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ABSTRACT

Polarimetric incoherent target decomposition aims in
accessing physical parameters of illuminated scatters
through the analysis of target coherence or covariance
matrix. In this framework, Independent Component
Analysis (ICA) was recently proposed as an alternative
method to eigenvector decomposition to better interpret
non-Gaussian heterogeneous clutter (inherent to high res-
olution SAR systems). In this paper a Monte Carlo ap-
proach is performed in order to investigate the bias in
estimating Touzi’s Target Scattering Vector Model pa-
rameters when ICA is employed. Simulated data and
data from the P-band airborne dataset acquired by the Of-
fice National d’tudes et de Recherches Arospatiales (ON-
ERA) over the French Guiana in 2009 in the frame of the
European Space Agency campaign TropiSAR are taken
into consideration.

Key words: Polarimetric Incoherent Target Decomposi-
tion, Independent Component Analysis, Bias analysis.

1. INTRODUCTION

Polarimetric target decomposition is one of the most pow-
erful and widespread tools for POISAR image interpreta-
tion. The analysis of the interaction between the illumi-
nated area and the transmitted waveform, to each polari-
metric state of the latter, allows for a better prediction
of the basic scattering mechanisms present on the scene,
and to more efficiently propose classification, detection
and geophysical parameter inversion algorithms.

Many methods have been proposed in the literature to
both decompose an image pixel into basic target vectors
and to correctly retrieve quantitative information from
them (parametrization). Concerning the latter, Cloude
and Pottier’s parameters (entropy, alpha and anisotropy)
[2] and Touzi’s target scattering vector model [3] are
the most employed ones, whose usefulness have already
been demonstrated by several authors. Regarding the de-
composition, the algorithms are mainly classified in ei-
ther coherent, if they are based on the scattering ma-

trix analysis, or incoherent if their interest lies in the
Hermitian, semidefinite positive coherency or covariance
matrix. Among the incoherent target decompositions
(ICTD), the eigenvector based one manages to decom-
pose an image pixel into the three most dominant scat-
ters from the averaged coherence matrix. Furthermore,
it has an intrinsic property that the derived scatters are
orthogonal and uncorrelated, which for Gaussian clutters
also means independence. The drawback of this kind of
method emerge when the clutter is not Gaussian or not
composed by orthogonal mechanisms, situations where
the performance of the algorithm could be compromised.

In [4] a new strategy to polarimetric target decomposition
was presented by incorporating the independent compo-
nent analysis (ICA). The ICA is a blind source separa-
tion technique based on higher order statistical moments
and cumulants whose utility has already been explored
in many different research areas, such as wireless com-
munications, feature extraction and brain imaging appli-
cations [1]. The results presented in [4] proved it to be
a very promising area in polarimetry, mainly when non-
Gaussian heterogeneous clutters (inherent to high resolu-
tion SAR systems) are under study. The theoretical po-
tential in estimating similar entropy and first component,
when compared to traditional eigenvector decomposition,
but rather a second most dominant component indepen-
dent with respect to the first one and unconstrained by the
orthogonality introduces an alternative way of physically
interpreting a polarimetric SAR image.

The referred method is briefly summarised in three main
steps: data selection, based on the statistical classification
of the POLSAR image; estimation of independent com-
ponents and parametrization of the derived target vectors.
As stated in [4], the principal drawback of the proposed
method, is the size of the observation dataset, which has
to be somewhat larger than the size of the sliding win-
dow used in the well established methods. This constraint
lead the authors in [4] to use an unsupervised classifica-
tion algorithm rather than relying on a very large sliding
window, jeopardising the effectiveness of the method.

The use of a classification algorithm limits the perfor-
mance of the method in the sense that the image is seg-
mented in a priori defined number of classes with variable
sizes, what can lead to either over or under estimations of



the target vectors parameters.

Within this context, this paper considers a Monte Carlo
simulation approach to investigate the tradeoffs existent
in the selection of a sliding window size for various me-
dias, simple ones composed by basic scatters such as he-
lix, dipole, dihedral and trihedral and more complex ones
like Surface, Double Bounce and Volume returns. The
simulation procedure is similar to the one presented in
[5] to evaluate the bias of multilook effect on Cloude and
Pottier [2] parameters in eigenvector based polarimetric
SAR decomposition. The seed mixing matrix, as well
as the covariance matrix, for each of the aforementioned
complex type of scatters are extracted from real data,
more precisely, in this paper a P-band airborne dataset
acquired by the Office National d’tudes et de Recherches
Arospatiales (ONERA) over the French Guiana in 2009
is taken into consideration, while for the basic scatters
analysis they are manually set. The main difference re-
garding the generation of the simulated data is that in [5]
only Gaussian variables were addressed and no texture
was considered, while in the present work the heteroge-
neous clutter is described by a multitexture (polarization
dependent) model where texture is characterised by ran-
dom variables.

This paper is organised in five sections. Section II
presents the ICA approach proposed in [4] as an ICTD
method, while in Section III a short review of Touzi’s
target scattering vector model [3] is performed. Section
IV briefly describes the data simulation procedure, taking
into account the multitexture model and the type of clut-
ter analysed. In section V Touzi’s estimated parameters
are presented for different window sizes and compared to
the values obtained using the traditional eigenvector de-
composition. Finally in Section VI conclusions are drawn
and future work possibilities are highlighted.

2. INDEPENDENT COMPONENT ANALYSIS
Ica)

The ICA approach is a blind source separation technique
that aims, based on higher order statistical moments, in
recovering statistical independent sources without having
any physical background of the mixing process [7]. The
derived parameters are stable both to polarization basis
changes and rotations around the line of site and are not
constrained to any orthogonality among them [4]. Let
X be a set of observation vectors, then the mathematical
model of ICA is written as

x = As D

where A is the mixing matrix and s is the mutually inde-
pendent sources vector. Analogously to eigenvector de-
composition, each column of the estimated mixing matrix
A represents one of the most dominant mutually indepen-
dent target vector present in the observed scene.

Once a stationary set of observed Pauli target vector is
chosen, a pre-processing step, consisting in centering and

whitening, is performed. Then a Non-Circular Complex
Fast-ICA algorithm [8] is applied in order to estimate
the mixing matrix A and, consequently, the independent
sources §. The Complex Fast-ICA algorithm can be ap-
plied with different criterions. In this paper we chose to
employ the same approach as in [4], which is specifically
suited to scenarios where sources may eventually present
non-circular distributions [8]. The algorithm seeks to em-
phasise the Non-Gaussianity of the sources by maximis-
ing an arbitrary non linear contrast function whose ex-
trema coincides with the independent component, which
in the present work was chosen to be a logarithm function
(described as the most appropriate in [4]), given by

G(y) = log(0.05 +y) 2)

The final step of the algorithm consists in de-whitening
the estimated mixing matrix using the inverse of the oper-
ation performed during the pre-processing, assuring that,
unlike eigenvector decomposition, the estimated compo-
nents are not constrained to any orthogonality among
them. A more complex discussion over the Non-Circular
Complex Fast-ICA algorithm is out of the scope of the
present work. For this purpose the reader is advised to
read [4, 8].

The contribution of each source 7 to the total backsca-
tering, evaluated as the squared /2 complex norm of the
corresponding mixing matrix column is given by

A3 = | A1) + |Agi|® + |Asq|? €))

Entropy is then calculated in a similar manner as in eigen-
vector based decomposition. Likewise, the parameters
for each target vector ¢ are derived in an unchanged man-
ner using either Touzi’s TSVM or Cloude and Pottier pa-
rameters.

3. TOUZI’S PARAMETRIZATION

The scattering vector model derived by [3], for both sym-
metric and asymmetric targets is given by
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where each coherent scatter can be represented by four
roll-invariant parameters o, T, ¢, and m and by two
roll variant parameters ¢ and . In [10], Bombrun made
a detailed investigation of the ambiguities in (4) and came
up with the following relations
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In (4), target helicity, 7,,, is used for identifying its sym-
metric nature and is defined in the interval [—7 /4, 7/4].
The parameter o, defined in the interval [0, 7/2] rep-
resents the magnitude of the symmetric scattering type,
while ¢, , ranging between [—7/2, /2], its phase.
These three parameters allows for a complete and an un-
ambiguous description of coherent scatters while i de-
termines the target orientation angle, m is a measure of
the maximum amplitude return and the phase ¢ is inves-
tigated only in interferometric applications.

4. MONTE CARLO SIMULATION APPROACH

The heterogeneous clutter is here described by a multitex-
ture (polarization dependent) model and simulated under
different assumptions regarding its composition: basic
scatters and complex scatters (Surface, Double Bounce
and Volume). Like the Spherically Invariant Random
Vectors (SIRV) model [6], each m-dimensional obser-
vation vector is characterised as a product between the
speckle and the texture, but unlike the latter, the textures
are considered polarisation dependent [11]. Even though
the product model (SIRV) considering polarisation inde-
pendent texture is well accepted in SAR community, the
discussion over its validity is still an open topic in re-
search. High resolution systems and tropical forested
area may present different texture among the channels
and therefore the product model doesn’t always hold un-
der these circumstances [12, 13].

The multitexture model is a class of non-homogeneous
Gaussian processes with random variance where each m-
dimensional observation vector X is defined as

X=+T 2 (6)

where z is an independent complex circular Gaussian vec-
tor, characterising the speckle, with zero mean and co-
variance matrix of the form [T] = oq - [M], such that
Tr{|M|} = 1 and oy is the total power (span). In (6),
T represents the texture, a positive random vector char-
acterising the spatial variations in radar backscattering
for each channel. The probability density function of the
texture random variable is not explicitly specified by the
model, therefore, in the present work, it is assume that
they are independent and share the same statistical prop-
erties among channels (i.i.d.). Furthermore they are as-
sumed Gamma distributed.

The Independent Component Analysis does not include
the estimation of the covariance matrix itself, neverthe-
less, since, for comparison reasons, we perform the same
simulations with the Eigenvector based decomposition,
the coherence matrix estimator is also addressed. There-
fore, as indicated in [6], the generalised maximum like-
lihood estimator of [M] is the solution of the recursive
equation given by

where z;, 0 < 7 < NN are the samples and N is the square
of the window size.

Each simulation procedure, for a given window size and
clutter type is repeated 1000 times and then the estimated
parameters are averaged. For the first set of simulations
the scattering mechanisms are assumed basic scatters and
two scenarios are established: one containing orthogonal
targets and the other containing non-orthogonal mecha-
nisms. The Gamma distribution shape and scale parame-
ters that characterises the texture are fixed and set to 1.95
and 0.51, respectively. They are used to generate a sim-
ulated texture vector 7. Afterwards, a complex normal
distributed random vector Z, i.e., z ~ C'N(0,1I) is gener-
ated. Finally, the simulated observation vector for each
type of clutter is then given by

X=AVT 1 (8)

The simulated dataset (8) is then used as input for both
the Eigenvector decomposition and ICA decomposition.

Let us first investigate the behaviour of Eigenvector de-
composition, hereafter also referred to as PCA (Principal
Component Analysis) and ICA under the assumption that
the heterogeneous clutter is composed by orthogonal tar-
gets: 60% of helix left screw, 30% of helix right screw
and 10% of trihedral. The mixing matrix, in Pauli basis
for such type of clutter [3] is given by

03162 0 0
A=| 0 03873  0.5477 9)
0 03873 —0.5477j

where j = +/—1 is the imaginary unit. The Entropy of
such clutter is 0.8 while Touzi’s roll invariant parameters
are displayed in Table 1.

Table 1: Orthogonal mechanisms Touzi’s parameters

Tm [deg] || os [deg] || ¢n, [deg]
Helix left screw 45 45 0
Helix right screw —45 45 0
Trihedral 0 0 0

Figure 1 presents the estimated Touzi’s roll invariant pa-
rameters and entropy derived using ICA and eigenvector
decomposition.

Note that both Eigenvector decomposition and ICA cor-
rectly derive the Touzi’s parameters corresponding to the
three components as well as the entropy. The conver-
gence rate of both methods are similar and they even
present the same behaviour with respect to the estima-
tion of the a; parameter of the third component. Re-
garding the Entropy, note that while suboptimal window
sizes produce an under estimation of it when Eigenvector
decomposition is used, if ICA is employed, suboptimal
window sizes produces over estimation.

Next a scenario with non-orthogonal targets is addressed.
The clutter is then composed by 60% of helix left screw,
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Figure 1: Entropy and Touzi TSVM parameters derived
with ICA and Eigenvector polarimetric target decompo-
sition (PCA) for a clutter composed by basic orthogonal
mechanisms.

30% of dipole and 10% of dihedral. The mixing matrix,
in Pauli basis, for such type of clutter is given by

0 0.3873 0
A = 103162 0.3873  0.5477 (10)
0 0 —0.54775

The Entropy of such clutter is also 0.8 while Touzi’s roll
invariant parameters are displayed in Table 2.

Table 2: Non-orthogonal mechanisms Touzi’s parameters

Tm [deg] || as [deg] || ¢a, [deg]
Helix left screw 45 45 0
Dipole 0 45 0
Dihedral 0 90 0

As expected, since Eigenvector decomposition has an in-
trinsic constraint that the estimated components are mu-
tually orthogonal, it is unable to correctly derive the orig-
inal mixing matrix, failing to estimate the contents of
the heterogeneous clutter. On the other hand, ICA is
not constrained to orthogonality therefore it successfully
estimates the three components parameters. Figure 2
presents the results of ICA.
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Figure 2: Entropy and Touzi TSVM parameters derived
with ICA polarimetric target decomposition for a clutter
composed by basic non-orthogonal mechanisms.

Note that the convergence rate of the estimated parame-
ters, compared to a scenario with only orthogonal targets
(see Figure 1) nearly doesn’t change, concluding that the
same window size can be used despite of the orthogonal-
ity of the scattering mechanisms.

Let us now address more complex type of targets, com-
posed by either Surface, Double-Bounce or Volume scat-
ters. The first step in the simulation procedure is to define
the observation dataset from which the covariance matrix,




the mixing matrix and the texture parameters will be es-
timated for each of the aforementioned mechanisms. In
the present analysis the P-band airborne dataset acquired
by Office National d’tudes et de Recherches Arospatiales
(ONERA) over French Guiana in 2009 in the frame of
the European Space Agency campaign TropiSAR is taken
into consideration. A statistical classification algorithm
is employed to discriminate the aforementioned classes
in the scene under study. Figure 3 presents the referred
area and the classification algorithm output.
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Figure 3: French Guiana area under study: (a) RGB im-
age, Red (HH+VV), Green (HV), Blue (HH-VV); (b)
Statistical classification algorithm output.

Each class was analysed using an H/« feature space in
order to verify the ones that better corresponds to Vol-
ume, Double-Bounce and Surface scatters. Therefore
samples corresponding to each class were extracted from

the referred set and the mixing matrix, AC, and covari-
ance matrix, [M 1% p, were estimated for each of the de-
scribed classes (¢ = volume, double—bounce, sur f ace)
of mechanisms. An algorithm described in [9], initialised

with the identity matrix, is used for the latter.

Figure 4 presents the results of the polarimetric decom-
position using both ICA and Eigenvector decomposition
(PCA).

Note that as well as reported in [5] Eigenvector decom-
position presents the greatest bias in Entropy and «; es-
timation for Volume type of clutters. The same happens
for ICA ICTD, with a caveat, the bias in the estimation of
the oy parameter for Volume type of clutter using ICA
is much greater than when Eigenvector decomposition
is employed. Nevertheless the results obtained for ¢,
and 7,,, do not follow the same pattern. For ¢, Sur-
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Figure 4: Entropy and Touzi TSVM parameters derived
with ICA and Eigenvector polarimetric target decompo-
sition (PCA) for complex clutter types: Surface, Double-
Bounce and Volume.

face presents the lower convergence rate, nevertheless the
Bias of small window sizes in ICA is more harmful than
in Eigenvector decomposition. On the other hand, for
the helicity estimation, Double Bounce type clutters are
the ones with lower convergence rate and similar Bias for
both ICA and Eigenvector decomposition.

5. CONCLUSION

This paper focused on addressing the main drawback of
the employment of Independent Component Analysis in
polarimetric target decomposition: the higher amount of
samples needed. Based on simulated data we manged
to better investigate the theoretical concepts and analyse
the tradeoffs on the estimation of the entropy and Touzi’s
parameters caused by not sufficient number of samples.



It was shown that when the heterogeneous clutter is com-
posed only by orthogonal mechanisms Touzi’s parame-
ters estimated using ICA are the same as the ones es-
timated using eigenvector decomposition. Furthermore,
both Eigenvector decomposition and ICA present simi-
lar behaviour with respect to the convergence rate of the
estimation, meaning that the same window size can be
used for both methods. Nevertheless, in the derivation of
the entropy, suboptimal window sizes will induce an over
estimation when ICA is employed and an under estima-
tion when Eigenvector decomposition is used. When the
clutter is composed by non-orthogonal mechanisms, un-
like Eigenvector decomposition, ICA successfully derive
the basic scattering mechanisms without compromising
its performance.

Simulations with complex type of scatters, Volume,
Double-Bounce and Surface, whose characteristic were
extracted from real data, showed some unexpected re-
sults. Even though both the entropy as well as Touzi’s roll
invariant parameters all converged using both ICA and
Eigenvector decomposition, they did with varying con-
vergences rates and Bias for small window sizes, there-
fore, creating a compromise in the settlement of the opti-
mal window size.

Future works will continue on establishing theoretical
background for the use of ICA in Incoherent Target De-
composition for PoOISAR data, either analytically or em-
pirically. Furthermore the new information provided by
a second and third most dominant components different
from the ones obtained with Eigenvector decomposition
is still under analysis to new applications.
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