and the remainder term R in
Eq. (24) is in [L∞((−K,K);L2)]

2.
Let us now consider the solution of the Euler system (22) in a cone (see Fig. 3)

C(t) = ∪0<s<t{s} ×Qǫ(s) =

{x = (x1,x
′) : |x1| ≤

K

ǫ
−Ms, M ≥ c, x′ ∈ R

n−1}

with the initial data

(ρ̄ǫ − ρǫ)|t=0 = 0, (ūǫ − uǫ)|t=0 = 0. (25)

Consequently, there exists T0 such that for the time interval 0 ≤ t ≤ T0

ǫ
there exists the

0

x′

x1

T

K
ǫ

−K
ǫ

slope −Mslope M

Figure 3: The cone C(T ) .

classical solution Uǫ = (ρǫ,uǫ) of the Euler system (22) in a cone

C(T ) = {0 < t < T |T <
T0

ǫ
} ×Qǫ(t) (26)

with
‖∇.Uǫ‖L∞([0,

T0
ǫ
[;Hs′−5)

< ǫC for s′ > [
n

2
] + 5.

Moreover, there exist positive constants C1 and C2 such that for any ǫ small enough,

the solutions Ũǫ
note
= (ρǫ, ρǫuǫ) and Ūǫ

note
= (ρǫ, ρǫuǫ) , which were determined as above in

cone (26) with the same initial data (25), satisfy the estimate

C1ǫ
7

2 t ≤ ‖Ūǫ − Ũǫ‖2L2(Qǫ(t)) ≤ ǫ5eC2ǫt. (27)
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Let now consider the viscous case.
For the viscous case we have

∂tŨǫ +∇.F(Ũǫ)− ǫν

[
0

△uǫ

]
= 0 (28)

for the exact system, and

∂tUǫ +∇.F(Uǫ)− ǫν

[
0

△uǫ

]
= ǫ

5

3R (29)

for the approximate system.

Theorem 2 Suppose that the initial data of the KZK Cauchy problem I0(t,y) = I0(t,
√
ǫx′)

is such that

1. I0 is L -periodic in t and with mean value zero,

2. for fixed t , I0 has the same sign for all y ∈ R
n−1 , and for t ∈]0, L[ the sign

changes, i.e. I0 = 0 , only for a finite number of times,

3. I0(t,y) ∈ Hs′({t ≥ 0} × R
n−1) for s′ > max{6, [n

2
] + 1} ,

4. I0 is sufficiently small such that

‖I0‖Hs′ <
ν

2c2ρ0

C1(L)

C2(s′)
(see [5, p.20]),

and I0 = ǫαĨ0 , α ≥ 0 .

Then there exists a unique global solution in time Uǫ = (ρ̄ǫ, ūǫ) of the approximate
system (29) deduced from a solution of the KZK equation with the help of correctors v ,
w , v1 , found by I following the formulae of the derivation KZK-ansatz, ensuring the
remainder term of the order of ǫ

5

2 . The function Uǫ(x1,x
′, t) = Uǫ(x1 − ct, ǫx1,

√
ǫx′) ,

given by formula (23), is defined in the half space (see [4] for its regularity)

{x1 > 0, t > 0, x′ ∈ R
n−1}. (30)

The Navier-Stokes system (28) in the half space with initial data (25) and following
boundary conditions

(ūǫ − uǫ)|x1=0 = 0,

with positive first component of the velocity uǫ,1|x1=0 > 0 (i.e. at points where the fluid
enters the domain) has the additional boundary condition

(ρ̄ǫ − ρǫ)|x1=0 = 0.

When uǫ,1|x1=0 ≤ 0 there is no any boundary condition for ρǫ .
Then there exists a constant T0 > 0 such that for all t < T0

ǫ2+α there exists a unique

solution Uǫ = (ρǫ,uǫ) of the Navier-Stokes system (28) with the same smoothness as Uǫ .

10



In addition, there exist positive constants C1 > 0 and C2 > 0 such that for all small
enough ǫ

C1ǫ
5

2

√
t ≤ ‖ρǫ − ρǫ‖L2

+ ‖ρǫuǫ − ρǫuǫ‖L2
≤ ǫ

5

2 eC2ǫt. (31)

Estimate (31) ensures that its left-hand side remains smaller than the order of ǫ for any
finite time

0 < t <
T

ǫ
ln

1

ǫ
,

where T is a positive constant and T = O(1) .
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