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ABSTRACT

Algorithms for learning to rank Web documents, display ads, or
other types of items constitute a fundamental component of search
engines and more generally of online services. In such systems,
when a user makes a request or visits a web page, an ordered list
of items (e.g. documents or ads) is displayed; the user scans this
list in order, and clicks on the first relevant item if any. When the
user clicks on an item, the reward collected by the system typi-
cally decreases with the position of the item in the displayed list.
The main challenge in the design of sequential list selection algo-
rithms stems from the fact that the probabilities with which the user
clicks on the various items are unknown and need to be learned. We
formulate the design of such algorithms as a stochastic bandit op-
timization problem. This problem differs from the classical bandit
framework: (1) the type of feedback received by the system de-
pends on the actual relevance of the various items in the displayed
list (if the user clicks on the last item, we know that none of the
previous items in the list are relevant); (2) there are inherent cor-
relations between the average relevance of the items (e.g. the user
may be interested in a specific topic only). We assume that items
are categorized according to their topic and that users are clustered,
so that users of the same cluster are interested in the same topic.
We investigate several scenarios depending on the available side-
information on the user before selecting the displayed list: (a) we
first treat the case where the topic the user is interested in is known
when she places a request; (b) we then study the case where the user
cluster is known but the mapping between user clusters and topics
is unknown. For both scenarios, we derive regret lower bounds and
devise algorithms that approach these fundamental limits.
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1. INTRODUCTION
In this paper, we address the problem of learning to rank a set of

items based on user feedback. Specifically, we consider a service,
where users repeatedly issue queries (e.g. a text string). There are
N items, and given the query, a decision maker picks an ordered
subset or list of items of size L to be presented to the user. The
user examines the items of the list in order, and clicks on the first
item she is interested in. The goal for the decision maker is to max-
imize the number of clicks (over a fixed time horizon, i.e., for a
fixed number of queries), and to present the most relevant items
in the first slots or positions in the list. The probability for a user
to click on an item is unknown to the decision maker initially, and
must be learned in an on-line manner, through trial and error. The
problem of learning to rank is fundamental in the design of several
online services such as search engines [1], ad-display systems [2]
and video-on-demand services where the presented items are web-
pages, ads, and movies, respectively.

The main challenge in the design of learning-to-rank algorithms
stems from the prohibitively high number of possible decisions:
there are N !/(N − L)! possible lists and typically, we may have
more than 1000 items and 10 slots. Hence even trying each de-
cision once can be too costly and inefficient. Fortunately, when
selecting a list of items, the decision maker may leverage useful
side-information about both the user and her query. For instance,
in search engines, the decision maker may be aware of her gender,
age, location, etc., and could also infer from her query the type of
documents she is interested in (i.e., the topic of her query), which
in turn may significantly prune the set of items to choose from.
Formally, we assume that the set of items can be categorized into
K different disjoint groups, each group corresponding to a given
topic. Similarly, users are clustered into K classes, such that a
class-k user is interested in items in group h(k) only (h is a 1-
to-1 mapping from the user classes to the groups of items). This
structure simplifies the problem. Two main issues remain however.
1) Even though we could know the class k of the user issuing the
query as well as the group of items of interest h(k), we still need
to select in that group the L most relevant items. 2) The topic of
the query could remain unclear. For example, the query "jaguar"
in a search engine may correspond to several topics, for instance a
car manufacturer, an animal or a petascale supercomputer. In this
case, it seems appropriate to select items from several groups to
make sure that at least one item in the list is relevant. This feature
is referred to as diversity principle in the literature [3]. Another
important and final feature of the problem stems from the nature
of the decisions: The reward, e.g. the probability that there exists
a relevant item in the displayed list, typically exhibits diminishing

returns, e.g., it can be a submodular function of the set of displayed
items [4].



We propose a model that captures both the diversity principle
and the diminishing return property, and formalize the problem of
designing online learning-to-rank algorithms as a stochastic struc-
tured Multi-Armed Bandit (MAB) problem. Stochastic MAB prob-
lems [5,6] constitute the most fundamental sequential decision prob-
lems with an exploration vs. exploitation trade-off. In such prob-
lems, the decision maker selects an arm (here a list of items) in each
round, and observes a realization of the corresponding unknown
reward distribution. Each decision is based on past decisions and
observed rewards. The objective is to maximize the expected cu-
mulative reward over some time horizon by balancing exploitation
(arms with higher observed rewards should be selected often) and
exploration (all arms should be explored to learn their average re-
wards). Equivalently, the performance of a decision rule or algo-
rithm can be measured through its expected regret, defined as the
gap between the expected reward achieved by the algorithm and
that achieved by an Oracle algorithm always selecting the best arm.
Our MAB problem differs from the classical bandit framework in
several ways. First, the type of feedback received by the system de-
pends on the actual relevance of the various items in the displayed
list. For example, if the user clicks on the last item, we know that
none of the previous items in the list are relevant. Conversely, if the
user clicks on the first item, we do not get any feedback for the sub-
sequent items in the list. Then, the rewards of two lists containing
a common item are not independent.

There has recently been an important effort to tackle structured
MAB problems similar to ours, refer to Section 2 for a survey of
existing results. The design of previously proposed learning-to-
rank algorithms has been based on heuristics, and these algorithms
seem like reasonable solutions to the problem. In contrast, here,
our aim is to devise algorithms with provably minimum regret. Our
contributions are as follows:

(i) We first investigate the case where the topic of the user query
is known. We derive problem-specific regret lower bounds satis-
fied by any algorithm. We also propose PIE (Parsimonious Item
Exploration), an algorithm whose regret matches our lower bound,
and scales as O(Nh(k) log(T )) when applied to queries of class-k
users. Here Nk denotes the number of items in the group h(k), and
T denotes the time horizon, i.e., the number of queries. The explo-
ration of apparently suboptimal items under PIE is parsimonious,
as these items are explored only in a single position of the list.

(ii) We then handle the case where the class of the user issuing
the query is known, but the group of items she is interested in is
not (i.e., the mapping h is unknown). For this scenario, we propose
PIE-C (where "C" stands for "Clustered"), an algorithm that effi-
ciently learns the mapping h, and in turn, exhibits the same regret
guarantees as PIE, i.e., as if the mapping h was known initially. In
fact, we establish that learning the topic of interest for each user
class incurs a constant regret (i.e., that does not scale with the time
horizon T ).

(iii) Finally, we illustrate the performance of PIE and PIE-C us-
ing numerical experiments. To this aim, we use both artificially
generated data and real-world data extracted from the MovieLens
dataset. In all cases, our algorithms outperform existing algorithms.

2. RELATED WORK
Learning to rank relevant contents has attracted a lot of attention

in recent years with an increasing trend of modeling the problem
as a MAB with semi-bandit feedback. Most of existing models for
search engines do not introduce a sufficiently strong structure to
allow for the design of efficient algorithms. For example, in [3,4,7–
9], the authors hardly impose any structure in their model. Indeed,
they consider scenarios where the random variables representing

the relevance of the various items are arbitrarily correlated, and
even sometimes depart from the stochastic setting by considering
adversarial item relevances. The only important structure that these
work consider relates to the diminishing return property, and they
typically assume that the reward is just a submodular function of
the subset of displayed items, see e.g. [4]. As a consequence, the
regret guarantees that can be achieved in the corresponding MAB
problems (e.g. submodular bandit problems) are weak; a regret
with sublinear scaling in the time horizon cannot be achieved. For
instance, in submodular bandits, and its variants, the regret has to
be defined by considering, as a benchmark, the performance of the
best offline polynomial-time algorithm whose approximation ratio
is 1−1/e [10] unless NP ⊂ DTIME(nlog log(n)), which indeed
implies that the true regret scales linearly with time. In absence of
strong structure, one cannot hope to develop algorithms that learn
to rank items in a reasonable time. We believe that our model by
its additional and natural clustered structure is more appropriate,
and in turn, allows us to devise efficient algorithms, i.e., algorithms
whose regret scales as log(T ) as the time horizon T grows large.

In [11], Kholi et al. present an analysis close to ours. There, each
user is represented by a binary vector in {0, 1}N indicating the rel-
evance of the various items to that user, and users are assumed to
arrive according to an i.i.d. process with unknown distribution D.
They first assume that the relevances of the different items are in-
dependent, similar to our setting, and propose a UCB1-based al-
gorithm whose regret provably scales as O(NL log(T )). UCB1 is
unfortunately suboptimal, and as we show in this paper, one may
devise algorithms with regret scaling as O(N log(T )) in this set-
ting. Then, to extend their results to more general distributions
D (allowing for arbitrary correlations among items), the authors
of [11] leverage a recent and elegant result from [12] to establish
that a regret guarantee scaling as (1− 1/e)T .

In [13], Slivkins et al. investigate a scenario where items are
represented by vectors in a metric space, and assume that their rel-
evance probabilities are Lipschitz continuous. While this model
captures the positive correlation between similar items, it does not
account for negative correlations between topics. For example, if a
user issues the query "jaguar", and if she is not interested in cars, it
means that most likely her query concerns the animal.

There has been over the last decade an important research effort
towards the understanding of structured MAB problems, see [14]
for a recent survey. By structure, we mean that the reward as a
function of the arm has some specific properties. Various structures
have been investigated in the literature, e.g., Lipschitz [15–18], lin-
ear [19], convex [20]. The structure of the MAB problem corre-
sponding to the design of learning-to-rank algorithms is different,
and to our knowledge, this paper proposes the first solution (regret
lower bounds, and asymptotically optimal algorithms) to this prob-
lem.

3. SYSTEM MODEL

3.1 Users, Items, and Side-information
Our model captures the two important properties of online ser-

vices mentioned in the introduction, namely the diversity principle
and the diminishing return property. Let N = {1, .., N} be a set
of items (news, articles, files, etc.). Time proceeds in rounds. In
each round, a user makes a query and in response to this query, the
decision maker has to select from N an ordered list of L items.
We denote by U = {u ⊂ N : u = {u1, .., uL}, ui ∈ N , ui 6=
uj if i 6= j} the set of all possible decisions. The user scans the
selected list in order, and stops as soon as she identifies a relevant
item. In round n, the relevance of items to the user is captured by



a random vector X(n) = (Xi(n), i ∈ N ) ∈ {0, 1}N , where for
any item i, Xi(n) = 1 if and only if it is relevant.

Item / User classification. We assume that the set N is par-
tioned into K disjoint groups N1, . . . ,NK of respective cardinal-
ities N1, . . . , NK . For example, in the case of a query "jaguar",
we could consider three groups, corresponding to items related to
the animal, the car brand, or a super-computer. This partition of
the various items corresponds to the possible broad topics of user
queries. Similarly, we categorize users into K different classes, and
denote by h(k) the index of the topic of interest for class-k users,
i.e., the query of class-k users concern items in Nh(k). The map-
ping h could be known or not as discussed below. Denote by k(n)
the class of the user making the query in round n. (k(n), n ≥ 1)
are i.i.d. random variables with distribution φ = (φ1, . . . , φK)
where φk = P[k(n) = k] > 0. Now, given k(n) = k, (Xi(n), i ∈
N ) are independent. Let θki = P[Xi(n) = 1|k(n) = k] denote
the probability that item i is relevant to class-k users. As already
noticed in [9], the above independence assumption captures the di-
minishing return property. Indeed, given k(n) = k, if u is the set
of displayed items, the probability that the user finds at least one
relevant item in u is 1 −

∏L

i=1(1 − θkui
), which is a submodular

function of u (hence with diminishing return).
Observe that the set of users is not specified in our model. We

assume that there is an infinite pool of users, that the class of the
user issuing a query in round n is drawn from distribution φ, and
that this user does not issue any query in subsequent rounds. In
particular, we cannot learn the class of users from observations.
This contrasts with the model proposed in [21], where the set of
users is finite, and hence the decision maker can learn the classes
of the various users when they repeatedly place queries.

Diversity principle. To capture the diversity principle in our
model, we assume that when a user makes a query, she is interested
in a single topic only, i.e., in items within a single group Nh(k) only.
More precisely, we assume that for all k, ℓ ∈ [K] := {1, . . . , K}:

max
i∈Nℓ

θki

{

< δ if ℓ 6= h(k),
> ∆ if ℓ = h(k),

(1)

for some fixed 0 < δ < ∆ < 1. Typically, we assume that there is
an item that is highly relevant to users of a given class, so that e.g.,
∆ > 1/2. When in round n, the topic h(k(n)) is not known, items
of various types should be explored and displayed in the L slots so
that the chance of displaying a relevant item is maximized. In other
words, (1) captures the diversity principle.

Side-information and Feedback. In round n, under decision
rule π, an ordered list of L items is displayed. This decision de-
pends on past observations and some side information, i.e., in round
n, the decision rule π maps ((uπ(s), f(s), i(s), s < n), i(n)) to a
decision in U , where uπ(s), f(s), and i(s) denote the list selected
under π, the received feedback, and the side information in round
s, respectively.
Feedback: In round n, if the ordered list u = (u1, . . . , uL) is dis-
played, the decision maker is informed about the first relevant item
in the list, i.e., f(n) = min{i ≤ L : Xui

(n) = 1}. By con-
vention, f(n) = 0 if none of the displayed items is relevant. This
type of feedback is often referred to as semi-bandit feedback in the
bandit literature.
Side-information: we model different types of systems depending
on the information available to the decision maker about the user
placing the query. For example, when a user issues a query, one
could infer from her age, gender, location, and other attributes the
topic of her query. In such a case, the decision maker knows, before
displaying the list of items, the topic of the query, i.e., in round n,
i(n) = h(k(n)). Alternatively, the decision maker could know the

user class (which could be extracted from users’ interactions in a
social network) but not the topic of her query, i.e., i(n) = k(n). In
this case, the mapping h remains unknown.

3.2 Rewards and Regret
To formulate our objectives, we specify the reward of the system

when presenting a given ordered list, and introduce the notion of
regret which we will aim at minimizing.

The reward is assumed to be a decreasing function of the posi-
tion of the first relevant of its items, e.g., in search engines, it is
preferable to display the most relevant item first. The reward func-
tion is denoted by r(·), i.e., the reward is r(ℓ) where ℓ denotes the
position of the first relevant item in the list. In absence of relevant
item, no reward is collected. Without loss of generality, we assume
that rewards are in [0, 1].

In view of our assumptions, the expected reward when present-
ing an ordered list u to a class-k user is:

µθ(u, k) :=
L
∑

l=1

r(l)θkul

l−1
∏

i=1

(1− θkui
),

where θ := (θki, k ∈ [K], i ∈ N ) captures the statistical proper-
ties of the system.

The performance of a decision rule π is characterised through
the notion of regret which compares the performance of an Oracle
algorithm aware of the parameter θ to that of the decision rule π up
to a given time horizon T (in rounds). The way regret is defined
depends on the available side-information. To simplify the presen-
tation and the results, we make the two following assumptions:
(A1) In each group of items, there are at least L items that are rele-
vant with a probability greater than δ. In particular, Nk ≥ L for all
k ∈ [K].
(A2) The number of groups K is larger than the number of slots L.
Under these two assumptions, the performance of an Oracle algo-
rithm can be expressed in a simple way. It depends however on the
available side-information.

Known topic: When in each round n, the topic h(k(n)) is
known, the best decision in this round consists in displaying the
L most relevant items of group Nh(k(n)). For any user class k, and
ℓ = h(k), for all i ∈ [N ], iℓ denotes the item in Nℓ with the i-th
highest relevance: θk1ℓ ≥ θk2ℓ ≥ . . . ≥ θkNℓ

. The list maximiz-
ing the expected reward given that the user class is k(n) = k is
u⋆,k := (1h(k), . . . , Lh(k)). Thus, the expected reward under the
Oracle algorithm is:

µ⋆
1,θ :=

∑

k∈[K]

φkµθ(u
⋆,k, k),

and the regret under algorithm π up to round T is defined as:

Rπ
θ (T ) := Tµ⋆

1,θ − E

[

T
∑

n=1

µθ(u
π(n), k(n))

]

.

To simplify the presentation, we assume that given a user class
k, the optimal list is unique, i.e., for any u 6= u⋆,k, µθ(u, k) <
µθ(u

⋆,k, k).
Known user class, and unknown topic: In this case, since the

Oracle algorithm is aware of the parameter θ, it is also aware of the
mapping h. Thus, the regret of algorithm π is the same as in the
previous case, i.e., up to time T , the regret is Rπ

θ (T ).
Our objective is to devise efficient sequential list selection algo-

rithms in both scenarios, when the topic of successive queries are
known, and when only the class of the user issuing the query is
known.



4. A SINGLE GROUP OF ITEMS

AND USERS
In this section, we study the case where K = 1, i.e., there is a

single class of user and a single group of item. Even with K = 1,
our bandit problem remains challenging, due the non-linear reward
structure and the reward-specific feedback. To design efficient al-
gorithms, we need to determine how many and where apparently
sub-optimal items should be included for exploration in the dis-
played list.

When K = 1, we can drop the indexes k and h(k). To sim-
plify the notation, we replace θkih(k)

by θi for all i ∈ [N ]. More
precisely, we have N items, and users are statistically identical,
i.e., θi denotes the probability that item i is relevant. Let θ =
(θ1, . . . , θN ) and w.l.o.g. the items are ordered so that θ1 ≥ θ2 ≥
. . . ≥ θN . We denote by u⋆ = (1, . . . , L) the list with maxi-
mum expected reward, µ⋆

θ . The regret of policy π up to round T is
then Rπ

θ (T ) = Tµ⋆
θ − E[

∑T

n=1 µθ(u
π(n))], where µθ(u) is the

expected reward of list u.

4.1 Regret Lower Bound
We first derive a generic regret lower bound valid for any de-

creasing reward function r(·). This lower bound will be made
more explicit for particular choices of reward functions. We de-
fine uniformly good algorithms as in [22]. A uniformly good al-
gorithm π satisfies Rπ

θ (T ) = o(T a) for all parameters θ and all
a > 0. Later, it will become clear that such algorithms exist,
and therefore we only restrict our attention to the set of such al-
gorithms. We denote by I(a, b) the Kullback-Leibler divergence
between two Bernoulli distributions of respective means a and b,
i.e., I(a, b) = a log(a/b) + (1 − a) log((1 − a)/(1 − b)). We
further define U(i) = {u ∈ U : i ∈ u}, the set of lists in U that
include the item with the i-th highest relevance. Finally, for any list
u, and any item i ∈ u, we denote by pi(u) the position of i in u.

THEOREM 1. For any uniformly good algorithm π, we have:

lim inf
T→∞

Rπ(T )

log(T )
≥ c(θ), (2)

where c(θ) is the minimal value of the objective function in the

following optimization problem (Pθ):

inf
cu≥0,u∈U

∑

u∈U

cu(µ
⋆
θ − µθ(u)) (3)

s.t.
∑

u∈U(i)

cuI(θi, θL)
∏

s<pi(u)

(1− θus) ≥ 1,∀i > L.

The solution of the optimization problem (Pθ) has a natural in-
terpretation. For any u ∈ U , cu represents the expected number of
times the list u should be displayed using an algorithm minimizing
the regret. More precisely, u should be displayed cu log(T ) times
asymptotically when the time horizon T grows large. Theorem 1
and its above interpretation are applications of the theory of con-
trolled Markov chains with unknown transition kernel developed
in [23]. Next we specify the solution of (Pθ) for two particular
classes of reward functions. Define for i < L, ∆i = r(i)−r(i+1),
and ∆L = r(L).

1) Reward functions such that: ∆i ≥ ∆L > 0 for all i <
L. This assumption on the reward function seems natural in the
context of search engines where the rewards obtained from items
presented first are high and rapidly decrease as the position of the
item increases.

PROPOSITION 1. Assume that ∆i ≥ ∆L > 0 for i < L. Then

for all u ∈ U such that u 6= u⋆, the coefficient cu corresponding to

the solution of (Pθ) satisfies: If for some i > L, u = (1, . . . , L−
1, i),

cu =
1

I(θi, θL)
∏

j<L(1− θj)
,

else cu = 0. Hence, we have:

c(θ) = ∆L

N
∑

i=L+1

θL − θi
I(θi, θL)

.

The above proposition states that very few lists from Uk should
be explored Θ(log(T )) times. These lists include the (L−1) most
relevant items in the (L−1) first slots, and an item that is not within
the L most relevant items in the last slot. In other words, an opti-
mal algorithm should include only one sub-optimal item in the list
when it explores, and this item should be placed last. This observa-
tion will simplify the design of asymptotically optimal algorithms –
although of course, initially, the decision maker does not know the
(L − 1) most relevant items. Note that the minimum regret scales
as (N − L) log(T ); this indicates that optimal algorithms should
really exploit the reward and feedback structures.

2) Reward functions such that: ∆i = 0 for all i < L, and

∆L > 0. This scenario may be appropriate in the case of display
ads, where the reward obtained when a user clicks does not depend
on the position of the ad on the webpage.

PROPOSITION 2. Assume that ∆i = 0 for all i < L, and

∆L > 0. Then for all u ∈ U such that u 6= u⋆, the coefficient

cu corresponding to the solution of (Pθ) satisfies:

If for some i > L, u = (i, 1, . . . , L− 1),

cu =
1

I(θi, θL)
,

Else cu = 0. Hence, we have:

c(θ) = ∆L

∏

j<L

(1− θj)
N
∑

i=L+1

(θL − θi)

I(θi, θL)
.

Again the above proposition states that very few lists should be
explored Θ(log(T )) times. These lists are those containing the
(L − 1) most relevant items in the (L − 1) last positions, and an
item that is not within the L most relevant items in the first position.
In other words, the exploration of items is performed in the first
position. Observe that as in the previous case, the minimum regret
scales as (N − L) log(T ).

3) General Reward Function. An explicit expression for the
lower bound c(θ) for general reward function is more challenging
to derive. However, we suspect that the lists u such that cu > 0 are
wi

l = (1, . . . , (l − 1), i, l, . . . , (L − 1)) for some i > L. In other
words, only one suboptimal item, (i.e., for i > L, the i-th most
relevant item) is explored at a time, and we should explore i in the
l-th position. To determine this position, we make the following
heuristic reasoning. Let us fix the number of times i is explored.
Given this fixed exploration rate, we select position l that induces
the smallest regret. Let us assume that i is explored in slot l. When
the list wi

l is displayed, the probability pl that i is actually explored
is: pl =

∏l−1
j=1(1− θj). The average number of times i is actually

explored when placed in position l is proportional to 1/pl. Hence
the position oes(i) where i should be placed should satisfy:

oes(i) ∈ argmin
l≤L

f(θ, wi
l), (4)



where f(θ, wi
l ) =

µ⋆
θ−µθ(w

i
l )

pl
. Let wi = wi

oes(i). If the argmin in

(4) is realized for different positions, we break ties arbitrarily. We
state the following conjecture.

For any decreasing reward function r(·), and for u ∈ U , the
coefficient cu in the solution of (Pθ) has the following form:

cu =

{

1
I(θi,θL)poes(i)

if u = wi for some i > L,

0 otherwise.

Observe that the conjecture holds in Cases 1) and 2). In the for-
mer, it is optimal to place any suboptimal item i (i > L) in the
last slot, in which case poes(i) =

∏L−1
j=1 (1 − θj). In the latter, it

is optimal to place any suboptimal item i in the first slot, in which
case poes(i) = 1.

4.2 Optimal Algorithms
Next we present asymptotically optimal sequential list selection

algorithms, i.e., their limiting regret (as T grows large) matches the
lower bound derived above. To describe our algorithms, we need
to introduce the following definitions. Let u(n) be the list selected
in round n, and let pi(n) denote the position at which item i is
shown if i ∈ u(n), and pi(n) = 0 otherwise. Recall that a sample
of θi is obtained if and only if i ∈ u(n) and Xi′ (n) = 0 for all
i′ ∈ {u1(n), ..., upi(n)−1}. Define

oi(n) := 1
{

i ∈ u(n), ∀l′ < pi(n), Xul′ (n)(n) = 0
}

.

Then we get a sample from θi in round n iff oi(n) = 1. Let
ti(n) :=

∑

n′≤n oi(n
′) be the number of samples obtained for

θi up to round n. The corresponding empirical mean is:

θ̂i(n) =
1

ti(n)

∑

n′≤n

oi(n
′)Xi(n

′)

if ti(n) > 0 and θ̂i(n) = 0 otherwise. We also define ci(n)
as the number of times that a list containing i has been selected
up to round n: ci(n) :=

∑

n′≤n 1{i ∈ u(n′)}. Let j(n) =

(j1(n), ..., jN (n)) be the indices of the items with empirical means
sorted in decreasing order, so that:

θ̂j1(n)(n) ≥ θ̂j2(n)(n) ≥ ... ≥ θ̂jN (n)(n)

We assume that ties are broken arbitrarily. Define the list of L
"leaders" at time n as L(n) = (j1(n), ..., jL(n)). The algorithms
we propose use the indexes used by the KL-UCB algorithm, known
to be optimal in classical MAB problems [24]. The KL-UCB index
bi(n) of item i in round n is:

bi(n) = max{q ∈ [0, 1] : ti(n)I(θ̂i(n), q) ≤ f(n)},

where f(n) = log(n) + 4 log(log(n)). Let:

B(n) := {i 6∈ L(n) : bi(n) ≥ θ̂jL(n)(n)}.

be the set of items which are not in the set of leaders, and whose
index are larger than the empirical mean of item jL(n). Intuitively,
B(n) includes items which are potentially better than the worst cur-
rent leader. For 1 ≤ i ≤ N , define decision:

U l
i (n) = (j1(n), ..., jl−1(n), i, jl(n), ..., jL−1(n)).

U l
i (n) is the list obtained by considering the L − 1 first items

of L(n), and by placing item i at position l. We are now ready
to present our algorithms. The latter, referred to as PIE(l), are
parametrized by l ∈ {1, . . . , L}, the position where the exploration
is performed. In round n, PIE(l) proceeds as follows:

(i) if B(n) is empty, then the leader is selected: u(n) = L(n);

Algorithm PIE(l)

Init: B(1) = ∅, θ̂i(1) = 0 = bi(1) ∀i, L(1) = {1, . . . , L}
For n ≥ 1:

If B(n) = ∅, select L(n)
Else w.p.1/2, select L(n), w.p. select U l

I(n), I ∈ B(n) unif.
distributed
Compute: B(n+ 1), L(n+ 1), and θ̂i(n+ 1), bi(n+ 1), ∀i

(ii) otherwise, we select u(n) = L(n) with probability 1/2, and
u(n) = U l

i(n)(n) with probability 1/2, where i(n) is chosen
from B(n) uniformly at random.

Refer to pseudo-code of PIE(l) for a formal description. Note that
the PIE(l) algorithm has low computational complexity. It can be
easily checked that it requires at each round O(N +L log(N)) op-
erations. In the following theorem, we provide a finite-time regret
upper bound of the PIE(l) algorithm. Introduce η =

∏L−1
i=1 (1 −

θi)
−1 and recall that pl =

∏

i′<l(1− θi′) and ui,l = (1, . . . , (l −
1), i, (l + 1), . . . , (L− 1)) for all i > l.

THEOREM 2. Under algorithm π=PIE(l), for all T ≥ 1 and,

all ǫ > 0 and all 0 < δ < δ0 = mini<N (θi − θi+1)/2, the regret

under π satifies:

Rπ(T ) = f(T )cPIE(l)(θ, δ) + C(θ, δ, ǫ),

where

cPIE(l)(θ, δ) = p−1
l

N
∑

i=L+1

µ(u⋆)− µ(ui,l)

I(θi + δ, θL − δ)
,

C(θ, δ, ǫ) = 2Nη[(5 + 8NL)η + (3 + 2L)δ−2] + 15L

+ (N − L)p−1
l

[

ǫ−2p−1
l + δ−2(1− ǫ)−1] .

As a consequence:

lim sup
T→∞

Rπ(T )

log(T )
≤ cPIE(l)(θ) :=

N
∑

i=L+1

µ(u⋆)− µ(ui,l)
∏

i′<l(1− θi′)I(θi, θL)
.

A direct consequence of the above theorem is that PIE(L) and
PIE(1) are asymptotically optimal in Case 1) (convex decreasing
reward functions) and Case 2) (constant rewards), respectively. In-
deed, one can easily check that for example cPIE(L)(θ) = c(θ) in
Case 1).



4.3 Proofs: Lower Bounds

4.3.1 Proof of Theorem 1

The result is a consequence of the theory of controlled Markov
chain with unknown transition rates [23]. We apply the formalism
of [23] as follows. The state space of the Markov chain is X =
{0, 1, .., L}, and the state will capture the feedback obtained from
the previous decision, i.e., x = 0 means that no item in the list is
relevant, and x = i means that the first relevant item is in position
i. The set of control actions is the set of lists U . The transition
probability from state x to state y given that the chosen list is u is
p(x, y;u, θ) where

p(x, y;u, θ) = p(y;u, θ) =

{

∏L

s=1(1− θus) if y = 0,

θuy

∏y−1
s=1 (1− θus) if y ∈ {1, .., L}.

The reward associated to the state x and the control action u is
denoted by g(x, u), and here we have g(x, u) = r(x). Finally,
the set of control laws is G = U . The expected reward under the
control law u is µθ(u). Next we apply Theorem 1 in [23]. To this
aim, we first introduce the KL divergence between two parameters
λ ∈ [0, 1]N and θ under control law u as:

Iu(λ, θ) =
L
∑

s=1

θus

[

s−1
∏

i=1

(1− θui
)

]

log

(

θus

∏s−1
i=1 (1− θui

)

λus

∏s−1
i=1 (1− λui

)

)

+

[

s
∏

i=1

(1− θui
)

]

log

(
∏s

i=1(1− θui
)

∏s

i=1(1− λui
)

)

,

which can be rewritten as:

Iu(θ, λ) =

L
∑

i=1

I(θui
, λui

)

i−1
∏

s=1

(1− θus).

Let us further introduce the set of bad parameters B(θ) as:

B(θ) = {λ ∈ [0, 1]N : Iu
⋆

(θ, λ) = 0 and ∃u 6= u⋆, µλ(u) > µ⋆
θ},

where µλ(u) denotes the expected reward of decision u under pa-
rameter λ. By definition, if λ ∈ B(θ), there is i > L such that
λi > θL. Thus we can decompose B(θ) into the union of sets
Bi(θ) = {λ ∈ B(θ), λi > θL} over i ∈ {L + 1, .., N}. By
Theorem 1 in [23], we have, for any uniformly good algorithm π:

lim inf
T→∞

Rπ(T )

log(T )
≥ c(θ),

where

c(θ) = inf
cu≥0,u∈U

∑

u 6=u⋆

cu(µ
∗
θ − µθ(u))

s. t. ∀i > L, inf
λ∈Bi(θ)

∑

u 6=u⋆

cuI
u(θ, λ) ≥ 1.

By definition of Bi(θ), if λ ∈ Bi(θ), then λi > θL. It can easy
seen that infλ∈Bi(θ) I

u(θ, λ) is achieved for some parameter λ⋆

such that λ⋆
i = θL and λ⋆

j = θj for j 6= i and hence:

inf
λ∈Bi(θ)

Iu(θ, λ) =
∑

u∈U(i)

cu
∏

s<pi(u)

(1− θus)I(θi, θL) ≥ 1.

This completes the proof. ✷

4.3.2 Proof of Proposition 1

For i > L, we define vi the list such that vij = j for j < l,

and viL = i. According to Proposition 1, these lists only should
be explored under an optimal algorithm. Let c = {cu : u 6= u⋆}

be a solution of the LP introduced in Theorem 1. We prove by
contradiction that cu > 0 implies that there exists i > l such that
u = vi. Assume ∃u 6= u⋆ such that cu > 0 and u 6= vi, ∀i > L.
We propose a new set of coefficients c′ = {c′u : u 6= u⋆} such
the value of objective function c′(θ) of the LP under c′ is less than

under c. We use the following notation: cw,i = cv
∏

s<i(1−θws )
∏

s<L(1−θs)

for any w ∈ U . Recall that pi(w) is the position of i in w. Now
introduce c′ such that for all u 6= u⋆:

c′w =











0 if w = u,

cw + cu,pi(u) if ∃i > L such that w = vi,

cw otherwise.

We show that c′ yields a strictly lower value of the objective func-
tion in the LP of Theorem 1 than c, a contradiction. Denote by c(θ)
and c′(θ) the value of the objective function of the LP under c and
c′, respectively. We have:

c(θ)− c′(θ) = cu(µ
∗
θ − µθ(u))−

∑

i:ui>L

cu,i(µ
∗
θ − µθ(v

ui)).

It is easy to check that: µθ(u) = r(1)−
∑L

l=1 ∆l

∏

s≤l(1− θus).

Therefore µ∗
θ − µθ(u) =

∑L

i=1 ∆i(
∏

s≤i(1− θus) −
∏

s≤i(1−

θs)). Since ∆L = r(L), we have:

µ∗
θ − µθ(u)−

∑

i:ui>L

∏

s<i(1− θuj
)

∏

s<L(1− θj)
(µ∗

θ − µθ(v
ui)) =

L
∑

i=1

∆i(
∏

s≤i

(1− θus)−
∏

s≤i

(1− θs))

−
∑

i:ui>L

∆L

∏

s<i

(1− θus)(θL − θui
).

Let i ≤ L such that ui > L. We have:

∆i(
∏

s≤i

(1− θus)−
∏

s≤i

(1− θs))−∆L

∏

s<i

(1− θus)(θL − θui
)

≥ ∆i(
∏

s<i

(1− θus)(1− θL)−
∏

s≤i

(1− θs)) > 0.

We deduce:

cu(µ
∗
θ − µθ(u)) >

∑

i
ui>L

cu,i(µ
∗
θ − µθ(v

ui)).

And hence, c′(θ) < c(θ). We have shown that in c the solution of
the LP involved in Theorem 1, cu > 0 iff ∃i > l: u = vi. Now we
can easily solve the LP in light of this result, and show that the cu’s
are of the form as stated in Proposition 1. The proof of Proposition
2 is similar. ✷

4.4 Proof: Regret Upper bound for PIE(l)

4.4.1 Preliminaries

Before analyzing the regret of PIE(l), we state and prove Lemma 1.
The latter shows that, under algorithm PIE(l), the set of rounds at
which either
(i) the set of leaders is different from the optimal decision, or
(ii) the empirical mean of one of the leaders deviates from its ex-
pectation by more than a fixed quantity δ > 0,
has finite size (in expectation). Note that (i) and (ii) are not mutu-
ally exclusive. The upper bound provided by Lemma 1 is explicit
as a function of the parameters (θi)i and δ.



LEMMA 1. Define δ0 = mini<N (θi − θi+1)/2 and

η =
∏L−1

i=1 (1 − θi)
−1. Let 0 < δ < δ0 and define the following

sets of rounds:

A = {n ≥ 1 : L(n) 6= u⋆},

D = {n ≥ 1 : ∃i ∈ L(n) : |θ̂i(n)− θi| ≥ δ}.

and C = A ∪ D. Under algorithm PIE(l), for all 0 < δ < δ0 we

have:

E[|C|] ≤ 2Nη[(5 + 8NL)η + (3 + 2L)δ−2] + 15L.

Proof. Fix δ < δ0 throughout the proof. Our goal is to upper bound
the expected size of C. To do so, we decompose C in an appropriate
manner. We introduce the following sets of instants:

E = {n ≥ 1 : ∃i ∈ {1, ..., L} : bi(n) ≤ θi}

G = {n ≥ 1 : n ∈ A \ (D ∪ E),∃i ∈ {1, ..., L} \ L(n) :

|θ̂i(n)− θi| ≥ δ}.

We first check that C ⊂ D ∪ E ∪ G. Since C = A ∪ D, it is
sufficient to prove that A ⊂ (D∪E ∪G). Let n ∈ A\(D∪E). Let

i, i′ ∈ L(n), with i < i′. Since n 6∈ D we have |θ̂i(n) − θi| ≤ δ,

|θ̂i′(n)−θi′ | ≤ δ, and δ ≤ (θi−θi′)/2, therefore θ̂i(n) ≥ θ̂i′(n).
This proves that (j1(n), ..., jL(n)) is an increasing sequence. We
have that jL(n) > L, otherwise we have (j1(n), ..., jL(n)) =
(1, 2, ..., L) hence L(n) = u⋆ and n 6∈ A, a contradiction. Since
jL(n) > L there exists i ≤ L such that i 6∈ L(n). Let us now

prove by contradiction that |θ̂i(n)−θi| ≥ δ. Assume that |θ̂i(n)−

θi| ≤ δ, then we have |θ̂jL(n)(n) − θjL(n)| ≤ δ (since jL(n) ∈

L(n) and n 6∈ D) so that θ̂i(n) > θ̂jL(n)(n). In turn this would
imply that i ∈ L(n) which is a contradiction. Finally we have
proven that n ∈ A\(D∪E) implies n ∈ G. Hence C ⊂ D∪E ∪G,
and by a union bound:

E[|C|] ≤ E[|D|] + E[|E|] + E[|G|].

Next we prove the following inequalities:
(a) E[|D|] ≤ 2Nη

[

10η + 3δ−2
]

;
(b) E[|E|] ≤ 15L;
(c) E[|G|] ≤ 4NLη

[

4η + δ−2
]

.

Inequality (a): We further decompose D as D = ∪N
i=1(Di,1 ∪

Di,2), with:

Di,1 = {n ≥ 1 : i ∈ L(n), jL(n) 6= i, |θ̂i(n)− θi| ≥ δ}

Di,2 = {n ≥ 1 : i ∈ L(n), jL(n) = i, |θ̂i(n)− θi| ≥ δ}

In other words, Di,1 is the set of rounds at which i is not the L-th
leader, so that if n ∈ Di,1 then i will be included in u(n). Di,2 is
the set of instants at which i is the L-th leader, so that if n ∈ Di,2,
then either i or i(n) will be included in u(n).

First let n ∈ Di,1. Then we have i ∈ u(n) by definition of
the algorithm. Hence E[oi(n)|n ∈ Di,1] ≥ η−1. Furthermore,
for all n, 1{n ∈ Di,1} is Fn−1 measurable (Fn−1 the σ-algebra
generated by u(s) and the corresponding feedback for s ≤ n− 1).
Therefore we can apply the second statement of Lemma 5, pre-
sented in Appendix (with H := Di,1 , c := η−1) to obtain:
E[|Di,1|] ≤ 2η

[

2η + δ−2
]

.
Next let n ∈ Di,2. Then we have that i ∈ u(n) with probability

at least 1/2 by definition of the algorithm, so that E[oi(n)|n ∈
Di,2] ≥ η−1/2. Also 1{n ∈ Di,2} is Fn−1 measurable. Hence
applying the second statement of Lemma 5 (with H ≡ Di,2 , c ≡
η−1/2) we obtain: E[|Di,2|] ≤ 4η

[

4η + δ−2
]

.

Applying a union bound over 1 ≤ i ≤ N , we get:

E[|D|] ≤
N
∑

i=1

E[|Di,1|] + E[|Di,2|] ≤ 2Nη
[

10η + 3δ−2] .

Inequality (b): Decompose E as E = ∪L
i=1Ei where

Ei = {n ≥ 1 : bi(n) ≤ θi}.

Applying Lemma 6 we obtain that E[|Ei|] ≤ 15 for all i, so that:

E[|E|] ≤
L
∑

i=1

E[|Ei|] ≤ 15L.

Inequality (c): Decompose G as G = ∪L
i=1Gi where

Gi = {n ≥ 1 : n ∈ A \ (D ∪ E), i 6∈ L(n), |θ̂i(n)− θi| ≥ δ}.

For a given i ≤ L, Gi is the set of rounds at which i is not one
of the leaders, and is not accurately estimated. Let n ∈ Gi. Since
i 6∈ L(n), we must have jL(n) > L. In turn, since n 6∈ D we have

|θ̂jL(n)(n)− θjL(n)| ≤ δ, so that

θ̂jL(n)(n) ≤ θjL(n) + δ ≤ θL+1 + δ ≤ (θL+1 + θL)/2.

Furthermore, since n 6∈ E and 1 ≤ i ≤ L, we have bi(n) ≥ θi ≥

θL ≥ (θL+1 + θL)/2 ≥ θ̂jL(n)(n). This implies that i ∈ B(n).
Since i(n) has uniform distribution over B(n), we have that i(n) =
i with probability at least 1/N . We have that for all n, 1{n ∈ Gi}
is Fn−1 measurable. Further, E[oi(n)|n ∈ Gi] ≥ η−1/(2N). So
we can apply Lemma 5 (with H ≡ Gi and c ≡ η−1/(2N)) to
yield: E[|Gi|] ≤ 4Nη

[

4Nη + δ−2
]

Using a union bound over 1 ≤ i ≤ L, we obtain:

E[|G|] ≤
L
∑

i=1

E[|Gi|] ≤ 4NLη
[

4Nη + δ−2
]

.

Putting inequalities (a), (b) and (c) together, we obtain the an-
nounced result:

E[|C|] ≤ E[|D|] + E[|E|] + E[|G|]

≤ 2Nη[(5 + 8NL)η + (3 + 2L)δ−2] + 15L,

which concludes the proof. ✷

4.4.2 Proof of Theorem 2

We decompose the regret by distinguishing rounds in C (as de-
fined in the statement of Lemma 1), and other rounds. For all
i > L, we define the sets of instants between 1 and T at which
n 6∈ C and decision ui,l is selected (recall that ui,l = (1, . . . , (l −
1), i, (l + 1), . . . , (L− 1))):

Ki = {1 ≤ n ≤ T : n 6∈ C,L(n) = u⋆, u(n) = ui,l}.

By design of the algorithm, when n 6∈ C, the leader is the optimal
decision, and so the only sub-optimal decisions that can be selected
are {uL+1,l, ..., uN,l}. Hence the set of instants at which a subop-
timal decision is selected verifies:

{1 ≤ n ≤ T : u(n) 6= u⋆} ⊂ C ∪ (∪N
i=L+1Ki).

Since µ(u⋆)− µ(u) ≤ 1 for all u, we obtain the upper bound:

Rπ(T ) ≤ E[|C|] +
N
∑

i=L+1

[

µ(u⋆)− µ(ui,l)
]

E[|Ki|].

By Lemma 1, we have:

E[|C|] ≤ 2Nη[(5 + 8NL)η + (3 + 2L)δ−2] + 15L.



Hence, to complete the proof, it is sufficient to prove that, for all
i ≥ L+ 1, all ǫ > 0 and all 0 < δ < θL − θL+1, we have:

E[|Ki|] ≤p−1
l

f(T )

(1− ǫ)I(θi + δ, θL − δ)

+ p−1
l

[

p−1
l ǫ−2 + δ−2(1− ǫ)−1

]

. (5)

Define the number of rounds in Ki before round n:
ki(n) =

∑

n′≤n 1{n′ ∈ Ki}. Fix ǫ > 0, define t0 = f(T )/I(θi+

δ, θL − δ), and define the following subsets of Ki:

Ki,1 =
{

n ∈ Ki : ti(n) ≤ pl(1− ǫ)ki(n) or |θ̂i(n)− θi| ≥ δ
}

,

Ki,2 = {n ∈ Ki : t0 ≤ pl(1− ǫ)ki(n)} .

Namely, Ki,1 is the set of rounds in Ki where either item i has
been sampled (we recall that i is sampled iff all items presented
before i where not relevant) less than pl(1 − ǫ)ki(n) times or and
its empirical mean deviates from its expectation by more than δ.
Ki,2 is the number of instants in Ki where pl(1−ǫ)ki(n) is smaller
than t0, i.e Ki,2 is the set of the first t0p

−1
l (1−ǫ)−1 instants of Ki.

Let us prove that Ki ⊂ Ki,1∪Ki,2. We proceed by contradiction:
Consider n ∈ Ki \ (Ki,1 ∪ Ki,2). We prove that we have both (a)
ti(n) ≥ t0 and (b) bi(n) ≥ θL − δ. Since n 6∈ Ki,1 we have
that ti(n) ≥ p−1(1− ǫ)ki(n) and since n 6∈ Ki,2 we have pl(1−
ǫ)ki(n) ≥ t0. So (a) holds. By definition of the algorithm, we have

that i ∈ B(n), so that bi(n) ≥ θ̂jL(n)(n). Furthermore, since n ∈

Ki we have that n 6∈ C, so that jL(n) = L, and |θ̂L(n)− θL| ≤ δ.

In turn, this implies bi(n) ≥ θ̂jL(n)(n) = θ̂L(n) ≥ θL − δ so (b)
holds as well. Combining (a) and (b) with the definition of bi(n):

t0I(θ̂i(n), θL − δ) ≤ ti(n)I(θ̂i(n), θL − δ) ≤ f(n) ≤ f(T ),

and thus: I(θ̂i(n), θL − δ) ≤ I(θi − δ, θL − δ), which proves

that |θ̂i(n) − θi| ≥ δ using the fact that the function x 7→ I(x, y)
is decreasing for 0 ≤ x ≤ y. Hence n ∈ Ki,1 which is a con-
tradiction since we assumed that n ∈ Ki \ (Ki,1 ∪ Ki,2). Hence
Ki ⊂ Ki,1 ∪Ki,2 as announced. We now provide upper bounds on
the expected sizes of Ki,1 and Ki,2.

Set Ki,1: Since n ∈ Ki,1 ⊂ Ki implies u(n) = ui,l we have

that E[oi(n)|n ∈ Ki,1] = pl. Applying Corollary 1 presented in
Appendix (with H ≡ Ki,1 and c ≡ pl) we obtain:

E[|Ki,1|] ≤ p−1
l

[

p−1
l ǫ−2 + δ−2(1− ǫ)−1] .

Set Ki,2: Since n ∈ Ki,2 implies that ki(n) ≤ t0p
−1
l (1− ǫ)−1

and that ki(n) is incremented at n, we have that:

E[|Ki,2|] ≤ t0p
−1
l (1− ǫ)−1.

Putting it all together we obtain the desired bound (5) on the ex-
pected size of Ki, which concludes the proof of the first statement
of Theorem 2. The second statement of the theorem is obtained by
taking the limit T → ∞ and then δ → 0. ✷

5. KNOWN TOPIC
In the remaining of the paper, we consider K > 1 groups of

users and items, and switch back to the notations introduced in Sec-
tion 3. In this section, we consider the scenario where in each round
n, the topic of the request is known, i.e., the decision maker is in-
formed about h(k(n)) before selecting the items to be displayed.
In such a scenario, the problem of the design of sequential list se-
lection algorithms can be decomposed into K independent bandit
problems, one for each topic. Indeed in view of Assumption (A1),
when the topic of the request is h(k), any algorithm should present,

in the list, items from Nh(k) only. The K independent MAB prob-
lems are instances of the problems considered in the previous sec-
tion. As a consequence, we can apply the analysis of Section 4, and
immediately deduce regret lower bounds and asymptotically opti-
mal algorithms. Optimal algorithms are obtained by just running
K independent PIE(l) algorithms, one for each topic. We refer to
as K×PIE(l) the resulting global algorithm.

Define Uk as the set of lists containing items from Nh(k) only,
i.e., Uk := {u ∈ U : ∀s ∈ [L], us ∈ Nh(k)}. We denote by
Uk(i) = {u ∈ Uk : ih(k) ∈ u}, the set of lists in Uk that include
the item ih(k) with the i-th highest relevance in Nh(k). Finally, for
u ∈ Uk(i), we refer to as pi(u) as the position of ih(k) in the list
u. The following theorem is a direct consequence of Theorem 1.

THEOREM 3. Let θ ∈ [0, 1]K×N . For any uniformly good al-

gorithm π, we have:

lim inf
T→∞

Rπ(T )

log(T )
≥
∑

k∈[K]

ck(θ), (6)

where for any k ∈ [K], ck(θ) is the minimal value of the objective

function in the following optimization problem (Pθ,k):

inf
cu≥0,u∈Uk

∑

u∈Uk

cu(µ
⋆,k
θ − µθ(u, k)) (7)

s.t.
∑

u∈Uk(i)

cu
∏

s<pi(u)

(1− θkus)I(θkih(k)
, θkLh(k)

) ≥ 1,

∀i > L.

The LPs (Pθ,k) are similar to (Pθ) presented in Theorem 1, and
enjoy the same simplifications (see Propositions 1 and 2) when the
reward function has the specific structure of Case 1) or 2). Observe
that the regret lower bound does not depend on the proportions of
queries made by users of the various classes (remember that we
assumed that φk > 0 for all k ∈ [K]) – this is simply due to the
facts that over the time horizon T , we roughly have φkT queries
generated by class-k users, and that the regret incurred for class-k
users is ck(θ) log(φkT ) ≈ ck(θ) log(T ).

The next theorem is a direct consequence of Theorem 2, and
states that K×PIE(L) and K×PIE(1) are asymptotically optimal
in Cases 1) and 2), respectively.

THEOREM 4. Assume that the reward function has the specific

structure described in Case 1) (resp. 2)). Under algorithm π =
K×PIE(L) (resp. π = K×PIE(1)), we have for all θ:

lim sup
T→∞

Rπ(T )

log(T )
≤
∑

k∈[K]

ck(θ).

6. KNOWN USER-CLASS AND UNKNOWN

TOPIC
In this section, we address the problem with K > 1 groups of

users and items, and where in each round n, the decision maker
is aware of the class of the user issuing the query, but does not
know the mapping h, i.e., initially, the decision maker does not
know which topic the users of the various classes are interested in.
Of course, this scenario is more challenging than the one where,
before selecting a list of items, the decision maker is informed on
the topic h(k(n)), and hence, the regret lower bound described in
Theorem 3 is still valid.

Next we devise a sequential list selection algorithm that learns
the mapping h very rapidly. More precisely, we prove that its
asymptotic regret satisfies the same regret upper bound as those



Algorithm PIE-C(l, d)

Init: θ̂ki(1) = 0, ∀i, k
For n ≥ 1:

Get the class k(n) of the user issuing the query, and compute

C(n) = {h ∈ [K] : maxi∈Nh
θ̂k(n)i(n) ≥ d}

If C(n) = ∅, select u(n) ∈ U uniformly at random

Else Select group ĥ(n) uniformly at random from C(n) and
run PIE(l) on Nĥ(n)

Compute: θ̂ki(n+ 1), ∀i, k

derived for K×PIE(l) when the topic is known, which means that
the fact that the mapping h is unknown incurs a sub-logarithmic re-
gret. Thus, our algorithm is asymptotically optimal since its regret
upper bound matches the lower bound derived in Theorem 3.

6.1 Optimal Algorithms
To describe our algorithms, we introduce the following nota-

tions. Let u(n) be the list selected in round n, and let pi(n) denote
the position at which item i is shown if i ∈ u(n), and pi(n) = 0
otherwise. Let Xki(n) ∈ {0, 1} denote the relevance of item i
when presented to a class-k user in round n. Define

oki(n) := 1
{

k(n) = k, i ∈ u(n), ∀l′ < pi(n), Xkul′ (n)(n) = 0
}

the event indicating whether a query of a class-k user arrives in
round n and this user scans item i. Then we get a sample from θki
in round n iff oi(n) = 1. Let tki(n) :=

∑

n′≤n oki(n
′) be the

number of samples obtained, up to round n, for θki. The corre-
sponding empirical mean is:

θ̂ki(n) =
1

tki(n)

∑

n′≤n

oki(n
′)Xki(n

′)

if tki(n) > 0 and θ̂ki(n) = 0 otherwise. The KL-UCB index
bki(n) of item i when presented to a class-k user in round n is:

bki(n) = max{q ∈ [0, 1] : tki(n)I(θ̂ki(n), q) ≤ f(n)},

where f(n) = log(n) + 4 log(log(n)). Finally, for any user class
k and topic h, we define jkh(n) = (jkh,1(n), ..., jkh,Nh

(n)), the
items of Nh with empirical means sorted in decreasing order for
users of class k in round n. Namely:

θ̂kjkh,1(n)(n) ≥ θ̂kjkh,2(n)(n) ≥ ... ≥ θ̂kjkh,Nh
(n)(n)

and jkh,i(n) ∈ Nh for all k, h, and i.
The PIE-C(l, d) Algorithm. The algorithm is parametrized by

l ∈ [L] which indicates the position in which apparently sub-
optimal items are explored, and by d, a real number chosen strictly
between δ and ∆. To implement such an algorithm, we do not need
to know the maximum expected relevance δ of items of uninterest-
ing topics, nor the lower bound ∆ of the highest relevance of items
whose topic corresponds to that of the query. We just need to know
a number d in between.

In round n, PIE-C(l, d) maintains an estimator ĥ(n) of the topic
h(k(n)) requested by the user, and it proceeds as follows. Given
the user-class k(n), we first identify the set of admissible topics
C(n):

C(n) = {h ∈ [K] : max
i∈Nh

θ̂k(n)i(n) ≥ d}.

This set corresponds to the topics that according to our observations
up to round n, could be the topic requested by the class-k(n) user.

(i) If C(n) = ∅, ĥ(n) = −1 (we don’t know what the topic
is), and we select u(n) uniformly at random over the set of
possible decisions U ;

(ii) If C(n) 6= ∅,

– Select ĥ(n) ∈ C(n) uniformly at random;

– Define leaders at time n: L(n) lists in order the L items
in Nĥ(n) with largest empirical means,

L(n) = (jk(n)ĥ(n),1(n), ..., jk(n)ĥ(n),L(n));

– Define the possible decisions Ui(n) for all i ∈ Nĥ(n) \

L(n) obtained by replacing in L(n) the l-th item by i;

– Define

B(n) ={i ∈ Nĥ(n) \ L(n) :

bk(n)i(n) ≥ θ̂j
k(n)ĥ(n),L

(n)(n)};

– (a) If B(n) = ∅ , select the list L(n), and (b) If B(n) 6=
∅, choose i(n) uniformly at random in B(n) and select
either L(n) with probability 1/2 or decision Ui(n)(n)
with probability 1/2.

Note that when ĥ(n) is believed to estimate h(k(n)) accurately
(i.e., when C(n) 6= ∅), then the algorithm mimics the K×PIE(l)
algorithm. Refer to the pseudocode of PIE-C(l, d) for a formal de-
scription. The following theorem states that PIE-C(l, d) exhibits the
same asymptotic regret as the optimal algorithms when the topic of
each request is known.

THEOREM 5. Assume that the reward function has the specific

structure described in Case 1) (resp. 2)). For all δ < d < ∆,

under the algorithm π =PIE-C(L,d) (resp. π =PIE-C(1, d)), we

have for all θ:

lim sup
T→∞

Rπ(T )

log(T )
≤
∑

k∈[K]

ck(θ).

6.2 Proof: Regret Upper Bound for PIE-C(l, d)
The proof of Theorem 5 consists in showing that the set of rounds

at which the estimation of the topic h(k(n)) of the request fails is
finite in expectation. As already mentioned, when the estimation is
correct the algorithm behaves like K×PIE(l), and the analysis of its
regret in such rounds in the same as that under K×PIE(l). Hence,
we just need to control the size of the following set of rounds:

M = {n ≥ 1 : ĥ(n) 6= h(k(n))}.

LEMMA 2. Under algorithm PIE-C(l,d) we have:

E[|M|] ≤ 2KN
[

2(N + 1) + (d− δ)−2 + (∆− d)−2]

The above bound is minimized by setting d = (∆+ δ)/2, in which

case:

E[|M|] ≤ 4KN
[

N + 1 + 4(∆− δ)−2]

Proof. For all k, we define the most popular item for class-k users:
i⋆k = argmaxi θki. We decompose M by introducing the follow-
ing sets:

Mk = {n ∈ M, k(n) = k},

Mk,−1 = {n ∈ Mk, ĥ(n) = −1, |θ̂ki⋆
k
(n)− θki⋆

k
| ≥ ∆− d},

Mk,i = {n ∈ Mk, i = u1(n), |θ̂ki(n)− θki| ≥ d− δ}.



Mk,−1 is the set of rounds at which a user of class k makes a
request, the set of admissible topics for class k users is empty C(n),
and θki⋆

k
is badly estimated. Mk,i is the set of rounds at which a

user of class k makes a request, item i 6∈ Nh(k) is presented in
the first slot (note that i is not interesting to that user) and θki is
badly estimated. We have that: M = ∪K

k=1Mk since k(n) ∈
{1, ..., K}.

We prove that for all k: Mk ⊂ Mk,−1 ∪ (∪i6∈Nh(k)
Mk,i).

Consider n ∈ Mk, so that k(n) = k and ĥ(n) 6= h(k). We
distinguish two cases:

(i) If ĥ(n) = −1, then C(n) = ∅. So h(k) 6∈ C(n), and

by definition of C(n), this implies that maxi∈Nh(k)
θ̂ki(n) ≤ d.

Since i⋆k ∈ Nh(k) we have θ̂ki⋆
k
(n) ≤ d. Since i⋆k = argmaxi θki,

we have θk,i⋆
k
≥ ∆. Hence we have that both θ̂ki⋆

k
(n) ≤ d and

θki⋆
k
≥ ∆, so we have |θ̂ki⋆

k
(n) − θki⋆

k
| ≥ ∆ − d and therefore

n ∈ Mk,−1.

(ii) If ĥ(n) 6∈ {h(k),−1}, then by design of the algorithm
u(n) ⊂ {1, ..., N} \ Nh(k) since {N1, ...,NK} forms a partition
of {1, ..., N}. Hence there exists i 6∈ Nh(k) such that u1(n) = i.

By design of the algorithm, since u1(n) = i, we have θ̂ki(n) =

argmaxi′∈N
ĥ(n)

θ̂ki′(n) and argmaxi′∈N
ĥ(n)

θ̂ki′(n) ≥ d since

ĥ(n) ∈ C(n). Therefore θ̂ki(n) ≥ d and we know that θki ≤ δ

since i 6∈ Nh(k), so that |θ̂ki(n) − θki| ≥ d − δ. Summariz-

ing, ĥ(n) 6∈ {h(k),−1} implies that there exists i 6∈ Nh(k) such

that u1(n) = i and |θ̂ki(n) − θki| ≥ d − δ, therefore n ∈
∪i6∈Nh(k)

Mk,i.
Hence we have proven, as announced, that Mk ⊂ Mk,−1∪i6∈Nh(k)

Mk,i. We now upper bound the expected sizes of sets Mk,−1 and
Mk,i.

Set Mk,−1: When n ∈ Mk,−1, u(n) is uniformly distributed

over the set of possible decisions U , so that P[u1(n) = i⋆k|n ∈
Mk,−1] = 1/N . In turn, this implies that E[oki⋆

k
(n)|n ∈ Mk,−1] =

1/N . Appying Lemma 5, second statement (with H ≡ Mk,−1,
c ≡ 1 and δ ≡ ∆− d), we obtain:

E[|Mk,−1|] ≤ 2N
[

2N + (∆− d)−2
]

.

Set Mk,i: When n ∈ Mk,i, we have that u1(n) = i and

k(n) = k so that E[ok,i(n)|n ∈ Mk,i] = 1. Applying Lemma 5,
second statement (with H ≡ Mk,i, c ≡ 1 and δ ≡ d − δ), we
obtain:

E[|Mk,i|] ≤ 2
[

2 + (d− δ)−2] .

Using a union bound we have:

E[|Mk,−1|] ≤ E[|Mk,−1|] +
∑

i6∈Nh(k)

E[|Mk,i|]

≤ 2N
[

2N + (∆− d)−2
]

+ 2N
[

2 + (d− δ)−2
]

= 2N
[

2(N + 1) + (d− δ)−2 + (∆− d)−2] ,

and summing over k ∈ {1, ..., K} we obtain the announced result:

E[|M|] =
K
∑

k=1

E[|Mk|]

≤ 2KN
[

2(N + 1) + (d− δ)−2 + (∆− d)−2
]

,

which concludes the proof. ✷
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Figure 1: Performance of PIE(1) / PIE(L) and other UCB-

based algorithms. A single group of items and users. Error

bars represent the standard deviation.

7. NUMERICAL EXPERIMENTS
In this section, we evaluate the practical performance of our al-

gorithms using both artificially generated and real-world data1.

7.1 Artificial Data
We first evaluate the PIE and PIE-C algorithms in the scenarios

presented in Sections 4, 5, and 6. In these scenarios, the algorithms
are optimal and hence they should outperform any other algorithm.

A Single group of users / items. First we assume there exists
only one relevant topic (K = 1) consisting of N = 800 items. We
consider L = 10 and evaluate the performance of the algorithms
over the arrival of T = 8 × 104 user queries. The parameter θ is
artificially generated as follows:

θi = 0.55× (1− (i− 1)/(N − 1)).

In Figure 1(a), we consider the reward to be r(l) = 1 for l ∈
{1, ..., L} while in Figure 1(b), we assume the reward decreases
geometrically with the slot (r(l) = 21−l , l ∈ {1, ..., L}). Under
these assumptions, PIE(1) and PIE(L) respectively are asymptoti-
cally optimal according to Theorem 2. We compare their perfor-
mance to that of Slotted UCB, Slotted KL-UCB algorithms, and
RBA (Ranked Bandit Algorithm) proposed in [7] and [11]. In Slot-
ted UCB (resp. KL-UCB), the L items with the largest UCB (resp.
KL-UCB) indexes are displayed, whereas RBA runs L independent
bandit algorithms, one for each slot. In particular, for all items k,
the bandit algorithm assigned to slot l can only access the observa-
tions obtained from k when k was played in slot l (RBA attempts
to learn an item’s so-called marginal utility for each slot). Observe
that PIE significantly outperforms all other algorithms.

Multiple groups of users / items. Next, we consider K = 5
groups of users and items, and N = 4, 000 items. We assume all
groups are of equal size so that φk = 1/K for all k. There are
N/K items in each group. We define j(i, k) = (i − h(k)N/K),
and generate the parameter θ as follows:

θki =

{

0.55 × (1− (j(i, k)− 1)/(N − 1)) if i ∈ Nh(k),

0.05 otherwise.

Figure 2 presents the performance of 5×PIE(1) (referred to as PIE(1)
in the figure) when the decision maker knows the mapping between
user classes and topics h(·), and that of PIE-C(1,0.5) when h(·) is
unknown. Figure 2 corroborates the theoretical result of Theorem
5: The performance loss due to the need to learn the mapping h(·)
is rather limited, especially the time horizon grows large.

1We use the Movielens10M dataset, available at
http://grouplens.org/datasets/movielens/
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Figure 3: Performance of PIE(1) and PIE-C(1, d) on real world

data.

7.2 Real-world Data
We further investigate the performance of our algorithms on real-

world systems. We use the Movielens dataset which contains the
ratings given by users to a large set of movies. The dataset is a
large matrix X = (Xa,m) where Xa,m ∈ {0, 1, ..., 5} is the rating
given by user a to movie m. The highest rating is 5, the lowest is 1,
and 0 denotes an absence of rating, as most users did not watch the
whole set of movies. From matrix X , we created a binary matrix
Y such that Ya,m = 0 if Xa,m < 4 and Ya,m = 1 otherwise. We
say that movie m is interesting to user a iff Ya,m = 1.

We first selected the 100 most popular movies with less than
13,000 ratings (to avoid movies with good ratings for a large ma-
jority of users) and the 61,357 users who rated at least one of those
movies. We extracted the corresponding sub-matrix of Y . To clus-
ter the users and the movies, we use the classical spectral method.
We extracted the 4 largest singular values of Y and their corre-
sponding singular vectors γi, i ∈ {1, 2, 3, 4}. We then assigned
each user a to the cluster k = argmaxi Ya · γi, where Ya is the
a-th line of matrix Y . We performed a similar classification of
movies.

In Figure 3(a), we consider class-1 users, and compare the per-
formance of algorithms already considered in Subsection 7.1, Sce-
nario 1. The simulation proceeds as follows: in round n, we draw
a class-1 user, denoted by a(n), uniformly at random. The con-
sidered algorithm chooses an action u(n), if u(n) contains an in-
teresting movie i for user a(n), i.e., Ya(n)i = 1, the system col-
lects a unit reward, otherwise the reward is 0. We emulate the
semi-bandit feedback by assuming the algorithm is informed about
uninteresting movies j, i.e., Ya(n)j = 0, placed above i in the
list of L = 10 movies. Here the performance of the algorithm is
quantified through the notion of abandonment, as introduced in [7].
The abandonment is the number of rounds in which no interesting
movies are displayed. As a benchmark, we use an Oracle policy
that displays the L most popular movies for users of class 1 in ev-
ery round. Note that we use abandonment as a performance metric

rather than the regret, because the optimal policy is hard to compute
given the fact that the ratings offered by a user to different movies
are not always independent in our data set. Again, PIE outperforms
the Slotted variants of UCB and KL-UCB which in turn signifi-
cantly outperform RBA(KL-UCB). In fact, the cost of learning in
PIE (compared to the Oracle policy is limited): the abandonment
under PIE does not exceed twice that of the Oracle policy. Note
that the performance gain under PIE compared to Slotted KL-UCB
is much higher in our artificial data simulations. We believe that
this may be firstly due to the inaccuracy of our model when used
against this particular data-set, and secondly due to the fact that the
gain under PIE increases with the number of items N .

In Figure 3(b), we consider K = 4 groups, each topic consisting
of 25 items. Again, the performance of PIE-C algorithm is not too
far from that of the Oracle policy. PIE-C is compared to Slotted
KL-UCB and a Slotted KL-UCB aware of the groups and of the
mapping h(·). The former just ignores the group structure and runs
as if there were a single group only, whereas the latter consists in
K parallel and independent instances of Slotted KL-UCB, one for
each user class k and item group h(k). PIE-C outperforms Slotted
KL-UCB, and its performance is similar to that of Slotted KL-UCB
with known mapping h(·). Again this indicates that PIE-C rapidly
learns the mapping h(·).

8. CONCLUSION
In this paper, we investigated the design of learning-to-rank al-

gorithms for online systems, such as search engines and ad-display
systems. We proposed PIE and PIE-C, two asymptotically opti-
mal algorithms that rapidly learn users’ preferences, and the most
relevant items to be listed in response to user queries. These two
algorithms are devised assuming that users and items are clustered,
and that the decision maker knows the class of the user issuing the
query. It would be interesting to further extend these algorithms
to scenarios where the classes of the various users are initially un-
known. The paper also presents a preliminary performance evalu-
ation of our algorithms. In future work, we will further investigate
the way our algorithms perform against various kinds of real-world
dataset, including hopefully real traces extracted from search en-
gines, such as google or bing.
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APPENDIX

A. SUPPORTING LEMMAS FOR THE

PROOF OF THEOREM 2
Lemma 3 allows to control the fluctuations of the estimate θ̂i(n)

evaluated at a random time φ. We assume that φ is a stopping time,
and that the number of rounds before φ where a decision containing
i has been taken is greater than a number s. This result is instru-
mental in analyzing the finite time regret of algorithms (such as

ours) that take decisions based on the estimates θ̂i(n). Lemma 3
is a consequence of Lemma 4, which is reproduced here for com-
pleteness.

LEMMA 3. Let {Zt}t∈Z be a sequence of independent random

variables with values in [0, 1]. Define Fn the σ-algebra generated

by {Zt}t≤n and the filtration F = (Fn)n∈Z. Consider s ∈ N,

n0 ∈ Z and T ≥ n0. We define Sn =
∑n

t=n0
Bt(Zt − E[Zt]),

where Bt ∈ {0, 1} is a Ft−1-measurable random variable. Fur-

ther consider that for all t, almost surely we have Bt ≥ B̄tCt,

where both B̄t and Ct are {0, 1} -valued, Ft−1-measurable ran-

dom variables, such that for all t: P[Ct = 1] ≥ c > 0.

Further define tn =
∑n

t=n0
Bt and cn =

∑n

t=n0
B̄t. Define

φ ∈ {n0, . . . , T + 1} a F-stopping time such that either cφ ≥ s
or φ = T + 1.

Then for all ǫ > 0 we have that:

P[Sφ ≥ tφδ , φ ≤ T ] ≤ e−2sǫ2c2 + e−2c(1−ǫ)sδ2 .

As a consequence:

P[|Sφ| ≥ tφδ , φ ≤ T ] ≤ 2(e−2sǫ2c2 + e−2c(1−ǫ)sδ2).

Proof. We prove the first statement, as the second statement follows
by symmetry.

When event Sφ ≥ tφδ occurs, we have either that (a) tφ ≤
c(1− ǫ)cφ or (b) Sφ ≥ tφδ and tφ ≥ c(1− ǫ)cφ ≥ c(1− ǫ)s. In
case (a), if φ ≤ T , we have:

n
∑

t=n0

B̄tCt ≤
n
∑

t=n0

Bt = tφ ≤ c(1− ǫ)cφ = c(1− ǫ)

φ
∑

t=n0

B̄t,

and therefore:

φ
∑

t=n0

B̄tCt ≤ c(1− ǫ)

φ
∑

t=n0

B̄t

φ
∑

t=n0

B̄t(Ct − c) ≤ −cǫ

φ
∑

t=n0

B̄t

φ
∑

t=n0

B̄t(Ct − E[Ct]) ≤ −cǫ

φ
∑

t=n0

B̄t.

where the last inequality holds because E[Ct] ≥ c for all t. We
may now apply Lemma 4 (with Zt ≡ Ct , Bt ≡ B̄t, and δ ≡ cǫ)
to obtain:

P[tφ ≤ c(1− ǫ)cφ , φ ≤ T ]

≤ P

[

φ
∑

t=n0

B̄t(Ct − E[Ct]) ≤ −cǫ

φ
∑

t=n0

B̄t , φ ≤ T

]

≤ e−2sǫ2c2 .

In case (b), define another stopping time φ′, such that φ′ = φ if
tφ ≥ c(1− ǫ)cφ and φ′ = T +1 otherwise. Note that φ′ is indeed

a stopping time. We apply Lemma 4 a second time (with φ ≡ φ′ ,
s ≡ c(1− ǫ)s ) to obtain:

P[Sφ ≥ tφδ , tφ ≥ c(1− ǫ)cφ , φ ≤ T ]

= P
[

Sφ′ ≥ tφ′δ , φ′ ≤ T
]

≤ e−2c(1−ǫ)sδ2 .

Summing the inequalities obtained in cases (a) and (b), we prove
the announced result:

P[Sφ ≥ tφδ , φ ≤ T ] ≤ e−2sǫ2c2 + e−2c(1−ǫ)sδ2 .

which concludes the proof. ✷

LEMMA 4. ( [25]) Let {Zt}t∈Z be a sequence of independent

random variables with values in [0, 1]. Define Fn the σ-algebra

generated by {Zt}t≤n and the filtration F = (Fn)n∈Z. Consider

s ∈ N, n0 ∈ Z and T ≥ n0. We define Sn =
∑n

t=n0
Bt(Zt −

E[Zt]), where Bt ∈ {0, 1} is a Ft−1-measurable random variable.

Further define tn =
∑n

t=n0
Bt. Define φ ∈ {n0, . . . , T + 1} a

F-stopping time such that either tφ ≥ s or φ = T + 1.

Then we have that:

P[Sφ ≥ tφδ , φ ≤ T ] ≤ exp(−2sδ2).

As a consequence:

P[|Sφ| ≥ tφδ , φ ≤ T ] ≤ 2 exp(−2sδ2).

Lemma 5 is a consequence of Lemma 3, and allows to upper
bound the size of random sets of rounds where decisions containing

i have been sampled and the empirical mean θ̂i(n) deviates from
its expectation by more than a fixed amount δ > 0.

LEMMA 5. Let us fix c > 0 and 1 ≤ i ≤ N . Consider a

random set of rounds H ⊂ N, such that, for all n, 1{n ∈ H} is

Fn−1 measurable. Further assume for all n we have: E[oi(n)|n ∈
H ] ≥ c > 0. Consider a random set Λ = ∪s≥1{τs} ⊂ N, where

for all s, τs is a stopping time such that
∑τs

n=1 1{n ∈ H} ≥ s.

Then for all i and ǫ > 0 and δ > 0 we have that:

∑

n≥0

P[n ∈ Λ, |θ̂i(n) − θi| ≥ δ] ≤ c−1

[

1

ǫ2c
+

1

δ2(1− ǫ)

]

.

As a consequence:
∑

n≥0

P[n ∈ Λ, |θ̂i(n)− θi| ≥ δ] ≤ 2c−1 [2c−1 + δ−2] .

Proof. Fix T < ∞ and s. Apply Lemma 3 (with Zt ≡ Xi(t)
, Bt ≡ oi(n), B̄t ≡ 1{n ∈ H}, Ct a Bernoulli variable with
parameter E[oi(n)|n ∈ H ] which is conditionally independent of
1{n ∈ H}) to obtain:

P[|θ̂i(τs)− θi| ≥ δ, τs ≤ T ] ≤ 2(e−2sǫ2c2 + e−2c(1−ǫ)sδ2).

Using a union bound over s, for all ǫ > 0 we get:
∑

n≤T

P[n ∈ Λ, |θ̂i(n)− θi| ≥ δ] ≤
∑

s≥1

P[|θ̂i(τs)− θi| ≥ δ, τs ≤ T ]

≤
∑

s≥1

2(e−2sǫ2c2 + e−2c(1−ǫ)sδ2)

≤
1

ǫ2c2
+

1

c(1− ǫ)δ2

= c−1

[

1

ǫ2c
+

1

δ2(1− ǫ)

]

,

where we have used the following inequality twice
∑

s≥1 e
−sw ≤

∫ +∞

0
e−swds = 1/w, valid for all w > 0. Since



the above inequality holds for all T , and its r.h.s. does not depend
on T we conclude that:

∑

n≥1

P[n ∈ Λ, |θ̂i(n)− θi| ≥ δ] ≤ c−1

[

1

ǫ2c
+

1

δ2(1− ǫ)

]

,

which concludes the proof of the first statement.
The second statement is obtained by setting ǫ = 1/2. ✷

COROLLARY 1. Consider c > 0 and 1 ≤ i ≤ N fixed. Con-

sider a random set of instants H ⊂ N, such that, for all n, 1{n ∈
H} is Fn−1 measurable. Further assume for all n we have:

E[oi(n)|n ∈ H ] ≥ c > 0. Define hi(n) =
∑

n′≤n 1{n′ ∈ H}.

Consider ǫ > 0 and δ > 0 and define the set:

H =
{

n ∈ H :
(

ti(n) ≤ (1− ǫ)hi(n)
)

∨
(

|θ̂i(n) − θi| ≥ δ
)}

Then we have:

E[|H|] ≤ c−1
[

c−1ǫ−2 + δ−2(1− ǫ)−1
]

.

Proof. Straightforward from the proof of Lemma 5 with Λ = H .
✷

Lemma 6 is a straightforward consequence of Theorem 10 in
[24], and states that the expected number of times the index of
a given item i underestimates its true value is finite, and upper
bounded by a constant that does not depend on the parameters (θi)i.

LEMMA 6. ( [24] ) Define:

bi(n) = max{q ∈ [0, 1] : ti(n)I(θ̂i(n), q) ≤ f(n)},

with f(n) = log(n) + 4 log(log(n)).
There exists a constant C0 independent of (θi)i such that for all

i we have:
∑

n≥0

P[bi(n) < θi] ≤ C0.

In particular one has C0 ≤ 2e
∑

n≥1⌈f(n) log(n)⌉e
−f(n) ≤ 15.


