
HAL Id: hal-01257899
https://hal.science/hal-01257899v1

Submitted on 18 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards autonomic DDoS mitigation using Software
Defined Networking

Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, Hervé Debar

To cite this version:
Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, Hervé Debar. Towards autonomic DDoS mitigation
using Software Defined Networking. SENT 2015 : NDSS Workshop on Security of Emerging Network-
ing Technologies, Feb 2015, San Diego, Ca, United States. �10.14722/sent.2015.23004�. �hal-01257899�

https://hal.science/hal-01257899v1
https://hal.archives-ouvertes.fr


Towards Autonomic DDoS Mitigation using
Software Defined Networking

Rishikesh Sahay∗‡, Gregory Blanc∗‡, Zonghua Zhang†‡ and Hervé Debar∗‡
∗Institut Mines-Télécom, Télécom SudParis

91011 Evry, France
Email: {rishikesh.sahay,gregory.blanc,herve.debar}@telecom-sudparis.eu

†Institut Mines-Télécom, Télécom Lille
59650 Villeneuve-d’Ascq, France

Email: zonghua.zhang@telecom-lille.fr
‡CNRS UMR 5157 SAMOVAR

91011 Evry, France

Abstract—Distributed Denial of Service attacks (DDoS) have
remained as one of the most destructive attacks in the Internet
for over two decades. Despite tremendous efforts on the design
of DDoS defense strategies, few of them have been considered for
widespread deployment due to strong design assumptions on the
Internet infrastructure, prohibitive operational costs and com-
plexity. Recently, the emergence of Software Defined Networking
(SDN) has offered a solution to reduce network management
complexity. It is also believed to facilitate security management
thanks to its programmability. To explore the advantages of
using SDN to mitigate DDoS attacks, we propose a distributed
collaborative framework that allows the customers to request
DDoS mitigation service from ISPs. Upon request, ISPs can
change the label of the anomalous traffic and redirect them to
security middleboxes, while attack detection and analysis modules
are deployed at customer side, avoiding privacy leakage and other
legal concerns. Our preliminary analysis demonstrates that SDN
has promising potential to enable autonomic mitigation of DDoS
attacks, as well as other large-scale attacks.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks have exten-
sively studied for more than two decades, but recent years can
still see a surge in their growth. In particular, flooding-based
attacks, such as UDP, TCP SYN and ICMP floods dominate
the growth, and the target of such voluminous attacks is to
deplete computing resources like CPU, memory and network
bandwidth of victims by sending an overwhelming number
of bogus packets. For example, in TCP SYN flood [14],
the attacker overwhelms the victim with SYN packets by
exhausting the connection table, while UDP and ICMP attacks
mainly consume the network bandwidth by sending forged
packets. Recent years have also seen an increase in multi-
vector DDoS attacks [1]. One example is that of a large UDP
flood combined with a slow HTTP GET flood [12], misleading

victims to cope with the seemingly anomalous UDP flood,
while the HTTP flood can slowly deplete the HTTP server
computing resources.

To cope with DDoS attacks, tremendous efforts have been
made from both academia and industry [26], [39]. However,
few of the existing DDoS mitigation techniques have been
considered for widespread deployment, primarily because of
their implementation and deployment complexities, as well
as prohibitive operational costs. One of the major reasons is
that they usually require large network connection state tables
to be maintained at routers or switches, resulting in extra
storage and computational burdens. Also, some techniques like
packet marking [4], [29] require a huge amount of packets
to be monitored and collected, incurring additional processing
overhead. More importantly, the operation of those techniques
rely on the deployment of additional modules or devices,
increasing deployment complexity. Overall, such strong design
and deployment assumptions indicate a lack of autonomic
properties, causing non-trivial labor cost and response la-
tency. Despite early efforts on designing autonomic DDoS
response [15], [33], their scalability and operational costs are
questionable in the face of large-scale deployment, mainly
due to the intensive collaboration and communication between
different detection modules that must be installed in advance.
Additionally, although an anomaly detection framework pro-
posed in [40] can preserve some autonomic properties, its
usability and effectiveness on DDoS mitigation in conventional
networks has not been experimentally validated.

Therefore, it is desirable to make DDoS mitigation au-
tomated, lightweight, scalable, and easy-to-manage. While it
is a fact that many design challenges still remain in the
community, the recent emergence and rapid development of
Software-Defined Networking (SDN) offer us an opportunity
to re-examine and improve anti-DDoS designs, thanks to the
decoupling of networking control plane and data plane, as
well as the controller’s programmability [25]. Since SDN
controller allows to obtain a global view of the network states
and achieve centralized network forensics [3], we envision
that the major functionalities of DDoS mitigation schemes
can be similarly implemented at the SDN controllers, as the
framework proposed in [30]. As such, human intervention
will not be necessarily required to manage and maintain the

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
SENT ’15, 8 February 2015, San Diego, CA, USA
Copyright 2015 Internet Society, ISBN 1-891562-39-8
http://dx.doi.org/10.14722/sent.2015.23004



DDoS mitigation schemes. Also, as mitigation functions can
be abstracted and integrated at the application layer of SDN,
installation of specific devices is no more a compelling need.
Meanwhile, the computational overhead at the routers and
switches can be significantly reduced, as large connection
states or flow tables can be migrated and handled by the SDN
controller. More interestingly, some security applications or
APIs can be deployed at the SDN controller, allowing ISPs
to provide DDoS mitigation as an on-demand service to their
customers [2].

This paper reports some preliminary results of our ongoing
project, which aims to develop an autonomic DDoS mitigation
framework by using SDN technologies. We firstly present a
critical analysis of the existing anti-DDoS schemes in terms
of autonomic properties. Then, we propose a generic SDN-
based mitigation framework, with detailed illustration on major
functional components. We further exemplify the application
of our framework through a use case, with an objective to
examine the feasibility of our proposal design, i.e., the ISPs
and their customers can effectively collaborate to mitigate
DDoS attacks based on the real-time communication between
DDoS monitoring, analysis, detection, and reaction modulars.

II. KEY OBSERVATIONS AND MOTIVATION

Our work starts with an evaluation of existing anti-DDoS
mechanisms, which cover the entire security life-cycle from
prevention and detection to characterization to response. The
schemes we have investigated can be clustered into four
categories: capability-based, congestion control, policy-based
and traceback mechanisms. In the following, we will briefly
discuss the four categories and analyze their limitations.

DDoS prevention and detection. The capability-based tech-
niques, such as the ones reported in [19], [37], [38], usually
assume that the sender and the receiver may need to establish a
privileged channel for communication: the sender asks for the
capability token from the receiver, and if the receiver agrees
to establish the connection, it sends a capability token to the
sender, who then embeds this token in the subsequent packets.
Clearly, capability-based systems can prevent DDoS attacks
from happening, but network-wide infrastructure support is
necessary. The system may fail to work in the presence of
any networking device failure. Another preventive anti-DDoS
approach is intelligent congestion control, which aims to limit
traffic rates based on the given thresholds. One typical example
is Pushback [13], which alerts upstream routers of the victim
to drop the attack traffic based on the congestion signatures
that are generated beforehand, while only legitimate traffic is
permitted to flow through the network. However, such filtering
schemes also require additional devices to be deployed at every
routers in the network. The whole system may come to halt if
one device at the downstream router fails, since the congestion
signature can not be propagated to the upstream routers.

DDoS reaction or mitigation. The work reported in [20],
[28] show that some stateful DDoS mitigation policies can be
specified to redirect DDoS traffic to middleboxes on demand
when the customer experiences an attack. In particular, the
dFence model proposed in [20] requires middleboxes to be
deployed in the core network, and both directions of IP
traffic should be intercepted. In addition, IP traceback mecha-
nisms [29] have also been proposed to mitigate DDoS attacks.

Fig. 1. Customer-oriented Collaborative DDoS Mitigation Framework:
spanning from one customer network to (multiple) ISP networks.

The idea is to mark IP packets with some information like
the router’s ingress interface or its ID, which will then be
used to reconstruct the path from the victim to the attack
source. However, due to the fact that different paths may end
up with the same Path ID [36], the false positive rate is quite
high. Also, the generation and maintenance of marks introduce
processing overhead at the routers, and the victim is required
to collect a large number of packets to identify the attack path
and initiate traceback process.

Our analysis shows that most of anti-DDoS mechanisms
may perform well in terms of detection capability and mit-
igation efficiency, but the lack of self-management capabil-
ity heavily deter their deployment and operation at large
scale in practice. Thanks to the recent emergence of SDN
paradigm, which is believed to be a promising solution to
reduce the complexity of network management, we envision
that DDoS mitigation schemes can be effectively implemented
and deployed at SDN controllers, paving a way for ISPs and
network customers to defend against DDoS attacks together
by correlating and sharing the tasks of monitoring, analysis,
detection and mitigation. While the widespread deployment of
SDN technology in ISP networks is still at an early stage, we
intend to investigate, demonstrate and verify the feasibility of
using SDN to enhance DDoS mitigation.

III. DESIGN FRAMEWORK

A. Design assumptions and overview

Our framework is built on the following assumptions: (1)
DDoS mitigation and traffic engineering are provided as an on-
demand services to the customers, who need to subscribe to
these services beforehand. That requires ISPs and customers to
cooperate with each other to achieve DDoS mitigation on their
agreements or willingness; (2) DDoS detection modules are
running in the customer network and generate security alerts,
so the customers can tailor their detection modules to particular
attacks of concern; (3) both customer networks and ISPs have
their own SDN controllers running and communicating in
reliable and secure ways. As shown in Fig. 1, the framework
is distributed across the ISP and customer networks, and the
operational workflow (labeled with step No. in the figure) can
be described as follows:

2



1) Traffic that enters in the ISP network is tagged by the
access switches. Tag APIs runs at the access switches;

2) Flow statistics are periodically collected from SDN
switches by a collector at the customer controller,
OpenFlow exposes an API to obtain flow statistics,
Statistics can be collected from both the customer and
ISP networks, the latter requiring subscription to the
service;

3) The anomaly detection engine take the flow statistics
as input;

4) Threat alerts are generated in the presence of anoma-
lous (either suspicious or malicious) traffic and passed
to the policy engine, which in turn generates some
policy rules corresponding to the alert;

5) The SDN controller of customer network enforces
reaction polices at local routers;

6) Meanwhile, the anomalous flow information (actually
a tag previously inserted at the ISP network) and
corresponding countermeasure requests are sent by
customer controller to ISP controller, which then
changes the flow label information of the incoming
flows of concern1, and instructs access routers to label
the relevant packets (identified by the tag provided by
the customer – the generation of tags is detailed in
Algorithm 2).

7) As a result of previous step, the identified suspicious
or malicious traffic will be redirected to the corre-
sponding middlebox (a mitigation example is given
in Algorithm 1).

B. Major Framework Components

OpenFlow Switch. According to the OpenFlow specifica-
tions in [24], OpenFlow-enabled switches maintain flow tables
to perform packet lookups and forwarding. Basically, flow
entries consist of match fields, counters, and actions to be
applied to the matching flows. Upon reception of the flow,
OpenFlow switches perform a lookup operation in the flow
table: if it does not have the entry for that flow then the flow
information is forwarded to the controller.

Middlebox. Middleboxes are devices enforcing the secu-
rity policies in order to mitigate attacks. In our framework, we
have assumed that middleboxes may store and enforce different
kinds of security policies that tackle different classes of DDoS
attacks. Instead of versatile middleboxes, we may also deploy
specialized ones that address a single class of attacks, therefore
enforcing a single policy.

Monitoring Plane. It consists of the two following mod-
ules:

• Flow Statistics Collector, which collects the flow
information from OpenFlow switches and forwards it
to the detection engine. OpenFlow switches maintain
counters for each flow table and flow entry. The
customer controller can periodically requests to collect
flow statistics of interest from the switches, to that end,

1Note that when the flows arrive at the access routers in the ISP network,
the routers will check the flow entry in their flow table. If the flow information
does not exist, it will be forwarded to the ISP controller, which then assigns the
label according to the policy in the network thanks to its end-to-end network
visibility and centralized network policy.

some flow statistics collection techniques have already
been experimented with SDN technology in [6], [21].

• Detection Engine, which takes the flow statistics from
the collector as inputs and generates security alerts
when anomalous flows are identified. The alerts then
trigger the policy engine for incoming flows to be
processed accordingly. In our mitigation technique it
is out of scope to propose a flow statistics based
detection method. For the flow statistics collection,
we rely on some past proposal [10] which shows that
OpenFlow and sFlow can be used for the collection of
flow statistics and detection of anomalies in the traffic.

Policy Engine. On reception of an alert from the detection
engine, it generates some rules to address the anomalous flow
that has been identified. These rules are then stored in a lookup
table for later enforcement. Finally, the controller deploys the
rules to OpenFlow switches.

Security APIs. The framework allows ISPs to provide se-
curity functions to the customer through APIs at the controller,
enabling on demand security as a service. Requests include
the deployment of a middlebox to filter suspicious traffic,
or blocking malicious traffic. The customer can also assign
priority to the flows through these APIs, to provide preferential
treatment to the legitimate traffic. The security services are
only available to subscribed customers. This kind of security
APIs have already been proposed in [2], [18]. This is also
being currently discussed at the IETF under the non working
group I2NSF [9] which aims at standardizing these security
functions, prompting them to be available for widespread use
in coming years.

Path lookup. Our framework also assumes that paths are
pre-computed by the ISP. Similar to ETHANE [7], paths can
be computed using an all-pairs shortest path algorithm [8].
If a link fails then the paths can be computed again. The
path lookup component maintains a table of paths (from the
ingress switch to the egress switch) sorted according to the
quality of service provided by the paths, associated to unique
labels. Paths are later assigned to flows based on the traffic
class that they belong to [11]. For example, legitimate flows
are assigned to high priority paths while suspicious flows are
assigned to paths containing middleboxes (possibly longer in
terms of hops). Finally, malicious flows are forwarded through
paths which lead to a sinkhole. In our framework, the path
lookup module takes inputs from the policy engine (required
level of QoS and policy rules) and returns the paths that match.

Flow Label API. As aforementioned, flows which are not
present in the flow table of the access switches are forwarded
to the controller using the PACKET-IN message as described
in the OpenFlow specification in [24], and they are installed
in the flow table using the FLOW-MOD message according
to the controller’s centralized network policy. Leveraging the
network end-to-end visibility provided by the SDN controller,
flows are assigned a label which sets a path for the flow, from
the ingress switch to the egress switch. The purpose of using
the label is for fast switching and rerouting, as the switches
can simply check the label and forward the flow to the next
hop, instead of parsing the whole packet header. Additionally,
it alleviates the load on the OpenFlow switches (except for
ingress switches) by reducing the number of entries in their

3



flow table, to the label entries. In practice, the label can be
assigned using the OpenFlow’s Push action, rewriting the 12-
bit VLAN ID field [24].

Attack Mitigation. Based on the pre-computed path asso-
ciated to the anomalous flow, this module deploys middleboxes
at given points in this path(identified by the label produced by
the Flow Label API and then attached to the anomalous flow)
before the anomalous traffic reaches the customer network.
Based on the tags provided by the customer controller’s
detection engine, the ISP controller modifies the labels for the
relevant flow entries, in order for these flows to be processed
by middleboxes. An example of a mitigation algorithm is given
in Alg. 1.

Algorithm 1 Mitigation(alert)→ Action

if alert.level is malicious then
controller.F lowTable← modLabel(tag,malicious label)
return Action(tag,Drop()) // the drop policy is returned for
the malicious tag

end if
if alert.level is suspicious then

controller.F lowTable← modLabel(tag, suspicious label)
return Action(tag, [Fwd(middlebox), Fwd(customer)])
// a set of forwarding policies is returned for the suspicious tag
// and flow packets processed by the middlebox will be later
forwarded to the customer network

end if

Tag API. This module is used to generate a unique hash
tag. This action is performed at the access switches. This
API will be provided as an application to be deployed at the
switches using the ”configuration apply” command. This API
extracts the packet header, and uses the IP-4 tuple (source
IP, destination IP, source port, destination port) as input and
generates a unique tag to be inserted in the packet. This tag
number is inserted in the source MAC address field using the
Push Tag action [24]. A tag generation algorithm is given
in Alg. 2. This algorithm should be deterministic, outputting
a unique tag for a given flow. The tag helps to enforce a
consistent end-to-end network policy, and it also provides a
fine granularity to identify flows in a quick way. The tagging
function is performed at the access switches(edge switch). The
flows arriving at the access switches(edge switches) are tagged
by the access switches itself. As proposed in the [5], our
tagging function logic is encoded at the access switches(edge
switches) to minimize the overhead at the controller.

IV. USE CASE

The applicability of our technique is shown through an
example described in Fig. 2. The scenario, although simple,
involves all the components described in Section III-B and
provides a full cycle of the framework’s workflow. The com-
ponents in the use case are switches S1, S2, S3, S4, and a
middlebox, M1, attached to the switch S3. The switches S2
and S4 are egress switches in the ISP network forwarding the
flows to the customer network. Let us consider two external
hosts, one legitimate (denoted as L) and one malicious (A),
that communicate with a host (C) at the customer network.
This customer network is a client of the ISP on which Fig. 2 is
centered. Both networks have deployed our proposed scheme.
For the sake of brevity, we have omitted the controllers and

Algorithm 2 TagAPI(packet)→ packet

for each incoming packet p do
f ← Flow(p.IPsrc, p.Portsrc, p.IPdst, p.Portdst)
if f is in switch.FlowTable then

p.V LANID ← label
p.SourceMAC ← tag

else
PacketIN() // new flow is forwarded to the controller
new tag ← hash(f) // a new hash is generated at the access
switch based on flow information
p.SourceMAC ← new tag // the new tag is inserted in the
Source MAC field
p.V LANID ← controller.GenerateLabel(f) // the con-
troller assigns a label to the new flow
FlowMod(f, new tag, p.V LANID) //flow is installed in
the flow table of access switch
Send(new tag, controller) // Tag is forwarded to Con-
troller

end if
end for

Fig. 2. An example scenario illustrating the application of Labels and Tags:
action FWD means packet/flow forwarding.

their communication within the figure. We will focus on the
mitigation process at the ISP network instead.

The flows generated from both external hosts to host C have
been installed in the flow table of the ingress switch S1 the
first time they have entered the ISP network. Following Alg. 2,
S1 has generated a tag (L1 and A1 for L and A, respectively)
i.e, the hash computed over their IP 4-tuple and forwarded
this tag and flow information to its controller. The controller,
upon receiving new flows for which it does not have policy
rules available, considers them as legitimate and attaches a
label H to them, prompting switches to forward these flows’
packets through a high quality path. This high quality path is
denoted with a full arrow from S1 to the customer network,
and through switch S2. Flow table information of the switches
S1, S2, S3, and S4 are also maintained at the controller. The
label information is communicated to S1 by the controller.
Finally, S1 inserts the tag in the source MAC field, and the
label in the VLAN ID field of the packet before forwarding it
according to its path policy, that is the path computed for the
assigned label.

As indicated in Fig. 2, the flow table of S1 has already
been modified, with the label assigned to A being now L, which
indicates that it will be forwarded along a low quality path,
usually reserved to suspicious flows. This is the consequence
of an alert raised by the customer network for flows destined

4



to C and coming from A. The alert was issued by the customer
network controller indicating to the ISP controller to treat
tag A1 as a suspicious flow. Upon receiving the alert, the
ISP controller has modified its flow table, changing the label
assigned to tag A1 from H to L, prompting an update of the
flow table of S1. Now, any packet from flow A1 is switched
based on label L, i.e., following a low quality path (represented
using the dotted arrows in Fig. 2).

Switching the flow packets is done upon labels as described
in Section III-B, and is possible, thanks to the OpenFlow
ability to designate match fields in the packet’s header. In our
example, the actions in the flow tables of switches S1, S2,
S3 and S4 are computed according to the Policy engine at the
ISP’s controller. Therefore, the suspicious flow A1 is forwarded
to S3 for further processing, according to its flow table. At S3,
the Attack Mitigation component has deployed a middlebox
(identified as M1) to clean the traffic. According to S3’s flow
table, packets labeled as L must be forwarded to M1. Note that
other packets bearing different labels may reach S3 and hence
be forwarded directly to S4, as indicated in Fig. 2. Once the
traffic is cleaned through M1, packets are forwarded to S4,
which in turn will forward them to the customer network.
Meanwhile the traffic marked as H is directly sent to the
customer network with a high quality of service, preserving
legitimate hosts’ experience, throughout the attack mitigation
process. Additionally, when suspicious flows are processed by
one or several middleboxes, these middleboxes may alter the
packet header fields, which usually violate the security policy
for these flows, as subsequent middleboxes may not be able
to match the packets based on flow information. However,
the tags we have proposed in this framework also help in
correlating packets belonging to a given flow in a way that
remains consistent throughout the network. The mitigation
process stops upon request from the customer.

V. DISCUSSIONS

The previous design descriptions and use case demonstrate
that our proposed scheme preserve self-management properties
that make it possible to achieve autonomic DDoS mitigation. In
general, the SDN controllers make reactions on an event basis
and dynamically adapt security policies to handle suspicious
and malicious flows. Then the policy changes will eventually
lead to the automated configuration of the OpenFlow switches.
Also, the end-to-end visibility yielded at the controller allows
to optimize the deployment of middleboxes and the computa-
tion of flow paths with different QoS levels. In particular, the
path computation modular inherently provides failover when a
link or a switch fails.

More specifically, the usage of tags and labels make it pos-
sible to achieve flexible and consistent packet switching: the
labels convey the class of traffic being processed, aggregating
different flows (or tags) under a single identifier which can be
quickly switched throughout the network. Thanks to the global
view of the network obtained by the SDN controller, label and
action information can be precisely and quickly forwarded to
the appropriate switches in order to rapidly modify the policy
for a given tag.

In addition, the flow processing capability and scalability
deserve careful consideration. In our framework, the SDN

controller can install the rules in the OpenFlow switches on
demand and can label the packets with VLAN-ID field without
incurring too much overhead. Also, the migration of tagging
function to access switches can reduce the processing overhead
of SDN controller, making it more scalable. In fact, some
existing work has shown that one single SDN controller is
sufficiently scalable to handle huge amount of traffic, e.g.,
the NOX-MT and Beacon controllers can handle 50, 000 new
flow requests per second, and the processing capability can
be improved to handle 1.6M new flow requests per second
with average response time of 2 milliseconds on a eight core
machine [22].

VI. RELATED WORK AND OPEN ISSUES

It has been recognized that the decoupling of data plane and
control plane makes SDN as a promising solution to enable
customizable security services [30] and to deal with DDoS
attacks, few solid SDN-based solution has been proposed
so far. Thanks to some early efforts on developing security
functions and APIs, I2NSF [9] network group is undertaking
their standardization. For instance, in [2], the authors assume
that ISPs provide a security API to the customers to request
for traffic filtering and rerouting. Then a victim can request
multiple ISPs to trace back the attack, identify the attack
source, and send commands to ISPs to mitigate the attacks.
But no specific mitigation techniques are discussed in this
architecture. In the prototype Drawbridge [18], the customers
can subscribe to traffic engineering services provided by
ISPs, based on the assumption that the customer’s controller
communicates with the ISP’s controller which then enforces
the rules to the SDN switches deployed at the ISP network.
In this case, the ISP needs to share the its policy enforce-
ment point(PEP) with the customer. Also, Brocade proposes
a proprietary solution [17], which provides a web based user
interface to the customer to request for traffic filtering: when
the customer network experiences the attack, the packets of
concern are simply dropped based on a threshold value. As
this is a proprietary solution, the technique details about this
proposal are unclear. In CenterTrack [34], traffic of interest
is rerouted to some special tracking routers, which determine
the ingress edge routers through which packets arrived in the
network. The main drawback of this technique is the need
to deploy special tracking routers. In NetFuse [35], a proxy
device is deployed between the switches and the controller.
The proxy monitors the network load, and instructs switches
to reroute any overloading flows to NetFuse devices. In this
case, NetFuse devices may be overloaded by the attacker. In
our proposal, middleboxes are deployed by the ISP’s controller
only upon the customer’s request, i.e., when a suspicious flow
has been detected.

As the research on software defined networking is surg-
ing, many open issues arise in both networking and security
domains. In particular, SDN controller, by design, serves as
single point of failure, potentially attracting many attacks [16].
Its protection is therefore very challenging due to the broad
attack surface, ranging from the southbound interface between
controller and SDN switches to the vulnerable applications or
services running at the application layer, to security policies
enforced to the centralized controller through northbound
APIs. OpenFlow [23] supports authentication using certificates
and encryption to secure the connection between controller and

5



switches. To protect the SDN infrastructure from the attack
through northbound APIs, the authentication and verification of
security policies and rules is necessary before enforcing them
to the networking devices in the data plane. In Rosemary [31],
a robust and secure SDN controller has been designed. The
main objective of the Rosemary’s is to prevent applications
from executing in such a way that will corrupt the SDN
controller. The Rosemary controller can handle more than 10
million flow requests per second. In AVANT GUARD [32],
some intelligence is added to the data plane to address the
issue of DoS attacks between the data plane and control
plane. The adversary could target our mitigation approach
by implementing the traffic stream in such a way to cause
the client to saturate the controller of the ISP with flow
labeling logic. This issue can be addressed to some extent
by providing the services to those clients who are subscribed
to the mitigation services. Another important issue deals with
conflicting rules [27], especially when multiple controllers are
deployed in the same network. Although the current framework
assumes one controller at the customer side and one controller
at the ISP side (or one-to-one controller mode), it can be
hopefully extended to one-to-many mode, i.e., one customer
requests multiple ISPs to mitigate the attack, by appropriately
resolving controller scalability and rule conflicts issues.

VII. CONCLUSION AND FUTURE WORK

This paper reported our ongoing effort on developing an
autonomic DDoS mitigation mechanism by leveraging SDN
paradigm to provide on-demand DDoS mitigation services to
ISP network customers, ultimately allowing the ISPs and their
customers to collaboratively thwart DDoS attacks. In particu-
lar, we demonstrated that SDN controller may facilitate ISPs
to deploy appropriate DDoS mitigation techniques, e.g., dif-
ferentiating legitimate traffic and redirecting suspicious traffic
to pre-deployed middleboxes, based on the threat information
provided by the customers and their particular concerns.

Our future work will be focused on enriching the frame-
work, improving and implementing its major components: (1)
we will further study the effectiveness of our DDoS mitigation
framework with focuses on its scalability on handling a large
number of mitigation requests from multiple customers, as well
as the case that one customer sends mitigation requests to
multiple ISPs. The response latency on redirecting suspicious
traffic to the middlebox will be also studied; (2) we will
continue improving the efficiency of traffic tagging and label-
ing techniques, as well as the fast deployment of tags-driven
mitigation middleboxes; (3) we will develop prototypes and
implement our schemes via testbed for performance evaluation.

ACKNOWLEDGMENT

This research has been supported by the Strategic Interna-
tional Collaborative R&D Promotion Project of the Ministry of
Internal Affairs and Communication, Japan, and by the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement No. 608533 (NECOMA). The opinions
expressed in this paper are those of the authors and do not
necessarily reflect the views of the Ministry of Internal Affairs
and Communications, Japan, or of the European Commission.

REFERENCES

[1] Akamai, “Prolexic Quarterly Global DDoS Attack Report Q1 2014,”
Prolexic, Tech. Rep., 2014.

[2] A. Alwabel, M. Yu, Y. Zhang, and J. Mirkovic, “SENSS: Observe and
Control Your Own Traffic in the Internet,” in Proceedings of the 2014
ACM Conference on SIGCOMM. New York, NY, USA: ACM, 2014,
pp. 349–350.

[3] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou, “Let SDN Be
Your Eyes: Secure Forensics in Data Center Networks,” in Proceedings
of the NDSS Workshop on Security of Emerging Network Technologies
(SENT), Feb. 2014.

[4] A. Belenky and N. Ansari, “On Deterministic Packet Marking,” Comput.
Netw., vol. 51, no. 10, pp. 2677–2700, Jul. 2007.

[5] R. Bifulco and G. Karame, “Towards a richer set of services in software-
defined networks,” in Proceedings of the NDSS Workshop on Security
of Emerging Technologies (SENT), 2014.

[6] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in 35th IEEE Conference on Local
Computer Networks (LCN), Oct 2010, pp. 408–415.

[7] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, Aug. 2007.

[8] C. Demetrescu and G. F. Italiano, “A new approach to dynamic all
pairs shortest paths,” in 35th Annual ACM Symposium on Theory of
Computing (STOC), 2003, pp. 159–166.

[9] L. Dunbar, M. Zarny, C. Jacquenet, and S. Chakrabarty, “Interface
to Network Security Functions Problem Statement,” Working Draft,
IETF, Internet-Draft dunbar-i2nsf-problem-statement-01, September
2014. [Online]. Available: http://www.ietf.org/internet-drafts/draft-
dunbar-i2nsf-problem-statement-01.txt

[10] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining openflow and sflow for an effective and
scalable anomaly detection and mitigation mechanism on sdn environ-
ments,” Computer Networks, vol. 62, no. 0, pp. 122 – 136, 2014.

[11] N. Hachem, H. Debar, and J. Garcia-Alfaro, “HADEGA: A novel
MPLS-based mitigation solution to handle network attacks,” in 31st
IEEE International Performance Computing and Communications Con-
ference (IPCCC), Dec 2012, pp. 171–180.

[12] R. Hansen, J. Kinsella, and H. Gonzalez, “Slowloris HTTP DoS,” 2009.

[13] J. Ioannidis and S. M. Bellovin, “Implementing Pushback: Router-
Based Defense Against DDoS Attacks,” in Proceedings of Network and
Distributed System Security Symposium (NDSS), 2002.

[14] M.-S. Kim, H.-J. Kong, S.-C. Hong, S.-H. Chung, and J. Hong, “A flow-
based method for abnormal network traffic detection,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS), vol. 1, Apr.
2004, pp. 599–612 Vol.1.

[15] G. N. Koutepas, F. Stamatelopoulos, and V. Maglaris, “Distributed
Management Architecture for Cooperative Detection and Reaction to
DDoS Attacks,” Journal of Network and Systems Management, vol. 12,
pp. 73–94, 2004.

[16] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and depend-
able software-defined networks,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 55–60.

[17] R. Krishnan and M. Durrani, “Real-time SDN Analytics for DDoS
mitigation,” 2014.

[18] J. Li, S. Berg, M. Zhang, P. Reiher, and T. Wei, “Drawbridge: Software-
defined DDoS-resistant Traffic Engineering,” in Proceedings of the 2014
ACM Conference on SIGCOMM. New York, NY, USA: ACM, 2014,
pp. 591–592.

[19] X. Liu, X. Yang, and Y. Xia, “NetFence: preventing internet denial of
service from inside out,” SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, Aug. 2010.

[20] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang, “dFence:
Transparent Network-based Denial of Service Mitigation,” in Proceed-
ings of the 4th USENIX Conference on Networked Systems Design
Implementation (NSDI). Berkeley, CA, USA: USENIX Association,
2007, pp. 24–24.

6



[21] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting Traffic Anomaly
Detection Using Software Defined Networking,” in Recent Advances in
Intrusion Detection, ser. Lecture Notes in Computer Science, R. Som-
mer, D. Balzarotti, and G. Maier, Eds. Springer Berlin Heidelberg,
2011, vol. 6961, pp. 161–180.

[22] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future
of programmable networks,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 3, pp. 1617–1634, Third 2014.

[23] Open Networking Foundation, “SDN Security Considerations in the
Data Center,” ONF, Tech. Rep., 2012.

[24] ——, “OpenFlow Switch Specification Version 1.4.0,” ONF, Tech. Rep.,
2013.

[25] ——, “SDN Architecture Overview,” ONF, Tech. Rep., 2013.
[26] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of Network-

based Defense Mechanisms Countering the DoS and DDoS Problems,”
ACM Comput. Surv., vol. 39, no. 1, Apr. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1216370.1216373

[27] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 121–126.

[28] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN,” SIG-
COMM Comput. Commun. Rev., vol. 43, no. 4, pp. 27–38, Aug. 2013.

[29] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical Network
Support for IP Traceback,” SIGCOMM Comput. Commun. Rev., vol. 30,
no. 4, pp. 295–306, Aug. 2000.

[30] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson, “FRESCO: Modular Composable Security Services for
Software-Defined Networks,” in Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS), 2013.

[31] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A Robust, Secure, and High-
performance Network Operating System,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
New York, NY, USA: ACM, 2014, pp. 78–89.

[32] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and Vigilant Switch Flow Management in Software-defined
Networks,” in Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. New York, NY, USA: ACM,
2013, pp. 413–424.

[33] D. Sterne, K. Djahandari, B. Wilson, B. Babson, D. Schnackenberg,
H. Holliday, and T. Reid, “Autonomic Response to Distributed Denial
of Service Attacks,” in Recent Advances in Intrusion Detection, ser.
LNCS. Springer Berlin Heidelberg, 2001, vol. 2212.

[34] R. Stone, “Centertrack: An ip overlay network for tracking dos floods,”
in Proceedings of the 9th Conference on USENIX Security Symposium
- Volume 9, ser. SSYM’00, 2000, pp. 15–15.

[35] Y. Wang, Y. Zhang, V. Singh, C. Lumezanu, and G. Jiang, “Netfuse:
Short-circuiting traffic surges in the cloud,” in Communications (ICC),
2013 IEEE International Conference on, June 2013, pp. 3514–3518.

[36] A. Yaar, A. Perrig, and D. Song, “Pi: a path identification mechanism
to defend against DDoS attacks,” in Security and Privacy, 2003.
Proceedings. 2003 Symposium on, May 2003, pp. 93–107.

[37] ——, “SIFF: a stateless Internet flow filter to mitigate DDoS flooding
attacks,” in Proceedings of the 2004 IEEE Symposium on Security and
Privacy, May 2004, pp. 130–143.

[38] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting Network
Architecture,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp.
241–252, Aug. 2005.

[39] S. T. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks,” IEEE
Communications Surveys and Tutorials, vol. 15, no. 4, pp. 2046–2069,
2013.

[40] Z. Zhang, F. Naı̈t-Abdesselam, P. Ho, and Y. Kadobayashi, “Toward
cost-sensitive self-optimizing anomaly detection and response in auto-
nomic networks,” Computers & Security, vol. 30, no. 6-7, pp. 525–537,
2011.

7


