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Abstract—Over the past few years, the architecture of su-
percomputing platforms has evolved towards more complexity:
multicore processors attached to multiple memory banks are now
combined with accelerators. Exploiting such architecture often
requires to mix programming models (MPI + CUDA for instance).
As a result, understanding the performance of an application has
become tedious. The use of performance analysis tools, such as
tracing tools, now becomes unavoidable to optimize a parallel
application. However, analyzing a trace file composed of millions
of events requires a tremendous amount of work in order to spot
the cause of the poor performance of an application.

In this paper, we propose mechanisms for assisting application
developers in their exploration of trace files. We propose an
algorithm for detecting repetitive patterns of events in trace files.
Thanks to this algorithm, a trace can be viewed as loops and
groups of events instead of the usual representation as a sequential
list of events. We also propose a method to filter traces in
order to eliminate duplicated information and to highlight points
of interest. These mechanisms allow the performance analysis
tool to pre-select the subsets of the trace that are more likely
to contain useful information. We implemented the proposed
mechanism in the EZTrace performance analysis framework
and the experiments show that detecting patterns in various
benchmarking applications is done in reasonable time, even when
the trace contains millions of events. We also show that the
filtering process can reduce the quantity of information in the
trace that the user has to analyze by up to 99 %.

I. INTRODUCTION

In the petascale era, the evolution of the computing systems
leads to the complexification and the massification of com-
ponents both on hardware and software sides. The massive
growth of computing units potentially heterogeneous with
hierarchical specific memories highlights challenges of HPC:
parallelism granularity, cohabitation of programming models,
data sharing, data movements, technical exploitation, etc. Thus,
application codes couple an increasingly large number of
distinct middlewares in order to hide all this complexity
from top to low level of the software stack: combination of
scientific computing libraries (BLAS, etc.), runtime systems
(MPI implementations, thread scheduling, etc.). In this context,
the libraries and application codes are more error-prone and it
becomes really challenging to understand the bad performance
of end-user parallel applications.

Tracing tools assist application developers in this process.
Basically, the scope of this tool category is to register various

events (sending or receiving an MPI message, calling a func-
tion, etc.) of an application during its effective execution. The
generated global trace of those events is then analyzed post-
mortem in order to observe what happened during the run.
Analyzing the trace allows users to search for bottlenecks or
unexpected behaviors. Nevertheless, while exploiting a trace
composed of a few thousands events requires little effort, the
growing number of computing flows complicates the analysis.
Since even medium-scale applications now run on thousands
of processors, the post-mortem analysis now necessitates to
search through millions of events. Displaying a trace generated
from a large-scale application does not provide anymore accu-
rate help: developers are flooded by the mass of information
and need to find by themselves the interesting parts of the
trace.

In this paper, we propose a method for assisting users in
their search for information in trace files. This method relies
on an algorithm that we propose for finding repetitive patterns
of events in execution traces. While the usual representation of
a trace is a sequential list of events, this algorithm permits to
organize the trace by grouping events into loops and sequences,
which reflects the program structure. The second part of
the method consists of selecting the parts of the traces that
may contain useful information for the user. This way, the
application developer can start his performance analysis by
focusing on a small subset of the trace in the first place.

The remainder of this paper is organized as follows: Sec-
tion II presents the related work; Sections III and IV constitute
the contribution of this paper by presenting respectively the
pattern detection and the trace filtering algorithm. Section V
deals with implementation details. Section VI consolidates the
paper through evaluation. Finally, Section VII concludes the
paper and discusses future work.

II. RELATED WORK

The need to extract useful information from execution
traces has been studied for a long time now. Since parallel
applications massively rely on MPI, several researches have
focused on the detection of communication patterns based
on MPI messages [1], [2], [3]. The communication patterns
can provide a high level understanding of the application [2].
Besides, the communication schemes of multiple applications
can be compared in order to detect similarities in their access



patterns [3]. Several studies have focused on using communi-
cation patterns to assess the scalability of a parallel application:
by running a program on a small number of nodes, the
communication pattern can be extrapolated in order to estimate
the performance of the application when it is run on a large
number of nodes [4], [5].

Searching for a set of pre-defined patterns is another recent
trend. For instance, some tools try to detect inefficient behavior
of an application by searching for some execution patterns [6].
Classical parallel programming problems (such as late sender)
can be detected using this technique. The identification of
such pre-defined patterns in an application can be combined
with compilation techniques to automatically transform the
application in order to improve its performance [7].

While most of these pattern detection mechanisms are
performed post-mortem, specific communication patterns can
also be identified at runtime and replaced with semantically
equivalent but faster communication (such as collective com-
munication primitives) [8].

Apart from communication patterns, multiple works have
shown that studying memory access patterns can be useful.
Analyzing the memory access patterns of an application per-
mits to predict future memory accesses and thus to prefetch
data and to improve the cache-hit rate [9]. Memory accesses
also provide a profile for applications and permit to model
the program performance [10]. Access patterns are also used
for predicting future disk accesses in file systems, allowing to
prefetch blocks of data [11]. A similar mechanism can be used
in parallel file systems for predicting future client accesses [12]
or disk accesses [13].

Pattern mining techniques are used in several works in
order to detect patterns of events [17], [18]. However, the per-
formance of the proposed algorithms are prohibitive: detecting
patterns in small traces takes dozens of seconds [19]. In this
paper, we propose a simplier pattern mining algorithm that
can be used during the performance analysis without expensive
computation.

The need for a tool able to process large execution traces
has led to the design of distributed systems able to analyze
traces in parallel and to provide a visualization client with
processed data [14]. The scalability of performance analysis
tools is also limited by the size of trace files that can be
compressed [15]. Another way to reduce the size of a trace
consists of removing some of its events when it becomes too
large [16]. To the best of our knowledge, most of the research
effort on the processing of execution traces has focused on the
ability of tools to process large traces. However, little effort
has been made on helping users analyze traces. Our intent in
this paper is to provide a way to select the parts of a trace that
are the more likely to contain useful information for the user.

III. DETECTING PATTERNS

When visualizing the execution trace of parallel applica-
tions, developers may have difficulties finding the parts of the
trace that reveal the application flaws responsible for the poor
performance. The main difficulty comes from the size of the
group of events that can reveal the problem compared to the
size of the trace: while an execution trace can be composed of
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Fig. 1. Example of a sequence of events (in black) that appears several times
in a trace

millions of events, the interesting part of the trace may contain
only a few tens or hundreds of events.

The difficulty of this search for a needle in a haystack
comes from the way of representing execution traces: while
a program is composed of functions, loops or other building
blocks, a trace is viewed as a sequential list of events that
does not reflect the structure of the program. Understanding the
global structure of the program and spotting the problematic
part of the trace thus require to browse the whole list of events,
which necessitates the expertise from the application developer.

We intend to help program developers in their search for
interesting events in the execution trace. Due to the structure
of programs, traces usually include sequences of events that
are repeated at several moments of the execution. For instance,
in Figure 1, a sequence of events (in black) is repeated several
times in process #0. We propose to detect automatically these
patterns and to filter them in order to restrict the number of
events that the user has to examine.

In this Section, we propose an algorithm that converts
a sequential list of events into a more structured list that
reflects the structure of the program. This list is composed of
sequences of events, loops and single events. Such a structured
list is then used in Section IV for detecting points of interest
that are likely to contain useful information for the application
developer.

A. Definitions

We define an event as something that happens at a precise
date. It can be the program entering or leaving a function, the
application sending or receiving an MPI message, or any other
event that can be timestamped. When comparing two events
e1 and e2, we state that e1 = e2 if:

• both e1 and e2 enter (or leave) the same function.

• both e1 and e2 send (or receive) the same type of MPI
message. The source process, the destination process,
the message tag and the message length have to be
equal for both events.
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Fig. 2. Step 1: find a sequence of two consecutive events that appears several
times to form a pattern
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Fig. 3. Step 2: compare each occurrence of a pattern with the following
event and form loops

A pattern is defined as a sequence of consecutive events
that appears in the same order and occurs several times in a
trace.

B. Pattern detection algorithm

The detection of patterns within a sequential list of events
can be viewed as a variation of a compression algorithm [20]
that consists of finding sequences of events that appear several
times in the trace.

The first step of the pattern detection consists of finding a
sequence of two consecutive events (a, b) that appears several
times. As depicted in Figure 2, when such a sequence is found,
(a, b) is replaced with a pattern p1 that refers to (a, b). It is to
be noted that the occurrences of the events (a, b) are not freed
as each event has its own particularities (timestamp, function
parameters, etc.) that need to be kept for further analysis of
the trace.

Once a pattern p1 is found, the next step consists of finding
loops composed of p1. As depicted in Figure 3, this is done
by comparing each occurrence of p1 with p1 → next and
grouping them into a loop if both terms are equal.

The next step is to try to expand pattern p1. To this end,
we compare the event that follows each occurrence of p1. As
depicted in Figure 4, this can lead to three possibilities:

• If p1 → next is always c (case 1), c can be integrated
in p1

• If multiple occurrences of p1 → next are c but some
are different (case 2), we define a new pattern p2 that
refers to (p1, c)

• If p1 → next is c only once, then pattern p1 cannot
be expanded

If step 3 successfully expands p1 (case 1) or creates p2
(case 2), we apply recursively step 2 and step 3 to the newly
defined pattern. Thus, steps 2 and 3 are repeated as long as p1
or p2 (or any new pattern) can be expanded or combined into
loops. When steps 2 and 3 leave p1 and p2 unchanged, we use
step 1 to find another pattern within the sequence of events.

C. Discussion

Our proposed algorithm relies on the temporal order of
events for defining patterns of events. Thus, unlike other
pattern detection mechanisms, this algorithm focuses on find-
ing patterns within a single execution flow: the detection of
patterns in the execution trace of an MPI+OpenMP application
with 32 processes, each running 4 threads, thus requires to run
the pattern detection algorithm on each of the 128 threads.

While the detection of patterns within a thread is sequen-
tial, it is independent from the detection of patterns in other
threads, that is to say the detection can be run in parallel.

The theoretical complexity of the algorithm is dominated
by the complexity of step 1 (O(n2), where n is the number of
events in the trace). However, in practice, step 1 is not called
for each event in the trace since some events (such as those
that are already included in a pattern) can be skipped. The
duration of step 1 thus depends on the size of patterns.

Once a pattern is found, the complexity of steps 2 and 3
depend on the number of occurrences of the pattern, which
is usually negligible compared to the number of events in the
trace.

IV. FILTERING PATTERN OCCURRENCES

When analyzing the performance of scientific parallel
applications using tracing tools, users have to find useful
information among millions of events. In this Section, we
present a filtering method for assisting users by selecting
the parts of the trace that are more likely to contain useful
information. The intent of this filtering mechanism is not to
avoid the need for the user to analyze the whole trace, but to
detect points of interest that should be analyzed in the first
place.

Due to the structure of parallel application, a trace file
usually contains a large number of sequences of events that
have similar properties. For instance, applications that rely on
iterative kernels (such as Jacobi) execute the same sequence of
instructions for each step of the algorithm. When each step of
the algorithm processes the same quantity of data, it is likely
that all the steps have more or less the same duration. Thus, the
trace files of a program that iterates over 200 identical steps
probably contains information that is almost duplicated: most
of the sequences of events that correspond to the iterations
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Fig. 5. Distribution of the occurrences of pattern 112 from CG.A.16.

have approximately the same duration. We propose to detect
such duplicated information and to select only the iterations
that differ significantly from the others in order ro reduce the
number of events that application developers have to analyze.

The iterations of a parallel application can be interpreted
as patterns of events by the algorithm presented in Section III.
Comparing each occurrence of a pattern permits to select the
occurrences that may be of interest for users. Analyzing the
distribution of the duration of the occurrences of a pattern
permits to detect duplicated information and to find points of
interest.

A. Regular patterns

Some applications, such as those which rely on stencil
kernels, tend to have very regular iterations. In such appli-
cation, all the iterations have roughly the same duration. The
distribution of the duration of the occurrences of the pattern
corresponding to the iteration thus usually shows one “peak”.

Figure 5 depicts the distribution of the pattern correspond-
ing to the main loop in the CG kernel from the NAS Parallel
benchmarks suite executed on 16 MPI processes for class A.
The resulting distribution shows one peak: in this distribution,
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Fig. 6. Distribution of the occurrences of pattern 105 from BT.A.16.

all the occurrences of the pattern have a duration comprised
between 60 µs and 63 µs. Since all the occurrences of this
pattern have approximately the same duration, visualizing only
one of these occurrences is probably enough to understand the
behavior of the pattern: the difference between an occurrence
that lasts 61 µs and another whose duration is 63 µs is
neglictible.

B. Regular patterns with multiple duration profiles

In some applications, the distribution of the duration of the
occurrences of a single pattern may show multiple “peaks”.
This may be caused by a function processing multiple data
sizes. Another explanation could be an interaction between
the pattern and another thread that is holding a lock in some
cases.

Figure 6 depicts the distribution of the pattern correspond-
ing to the main loop of the BT kernel from the NAS Parallel
benchmarks suite executed on 16 MPI processes for class A.
The resulting distribution shows three peaks: 87 % of the
occurrences of this pattern have a duration comprised between
39 µs and 47 µs, 8 % of the occurrences have a duration
comprised between 236 µs and 250 µs, and 5 % of the
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Fig. 7. “Short” occurrence of the main pattern (in black) from NPB BT
kernel (CLASS=A, NPROCS=16)

occurrences have a duration comprised between 1464 µs and
1493 µs. In this case, selecting the predominant occurrence
(that has a duration comprised between 39 µs and 47 µs) would
not allow users to understand what happens in the application
in some cases. However, selecting one occurrence per detected
peak and comparing them permits to understand the root of the
application problem.

Figures 7 and 8 depict respectively one “short” occurrence
(ie. an occurrence whose duration is comprised between 39 µs
and 47 µs) and one “medium” occurrence (ie. an occurrence
whose duration is comprised between 236 µs and 250 µs).
Some of the MPI processes were removed from the figures
in order to improve their readability. Comparing the two
occurrences permits to see that the difference comes from the
process #4 that takes a long time to receive a message in the
“medium” case.

Selecting one occurrence of a pattern per peak in its
distribution thus permits to select points of interest that allow
the user to quickly analyze the trace: instead of analyzing all
the iterations of the pattern, the user only needs to visualize
three occurrences.

C. Irregular patterns

Among the detected patterns, some may show an irregular
distribution of the duration of their occurrences. This may
happen, for instance, when a function processes differents
block sizes or in irregular applications.

Figure 9 depicts the distribution of the pattern corre-
sponding to the communication phase that happens at each
iteration of an LU decomposition. While most occurrences of
the pattern have a duration comprised between 0 and 1 µs,
some occurrences have a longer duration (up to 14 µs). Such
irregular distribution may happen when a function of the
application processes data with a varying size.

In the case of such irregular pattern, finding peaks may
permit to detect a number of occurrences with similar duration
(in the case of LU, around the 0 µs peak), but other occurrences
remain. In order to reduce the number of occurrences to
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Fig. 8. “Medium” occurrence of the main pattern (in black) from NPB BT
kernel (CLASS=A, NPROCS=16)
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Fig. 9. Distribution of the occurrences of pattern 7 from LU.

examine without losing too much information, the filtering
process searches for peaks and removes the occurrences that
have a similar duration as the peak. For instance, if there is
a peak at n µs, occurrences whose durations are comprised
between n − 10 % and n + 10 % can be considered as
similar to the reference occurrence. The [−10 % + 10 %]
window is chosen arbitrarily: it allows to reduce the number of
occurrences that user should analyze while allowing a variation
of the occurrences duration.

V. IMPLEMENTATION

In order to evaluate the mechanisms that we propose, we
implemented the pattern detection algorithm and the filtering
mechanism in the EZTrace framework for performance analy-
sis [21]. However, it could be used in any performance analysis
tool.

EZTrace is a modular framework designed for performance
analysis that is available as open source. It is able to instrument
functions and record events in trace files. Several modules are
provided that contain function instrumentation for standard
libraries like MPI or pthread. In addition to the pre-defined



modules, EZTrace provides simple means to generate user-
defined modules.

EZTrace uses a two-phase mechanism for analyzing appli-
cations. During the execution of the application, functions are
intercepted and events are recorded in trace files. In the case
of an MPI application, each MPI process generates a trace file.
After the execution of the application, the post-mortem analysis
phase is in charge of interpreting the recorded events. During
this phase, EZTrace can generate a trace file viewable with
visualization tools such as ViTE [22] or Vampir [23], or it can
compute statistics in order to analyze the overall characteristics
of the application (communication scheme, OpenMP parallel
regions, etc.)

The pattern detection algorithm that we propose is imple-
mented in the post-mortem phase. The algorithm is executed
over each event list (one list per thread in the application). We
consider all the available events collected by EZTrace: MPI
events, OpenMP events, CUDA events, etc. Since the detection
of patterns in a list is independent of other lists, the algorithm
is parallelized with OpenMP: each thread of the application can
be processed in parallel. The filtering algorithm is then applied
to each process independantly. EZTrace detects sequences that
have similar durations and removes them from the generated
trace. The list of points of interest is also given to the user so
that he can compare similar sequences with different durations.

It is to be noted that currently, the detection of the pattern
in all the MPI processes is performed in a single process
parallelized with OpenMP. The scalability of the parallelization
of the pattern detection is thus limited since it is executed on a
single node. Our future work includes improving the scalability
of this process by executing it at the end of the first phase
(ie. just before the application calls MPI_Finalize). This
would allow us to exploit multiple nodes and thus to increase
the parallelism.

VI. EVALUATION

In this Section, we propose to evaluate the algorithms
we described in the previous Sections. We first evaluate the
time needed to apply the algorithm of pattern detection by
tracing programs with various number of events to register.
We consider a simple MPI ping-pong, a strictly regular pattern
repetition, and then NAS parallel benchmarks that present
more realistic patterns.

We then evaluate the efficiency of the filtering algorithm:
various traces from the NAS parallel benchmarks are filtered
in order to detect their points of interest.

It is to be noted that both the pattern detection algorithm
and the filtering process are performed offline. Thus, they do
not affect the performance of the analyzed applications.

A. Platform

The experiments were conducted on a cluster of four
compute nodes. Each of them is a 4-core Intel Xeon E5-
2603 (Sandy Bridge) 1.80GHz with 10MB cache and 8GB of
memory running under Linux, with kernel version 3.2.0. The
compute nodes are interconnected through a gigabit Ethernet
network. During the generation of traces, up to four nodes
of the cluster were used, while only one node was used for
detecting patterns in traces.

#Iterations #Total events In sequential(ms) With 2 threads(ms)
10k 120k 54.23 35.14
20k 240k 101.77 56.67
40k 480k 186.79 114.39
100k 1,200k 477.59 290.13
200k 2,400k 963.03 578.40
500k 6,000k 2,393.40 1,447.92

1,000k 12,000k 4,771.68 2,904.92

TABLE I. DURATION OF THE PATTERN DETECTION ON A PING-PONG.

B. Pingpong

To evaluate the performance of the pattern detection,
we first run a simple MPI ping-pong program between
two processes. After the master first sending, each pro-
cess basically enters a loop where it does a blocking re-
ception (MPI_Recv()) followed by the blocking emission
(MPI_Send()) of a 16-bytes message, small enough not
to trigger an acknowledged exchange. In term of traces,
each process records 6 different events : enter mpi_send,
send message, leave mpi_send, enter mpi_recv,
receive message and leave mpi_recv. Thus, by run-
ning a 100k-iteration ping-pong, 600k events have been reg-
istered per process and 1,200k in total. The pattern detection
algorithm described in Section III runs over each of the two
event lists. Due to the extremely regular execution scheme
of the application, EZTrace detects only one pattern in each
event list. Each list is composed of a loop that iterates over
the following pattern:

• Enter function MPI_Recv

• Receive a message from process x

• Leave function MPI_Recv

• Enter function MPI_Send

• Send a message to process x

• Leave function MPI_Send

This case represents the ideal case for our algorithm as
the step 1 is performed only once: the first iteration of this
step detects all the iterations of the pattern. Results of the
experiments are reported in Table I.

The results show that the pattern detection is performed in
reasonable time: a few seconds for the trace that contains 12
millions events. Moreover, the pattern detection time linearly
increases with the number of events. The theoretical complex-
ity of step 1 (O(n2), where n is the number of events in
the trace) thus does not affect the actual performance of the
algorithm in this case. The results also show that the pattern
detection can be performed in parallel by employing OpenMP
threads.

C. NAS Parallel Benchmarks

To go further in our evaluation, we study the patterns of
the MPI version of NAS Parallel Benchmarks (NPB). NPB are
constituted of several SPMD benchmarks that present regular
but more scattered patterns as described in [24]. As we benefit
from four quad-core nodes, each test case is run with 16
MPI processes, generating 16 event lists. Nevertheless, we
centralized the pattern detection on one node. Thus, the 16
traces are processed by using 4 OpenMP threads.



kernel #events #patterns pattern detection(ms) #step 1 pattern size #iterations occupation(%)
EP 3,090 32 3.51 1136 31 5 96.9
FT 10,256 80 9.44 1360 31 6 91.2
IS 18,552 48 35.43 1482 96 11 91.0

CG 284,754 160 178.23 2816 1,104 16 99.2
MG 118,688 2728 186.17 14455 31 101 42.2
SP 557,318 174 596.84 2681 86 401 99.0
BT 399,944 112 951.50 4048 122 201 98.1
LU 4,568,002 210 4,564.80 8540 756 248 98.6

TABLE II. DURATION OF THE PATTERN DETECTION ON NPB (CLASS=A, NPROCS=16)

Table II reports, for each NAS Parallel benchmark kernel,
the total number of events (#events), the number of detected
patterns (#patterns), the duration of the pattern detection, the
number of times that step 1 was invoked (#step 1). The number
of events that constitute the outermost pattern in each trace is
also reported (pattern size), as well as the number of iterations
of this pattern (#iterations) and the percentage of events that
are included in the outermost patterns (occupation(%)).

These results show that the duration of the pattern detection
remains reasonable: in the worst case (when the trace consists
of 4.5 millions events) it only takes a few seconds to process
the trace files.

While the duration of the detection tends to increase with
the number of events in the traces, it is to be taken only as a
rule of thumb. For instance, while the trace of the BT kernel
contains 400 thousands events and is processed in 930 ms, the
trace of the SP kernel is larger (550 thousands events) but is
processed faster (620 ms). As discussed in Section III, this is
due to the complexity of the pattern detection algorithm that is
dominated by step 1. Since each invocation of step 1 causes to
browse the event list, the approximate cost of step 1 is thus the
number of calls to step 1 multiplied by the number of events.
The approximate cost of step 1 for SP (ie. 2,681 calls to step 1
* 557,318 events = 1,494,169,558) and for BT (1,618,973,312)
partially explains the performance difference.

In terms of accuracy, the pattern detection algorithm suc-
cessfully captures the structure of the tested programs: the
iterations of the outermost patterns correspond to the iterations
in the application in all cases. In most cases, the outermost
patterns include almost all the events of the trace. The results
also show that the number of detected patterns in each trace
remains low (except for the MG kernel): a pattern being
specific to a process, less than 15 patterns are detected for
each process.

The results for the MG kernel are different from the results
of the other kernels: the detection algorithm reports 2728
different patterns and the outermost pattern only represents
42 % of the trace size. This can be explained by the structure
of the MG program: the initialization phase of the application
includes a large number of MPI communications compared to
the computational core of the application.

D. Filtering traces

In addition to the evaluation of the pattern detection algo-
rithm, we evaluate the efficiency of the algorithm described
in Section IV for filtering traces. The experiment consists of
filtering the NPB traces presented in the previous subsection
and computing the reduction ratio.

kernel #events #events after filtering #events per process reduction(%)
EP 3,090 2,873 179.6 7.0 %
FT 10,256 6,704 419 34.6 %
IS 18,552 15,948 996.7 14.0 %

MG 118,688 41,031 2,564.4 65.4 %
CG 284,754 11,724 732.7 95.8 %
BT 399,944 24,338 1,521.1 93.9 %
SP 557,318 68,287 4,267.9 87.7 %
LU 4,568,002 42,881 2,680.1 99.0 %

TABLE III. FILTERING EVENTS ON NPB (CLASS=A, NPROCS=16)

Table III shows the results of this experiment. The table
reports, for each kernel, the number of events before filtering
(#events), the number of events in the filtered trace (#events
after filtering), the number of events per process in the filtered
trace (#events per process) and the corresponding reduction
percentage (reduction (%)). These results show that EZTrace
successfully reduces the number of events that user should
analyze.

The percentage of reduction depends on the trace size. The
small traces (for instance kernels EP, FT and IS) have a smaller
relative reduction. This is mainly due to the small number
of iterations combined with a high variation of the patterns
occurrences for these applications. This prevents EZTrace from
finding occurrences with similar duration that can be filtered.

On the contrary, the large traces (for instance, kernels
CG, BT, SP or LU) can be reduced by up to 99 %. Indeed,
these kernels iterate over more than 100 steps. Moreover, the
variation of these steps is low. Most iterations are thus similar
and can thus be filtered.

The behavior of the filtering process for the MG trace
reflects the problem reported in the previous subsection. The
initialization and termination phases of this trace generate a
lot of patterns that have a low number of occurrences. These
patterns are hard to filter efficiently, which causes the low
reduction ratio.

The result also show that the number of events per process
that user have to analyze is low in all the tested applications: in
the worst case (SP), only 4268 events per process are selected
during the filtering process, reducing the complexity for the
user to analyze the traces.

VII. CONCLUSION

The evolution of hardware architecture as well as the
complexification of the software stack have made it almost
mandatory to use performance analysis tools in order to
understand the performance of a parallel application. While
tracing tools permit to analyze precisely the behavior of a



program, the size of trace files – that can be composed of
millions of events – makes it difficult for developers to find
useful information. Understanding the global behavior of the
program or spotting the group of events that shows the cause
of the poor performance require an arduous work.

In this paper, we proposed an algorithm for selecting points
of interest that the user should examine first when analyzing
an execution trace. The first step of this algorithm consists
of detecting repetitive patterns in trace files. While a trace is
usually represented as a sequential list of events, this algorithm
aims at representing it as a program composed with functions,
loops, etc. Grouping events according to the detected pattern
permits to get an overview of the program global behavior.
The filtering process is then applied in order to find points of
interest that are more likely to contain useful information to
the user. By analyzing the distribution of sequences of events,
our method detects and filters sequences of events that present
a similar behavior. Thus, if a pattern occurs several hundreds
times in the trace, most of the occurrences of the pattern are
similar and can thus be set aside. This permits to select a
restricted number of groups of events that should be examined
in priority when visualizing a trace file. Developers thus do not
need to analyze millions of events to find useful information.

We have implemented the proposed mechanisms in the
EZTrace performance analysis platform. The experiment re-
sults we have conducted on multiple benchmarks demonstrate
that the implementation successfully detects patterns in all the
tested traces. Our approach completes the pattern detection
in a few seconds in the worst case. The parallelization of
the pattern detection permits to exploit multicore processors
efficiently. Moreover, the evaluation shows that large traces
can be filtered efficiently and the number of events to analyze
reduced by up to 99 %.

In the future, we plan to enhance the parallelism of the
pattern detection: analyzing the trace while using MPI (instead
of the current OpenMP implementation) should improve the
parallelism of the analysis as well as its scalability. We also
plan to study the visualization of patterns. While traditional
visualization tools depict traces as sequences of events, it
should be interesting to use the pattern structure in order to
present the trace in a more logical way.
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