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Hardness Results and Approximation Algorithms for Discrete

Optimization Problems with Conditional and Unconditional

Forbidden Vertices

Francois Delbot∗ Christian Laforest† Raksmey Phan‡

April 18, 2016

Abstract

In this paper we study and solve new variants of classical graph problems (vertex cover,
dominating set, Steiner tree). We add constraints of incompatibilities between vertices that can
be conditional or unconditional. This capture the impossibility for certains vertices or pairs of
vertices of been into a solution.

In the first part, we consider a graph with unconditional forbidden vertices. An instance of
the problem is a graph, a set F of Forbidden vertices and a set R of Required vertices. We prove
that constructing a minimal size vertex cover or connected vertex cover or dominating set or
Steiner tree, containing all R and no vertex of F can be 2-approximated (when there exists one,
that is polynomial to determine). We also show that it is NP-complete to determine whether
there is an independent dominating set (containing R and no vertex of F ).

In the second part, we carry on the conditional case that is expressed by conflicts that are
a set of pairs of vertices that cannot be both into a solution. An instance is then a graph G and
a set C of conflicts. We first study the question to know whether there is a vertex cover of G
containing no conflict of C and if the answer is positive to construct one of minimal size. We
reduce that to 2-SAT and we show that the first question can be answered with a polynomial
time algorithm. We show that the second problem is NP-complete but can be 2-approximated.
We also prove that it is NP-complete to decide if there exists a connected vertex cover, an
(independent) dominating set or a Steiner tree with no conflict of C.

1 Introduction

A traditional discrete graph optimization problem takes as input a graph G (plus potential supple-
mentary parameters), and the goal consists in general to construct/extract S a structure (depending
of the problem) from G, optimizing a given measure (also function of the problem). Several classical
problems of this type are the basis of concrete applications. However, in real world, situations are
often more complicated. Some elements of G can be incompatible between them and cannot be
together in the final solution S. These incompatibilities can come from the nature of the elements
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and can be due to security reasons, non common interface, capabilities of treatment, etc. This is
not the objective of our paper to detect them. We suppose here that they are known and they
constitute a part of the input of the problem. The last dimension we must take into account is the
fact that two elements can be incompatible, unconditionally or conditionally. The first type of con-
straints states that some elements cannot be in any solution. We say that they are forbidden. The
conditional incompatibility between two elements u and v states that if one is in S (for example
u) then the other one (v in this case) cannot be in S. We say that there is a conflict between u
and v.

To explain more precisely the problems we study under these two points of view, we first need
some notations and definitions.

In this paper, the support will be a undirected, unweighted graph G. Its set of vertices is denoted
by V and its set of edges by E . Two vertices u and v linked by an edge uv are neighbors in G.
The set of neighbors of u in G is noted NG(u) or simply N(u) when there is no ambiguity of the
support. Graph G is connected if there is a path in G between each pair of vertices. A tree is a
connected graph containing no cycle. If F is a subset of vertices, G[F ] is the graph induced by F
in G: Its set of vertices is F and its edges are only the ones of G between pairs of vertices of F . An
independent set F of G is a set of vertices such that G[F ] contains no edge. In this paper we study
variants of the following classical problems.

A vertex cover V C is a subset of the vertices (V C ⊆ V) such that each edge uv is covered by
V C, i.e. has at least one extremity in V C (u ∈ V C or v ∈ V C or both). A connected vertex cover
V C is a vertex cover with the additional property that G[V C] is connected. A dominating set in
G is a subset of vertices D ⊆ V such that each vertex outside D is neighbor of (is dominated by)
at least one vertex in D (for all v ∈ V −D, N(u) ∩D 6= ∅). An independent dominating set I is
an independent set of G (G[I] has no edge) that is a dominating set of G. Let M be any subset of
vertices of G (M ⊆ V); a Steiner Tree for the instance (G,M) is a tree T = (VT , ET ) covering M
(M ⊆ VT ⊆ V) in G (ET ⊆ E).

The size of a solution S to these problems (namely a vertex cover (connected or not) or a
dominating set (independent or not)), is the number of its vertices, noted |S|. The size, or weight,
of a Steiner tree is its number of edges (or equivalently its number of vertices minus one, by a
well-known property of trees).

All these problems are classical, their optimization versions are NP-hard (see [4]) and there are
approximation algorithms to solve them (some with constant approximation ratios).

As mentioned at the beginning of the paper, we study variations of these 5 problems, taking
into account the potential incompatibilities between elements, that are of two kinds.

• In unconditional compatibilities, study in Section 2, we are given two additional sets of
vertices, namely set F of forbidden vertices that cannot be in any solution. We also consider
a set R of required vertices that must be in any solution. Of course we suppose that R∩F = ∅.

• Conditional incompatibilities are given, in Section 3, as a set of pairs of vertices that cannot
be together in any solution. This is called a conflict. If there is a conflict between u and v
then both of them cannot be in a solution (at most one of them can be).

With these new constraints, the existence of a solution, regardless of its size, is not guaranteed.
Thus, we proceed in two steps. First, we study the problem of determining the existence of a
solution. If this problem is polynomial then, in a second stage, we propose approximation algorithms
to solve the optimization version and we prove their approximation ratios.
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Several works have been done on similar contexts. Recently several papers have been published
concerning the construction of structures in graphs under constrains like conflicts of edges: If two
edges e and e′ are in conflict they cannot be part of the same structure (at most one can be into
the structure, not both). This has been investigated for paths, trees, Hamiltonian paths or cycles
in [2, 7, 8, 11, 12, 15]. The same kind of study has been done when the conflicts concern pairs of
vertices (see [9] for example). All these constrains are conditional: If an edge (or a vertex) is in the
structure then the other one cannot be part of it. Concrete applications may concern incompatible
devices or links in a network for example.

2 Optimization Problems in Graphs With Unconditional Forbid-
den Vertices

This section is devoted to study variants of the 5 classical discrete optimization problems mentioned
in the introduction, under the unconditional constraints. In addition to the support graph G, two
sets F (forbidden vertices) and R (require vertices) are given into the instance that is now of the
form (G, F,R). The existence of a solution including all the vertices of R and containing no vertex
of F is studied. If this can be determined in polynomial time, then we solve the optimization
problem by proposing an approximation algorithm.

2.1 Vertex Cover in (G, F, R)

Given (G, F,R) a Vertex Cover with Forbidden and Required Vertices (VCwFaRV ) S is a vertex
cover of G (for each edge e = uv of G, u or v (or both) is in S) such that F ∩ S = ∅ and R ⊆ S.
We first make the following remark, easy to prove.

Proposition 1 (G, F,R) contains a VCwFaRV if and only if F is an independent set of G and
F ∩R = ∅.

This remark proves that deciding whether there is a VCwFaRV in (G, F,R) is polynomial. Min-
imizing the size of a VCwFaRV is hard, since the very particular case R = F = ∅ is the classical
NP-complete vertex cover problem (see [4]). We propose an approximation algorithm for the min-
imal size VCwFaRV problem. Our algorithm uses as a subroutine any 2-approximation algorithm,
noted A, for the optimal vertex cover problem (some can be found in [16], see [3] for a recent new
one).

Input: Any instance (G, F,R) such that F ∩R = ∅ and F an independent set of G.
(1) N(F ) = {v : uv ∈ E , u ∈ F} (the set of neighbors of the vertices of F in G).
(2) Let V ′ = V − (F ∪R ∪N(F )) and G′ = G[V ′] be the graph induced by V ′ in G.
(3) Apply algorithm A on G’, that returns S ′.
(4) Return S = S ′ ∪R ∪N(F ).

Theorem 2.1 Our algorithm is a 2-approximation algorithm for the minimal size VCwFaRV prob-
lem.
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Preuve. Our algorithm is polynomial (subroutine A is polynomial). By construction, the set S
returned by our algorithm contains all vertices of R and no vertices of F . Let e = uv be any edge
of G. Let us show that e is covered by S. If u and v are in V’ then S’ covers e since algorithm A
returns a vertex cover of G’. Now, if u or v is in R or in N(F ), e is covered by S. The last case
is when u (or v) is in F . Since F is an independent set, if u ∈ F then v 6∈ F . But in this case,
v ∈ N(F ). Edge e is then covered by S. Our algorithm returns a VCwFaRV of instance (G, F,R).
We analyze now its size |S|.

Let S∗ be a minimal size VCwFaRV of (G, F,R) and OPT = |S∗| be its size. Let T =
S∗ − (R ∪ N(F )). First note that OPT = |T | + |R ∪ N(F )| since R ∪ N(F ) ⊆ S∗ (N(F ) ⊆ S∗
because edges incident to F must be covered). T is clearly a vertex cover of G’. We prove by
contradiction that T is an optimal vertex cover of G′ = G[V ′].

Suppose the opposite; this means that there exists a vertex cover T2 of G′ with |T2| < |T |; Hence
S2 = T2∪R∪N(F ) is a VCwFaRV of size |S2| ≤ |T2|+|R∪N(F )| < |T |+|R∪N(F )| = |S∗| = OPT .
This is in contradiction with the optimality of S∗.

As S ′ is a 2-approximation of an optimal vertex cover of G′ (by property of algorithm A) we
get: |S ′| ≤ 2|T |. Moreover, as OPT = |T |+ |R∪N(F )| we have: |T | ≤ OPT . Combining all these
points we get:

|S| ≤ |S ′|+ |R ∪N(F )| ≤ 2|T |+ |R ∪N(F )| ≤ OPT + |T |+ |R ∪N(F )| = 2OPT

�

2.2 Connected Vertex Cover in (G, F, R)

Given (G, F,R), a Connected Vertex Cover with Forbidden and Required Vertices (CVCwFaRV ) S
is a vertex cover of G (each edge uv has at least one extremity in S) such that G[S] is connected,
F ∩ S = ∅ and R ⊆ S. We suppose in this Section that G is connected.

Proposition 2 Let G be a connected graph. (G, F,R) contains a CVCwFaRV if and only if F is
an independent set of G, F ∩R = ∅ and G[V − F ] is connected.

Preuve. If (G, F,R) contains a CVCwFaRV noted S, this means that F ∩ R = ∅ and F is an
independent of G (otherwise edges of G[F ] could not be covered). Moreover, as S is a vertex cover
of G, any edge uv of G has at least one extremity in S. Let us consider any vertex u ∈ V − F : u is
in S or has a neighbor in S (since G is connected, u has at least one neighbor) or both. Thus for
any u, v ∈ V − F there is a path between u and v in G[V − F ] (through the connected graph G[S])
which is then connected.

Now suppose that G[V − F ] is connected, that F ∩ R 6= ∅ and that F is an independent set of
G. This means that S = V − F contains no vertex of F and contains all vertices of R. Moreover,
let uv be any edge of G. As F is an independent set of G, u ∈ S or v ∈ S (or both). This means
that S is a vertex cover of G. In conclusion, S is a CVCwFaRV of (G, F,R). �

The previous result shows that deciding whether there exists a CVCwFaRV of (G, F,R) is
polynomial and, if it is the case, to construct one (namely V − F ). If F = R = ∅, this is the
classical connected vertex cover NP-complete problem (see [4]). We propose now an approxima-
tion algorithm for the minimal size CVCwFaRV problem. Our algorithm uses as subroutine any
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2-approximation algorithm, noted A, for the minimal size connected vertex cover problem (see [14]
for example).

Input: Any instance (G, F,R) where F ∩ R = ∅, F is an independent set of G and G[V − F ] is
connected.
(1) Let R′ = R ∪N(F ) where N(F ) = {v : uv ∈ E , u ∈ F}.
(2) Construct G+ = (V+, E+) the graph G[V − F ] in which for each vertex r of R′ is added a new
proper neighbor r+ (of degree 1, that is a leaf of G), and the associated new edge rr+.
(3) Apply algorithm A on G+ = (V+, E+) that constructs a connected vertex cover of G+, noted S+.
(4) Construction of S. For each new edge rr+ (S+ necessarily contains r, r+ or both), put r in S.
Put in S all the other vertices of S+ that are not r+-type vertices.
(5) Return S.

Theorem 2.2 Our algorithm is a 2-approximation algorithm for the minimal size CVCwFaRV
problem.

Preuve. Our algorithm is polynomial (algorithm A is polynomial). By hypothesis graph G[V −F ]
is connected. Adding the new vertices r+ and new edges rr+ into it maintains the connectivity,
hence G+ is connected. Algorithm A constructs a connected vertex cover S+ of G+. After potential
modifications at line (4), S is always a connected vertex cover of G+, including no r+-type vertex.
S is then a connected vertex cover of G[V − F ], G[S] is connected and contains no vertices of F .
We just need now to show that edges with one extremity in F are also covered to show that S
is a vertex cover of G. Let ur be such an edge, with u ∈ F and r 6∈ F , that is r ∈ N(F ). By
construction of G+ and by operation of line (4), r is included into S, and edge ur is then covered
by S. Again, by construction, any r ∈ R is also in S (see line (4)) i.e. R ⊆ S. All these points
show that S is a CVCwFaRV of instance (G, F,R). We must now analyse its size.

Let us study the approximation ratio. Let OPT+ be the size of an optimal connected vertex
cover of G+. As algorithm A is a 2-approximation algorithm, |S+| ≤ 2OPT+. By construction, |S| ≤
|S+| since for any edge rr+, S contains one vertex (r) while S+ contains at least one (potentially
both).

Let S∗ be an optimal CVCwFaRV of (G, F,R) and OPT = |S∗| be its size. By definition, S∗
contains R, S∗ ∩ F = ∅ and covers every edges of G thus also contains N(F ). Moreover G[S∗] is
connected. Hence, S∗ contains R′, is a connected vertex cover of G+ and its size is then larger than
the optimal one: OPT+ ≤ OPT . Combining all these inequalities we get:

|S| ≤ |S+| ≤ 2OPT+ ≤ 2OPT

�

2.3 Dominating Set in (G, F, R)

Given (G, F,R), a Dominating set with Forbidden and Required Vertices (DwFaRV ) S is a domi-
nating set of G (∀u 6∈ S, N(u) ∩ S 6= ∅), F ∩ S = ∅ and R ⊆ S.

Proposition 3 (G, F,R) contains a DwFaRV if and only if F ∩R = ∅ and ∀u ∈ F , N(u)∩ (V −
F ) 6= ∅.
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Preuve. Suppose that S is any DwFaRV of the instance (G, F,R). Of course F ∩R = ∅. S is a
dominating set, containing no vertex of F . Thus, any vertex u ∈ F is dominated by at least one
neighbor outside F in S ⊆ V − F .
Now suppose F ∩R = ∅ and ∀u ∈ F , N(u) ∩ (V − F ) 6= ∅. Then S = (V − F ) is a dominating set
of G containing R and no vertex of F . This is a DwFaRV . �

This proposition shows that deciding whether the instance (G, F,R) contains a DwFaRV is
polynomial. When R = F = ∅, a DwFaRV is a classical dominating problem that is NP-complete
(see [4]). We propose now an approximation algorithm for the minimal size DwFaRV problem. To
describe it, we first need to remind the set cover problem, another classical problem. It takes a “back-
ground” set X and a family FAM of subsets of X , covering X (i.e.

⋃
H∈FAMH = X ). A set cover

of (X ,FAM) is a subfamily FAM’ of FAM (FAM′ ⊆ FAM), covering X (
⋃

H∈FAM′ H = X ).
The size of FAM’, noted |FAM′|, is the number of sets it contains. Constructing a set cover of
minimal size is an NP-hard problem (see [4]). It cannot be approximated by a constant. But there
is a well-known greedy algorithm, noted A, that constructs a set cover of (X ,FAM) whose size is
at most 1 + ln(|X |) times the size of an optimal one (see [6]). We use A as a subroutine for our
algorithm.

Input: Any instance (G, F,R) with F ∩R = ∅ and ∀u ∈ F , N(u) ∩ (V − F ) 6= ∅.
(1) For each vertex u of G, construct set V (u) = N(u) ∪ {u} (u and all its neighbors). We call u
the center of V (u).
(2) Apply algorithm A on the set cover instance (V,FAM) with FAM = {V (u) : u ∈ V − F}
(FAM contains all the V (u), except the ones associated with vertices of F ). Note FAM’ the
solution returned by A.
(3) S ′ = {u : V (u) ∈ FAM′}. S’ is composed of the centers u of sets V (u) selected by A.
(4) Return S = S ′ ∪R.

Theorem 2.3 Our algorithm is a (2 + ln(|V|))-approximation algorithm for the minimal size
DwFaRV problem.

Preuve. Our algorithm is polynomial (A is polynomial). Family FAM contains no set V (u)
with u ∈ F , hence S contains no vertex of F . By hypothesis ∀u ∈ F , N(u) ∩ (V − F ) 6= ∅, hence
family FAM covers V and the set cover instance (V,FAM) has a solution. By construction, S
contains R (line (4)). Let us show now that S is a dominating set of G. In fact we show that S’
(constructed in line (3)) is a dominating set of G and, as S ′ ⊆ S, this is sufficient.

For that purpose we describe now a bijection, preserving the size, between sets cover of (V,FAM)
(with FAM = {V (u) : u ∈ V − F}) and dominating sets of G, containing no vertex of F .

Let C be any set cover of (V,FAM). From C construct S(C), the set of centers of sets
composing the cover C: S(C) = {u : V (u) ∈ C}. With this transformation, any set cover C
corresponds to a unique S(C) and, by construction, |C| = |S(C)|. Note that S(C) ∩ F = ∅ since
FAM contains no V (u) with u ∈ F . We need to show now that S(C) is a dominating set of G. Let
u 6∈ S(C) be any vertex. As u is an element of V, covered by at least a set V (v) of C (u ∈ V (v)),
then v ∈ S(C) and v, neighbor of u, dominates u.

Consider now the reverse association. Let S be any dominating set of G, containing no vertex
of F . From S construct C(S) = {V (u) : u ∈ S} ⊆ FAM. When S is given, C(S) is unique and
|C(S)| = |S|. Moreover C(S) is a set cover of V (proof similar to the previous one). These two
reverse transformations define the bijection.
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Now, let C∗ be an optimal size set cover of (V,FAM). By the bijection, the corresponding
dominating set S(C∗) is then a minimal size dominating set of G, containing no vertex of F and
|S(C∗)| = |C∗|. By property of subroutine A, |FAM′| ≤ (1+ln(|V|))|C∗|. Our algorithm constructs
S’ from FAM’, exactly as in the bijection. S’ is then a dominating set of G, with no vertex of F
and |S ′| = |FAM′|. Combining all these elements leads to:

|S ′| = |FAM′| ≤ (1 + ln(|V|))|C∗| ≤ (1 + ln(|V|))|S(C∗)|

Now let OPT be the size of a minimal size DwFaRV of the initial instance (G, F,R). As OPT
is the size of a dominating set of G, with no vertex of F and all vertices of R, its size is larger that
the one of S(C∗) (an optimal size dominating set of G with the only constraint of having no vertex
of F ). Hence |S(C∗)| ≤ OPT . This new inequality implies:

|S ′| ≤ (1 + ln(|V|))OPT

The last part of the analysis concerns operation of line (4): S = S ′ ∪ R, thus |S| ≤ |S ′| + |R|.
As R must be included in any solution, |R| ≤ OPT . At the end, we get the expected result
|S| ≤ (2 + ln(|V|))OPT . �

2.4 Independent Dominating Set in (G, F, R)

An Independent Dominating Set with Forbidden and Required Vertices (IDwFaRV ) S in (G, F,R)
is an independent (S is an independent set of G), dominating set of G (each u 6∈ S has at least
one neighbor in S), containing all vertices of R (R ⊆ S) and no vertices of F (F ∩ S = ∅). When
R = F = ∅ this is the classical independent dominating set problem. In this case, it is well known
that any maximal independent set is also an independent dominating set. Adding the constraints
on R and F leads to a NP-complete problem as stated in the next Theorem.

Theorem 2.4 Given (G, F,R), deciding whether there exists an IDwFaRV is NP-complete, even
if R = ∅.

Preuve. The problem is clearly in NP. We reduce it to the X3C (Exact Cover by 3 Sets)
NP-complete problem (see [4]) that we remind now. Let X = {u1, u2, . . . , u3q} a set of 3q elements
and H a family of k sets Ci ⊆ X such that |Ci| = 3 (i ∈ {1, . . . , k}) and ∪ki=1Ci = X . Given the
instance (X ,H), the X3C problem is to determine whether there exists an exact cover SH ⊆ H of

X : ∀Ci ∈ SH, ∀Cj ∈ SH − {Ci}, Ci ∩ Cj = ∅ and
⋃

Ci∈SH

Ci = X .

Let (X ,H) be any X3C instance. We construct an instance (G, F,R) as follows. Each uj ∈ X
becomes a vertex (also noted uj) of G. Each Ci ∈ H becomes a vertex (also noted Ci) of G. In
G each vertex Ci is connected to the 3 vertices ua, ub, uc if, in H, Ci = {ua, ub, uc}. Two distinct
vertices Ci and Cj are connected in G if, in H, the two sets are non-disjoint: Ci ∩ Cj 6= ∅. The
set F of forbidden vertices is X : F = X . The set R of required vertices is empty: R = ∅. This
construction can be done in polynomial time. For any X3C instance (X ,H) we note (G, F,R) the
associated instance of our problem.

Figure 1 displays an example to get IDwFaRV from a solution of a X3C instance: X =
{u1, . . . , u9} and C1 = {u1, u2, u3}, C2 = {u3, u4, u5}, C3 = {u5, u6, u7} and C4 = {u4, u8, u9}.
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Figure 1: Solution of IDwFaRV from X3C instance.

Suppose first that there is a solution SH for the X3C problem. Let S be the set composed by
all the corresponding vertices of SH. S is an independent set of G: Indeed, as SH is an exact cover
of X , all the sets Ci ∈ SH are pairwise disjoint and then the corresponding vertices of S are non
connected in G. S is also a dominating set of G because each vertex ui is dominated by exactly one
Cj ∈ SH (the one containing it) and each Cj that is not in S is dominated by at least a vertex in
S; Indeed, as SH is a cover of X , the 3 elements of set Cj are covered by sets of SH meaning that
there is Ci ∈ SH such that Ci ∩Cj 6= ∅; vertex Cj 6∈ S is then dominated by vertex Ci ∈ S in G by
the edge CiCj . To finish, as S contains no forbidden vertices (because F = X ), S is a IDwFaRV
of (G, F,R).

Suppose now that there is an IDwFaRV noted S, of (G, F,R). In this case, S contains no
vertex of X (because these vertices are forbidden, F = X ). Hence S must contain some vertices
Ci. Note SH the family of sets corresponding to the vertices of S. As S is a dominating set of G,
∪Ci∈SHCi = X . Moreover, as S is an independent set of G, for all Ci ∈ SH and all Cj ∈ SH, there
is no edge connecting them, i.e. Ci ∩ Cj = ∅. Thus SH is a solution for the X3C problem. �

This problem is harder than the others, since even the question of the existence of a solution
(regardless of its size) is NP-complete.

2.5 Steiner Tree in (G, F, R)

Let G = (V, E) be any graph and M be any subset of vertices of G (M ⊆ V). A Steiner Tree with
Forbidden and Required Vertices (STwFaRV ) for the instance (G,M, F,R) is a tree T = (VT , ET ),
covering M (M ⊆ VT ⊆ V) in G (ET ⊆ E), containing no vertex of F (F ∩ VT = ∅) and containing
all vertices of R (R ⊆ VT ). Note that when F = R = ∅ this tree is a classical Steiner tree of M in
G. Given an instance (G,M, F,R), the first question is to know when such a tree exists. The next
result, easy to prove, gives the condition that can be verified in polynomial time.

Proposition 4 (G,M, F,R) contains a STwFaRV if and only if F ∩R = ∅ and all the vertices of
M ∪R are in the same connected component of graph G[V − F ].

Now, for instances satisfying conditions of Proposition 4, the problem is to minimize the size of
the solution (i.e. the number of edges in the tree). But when F = R = ∅ this problem is equivalent
to the minimal size Steiner tree problem which is NP-hard (see [4]). In the following we propose
an approximation algorithm. To describe it we will use, as a subroutine, any polynomial time
ρ-approximation algorithm, noted A, for the classical minimal size Steiner tree (for example A can
be the algorithm described in [13], with ρ = 1 + ln 3

2 ).
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Input: Any instance (G,M, F,R) such that F ∩R = ∅ and all the vertices of M ∪R are in the same
connected component of graph G[V − F ].
(1) Extract G′ = (V ′, E ′) the connected component of G[V − F ] that contains M ′ = M ∪R.
(2) Apply algorithm A on the Steiner tree instance (G′,M ′).
(3) Return T = (VT , ET ) the tree constructed in step (2).

Theorem 2.5 The previous algorithm is a ρ-approximation for the minimal size STwFaRV prob-
lem.

Preuve. First note that our algorithm is polynomial (the subroutine A is polynomial). As G′ is
connected and contains M ∪R, algorithm A construct a Steiner tree of M ′ = M ∪R in G′. Hence,
the constructed tree T contains all the vertices of M and R. Moreover, by construction, G′, and
then also T , contain no vertex of F . Tree T is then a STwFaRV of instance (G,M, F,R). Let us
analyse its size, noted s(T ) = |ET |, the number of its edges.

Let T ∗ = (V∗, E∗) be a minimal size STwFaRV of (G,M, F,R); s(T ∗) = |E∗| is its size. Let
S = (VS , ES) be a minimal size Steiner tree of (G′,M ′); s(S) = |ES | is its size. By definition of A
we have s(T ) ≤ ρ · s(S). Moreover, note that T ∗ is a tree containing all vertices of M ′. This means
that it is a Steiner tree of (G′,M ′). Its size is then larger than the one of S, a minimal size Steiner
tree of (G′,M ′). Hence s(S) ≤ s(T ∗). Combining the two inequalities leads to s(T ) ≤ ρ · s(T ∗) as
expected. �

3 Optimization Problems in Graphs With Conditional Forbidden
Vertices (Conflicts)

In Section 2 we studied unconditional constraints for 5 optimization problems. Here we turn our
attention to conditional incompatibilities named conflicts. A conflict is a pair of vertices {u, v} of
G and we note C the set of conflicts. Given such an instance (G, C) the goal is to extract a solution
from G (a vertex cover (connected or not) or a dominating set (independent or not) or a Steiner
tree of a given set M of vertices) containing no conflict of C. It is easy to see that it is not always
possible. In Section 3.1 we show that constructing a vertex cover with no conflict in (G, C) when
there is one is polynomial and we propose a 2-approximation algorithm to solve the problem of
minimization of its size. In other sections we prove that it is NP-complete to determine whether
there exists a solution for the connected vertex cover with no conflict, the dominating set with no
conflict, the independent dominating set with no conflict and the Steiner tree with no conflict.

3.1 Vertex Cover With no conflict

This section is devoted to the variant of the vertex cover in which any pair of vertices cannot
simultaneously be in a solution. Let G = (V, E) be any graph and C be a set of conflicts of G. Given
(G, C), a Vertex Cover with no conflict (VCwnC ) is a vertex cover S of G containing no conflict
(for all u and v in S, {u, v} 6∈ C). Note that a VCwnC does not always exist. An optimal VCwnC
S∗ is a VCwnC of minimal size. Given G and C, constructing an optimal VCwnC is an NP-hard
problem since even in the particular case of an empty set C of conflicts it is equivalent to construct
an optimal vertex cover in G.
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In the following we represent our problems of VCwnC in 2-SAT. We first remind the definition of
2-SAT problem. Let X = {x1, . . . , xn} be a finite set of boolean variables and FORM = C1∧...∧Cl

a formula composed of clauses Ci = yi,1 ∨ yi,2 for which ∀(i, j), yi,j is a literal on a variable
xk i.e. whether xk or ¬xk. A truth assignment τ : X → {0, 1} satisfies FORM if and only
if each clause Ci is true, i.e. τ(yi,1) = 1 or τ(yi,2) = 1 (where, by natural extension on τ , if
yi,j = ¬xk, τ(yi,j) = ¬τ(xk)). A solution of 2-SAT is a truth assignment τ that satisfies FORM.
A minimal truth assignment τ∗ is an assignment satisfying FORM with a minimal number of
variables assigned to 1 (minimal number of τ∗(xi) = 1). We note |τ | the number of boolean
variables such that τ(xi) = 1.

Melven Robert Krom proposed in [10] a polynomial algorithm by transitive closure to solve
the decisional problem of 2-SAT (i.e. knowing whether there exists an assignment satisfying the
formula and constructing one if it is the case). Aspvall, Plass and Tarjan [1] improved the efficiency
of the approach in 1979. In 1992, Dan Gusfield and Leonard Pitt [5] proved that finding a minimal
assignment is NP-hard . In the same paper they present a 2-approximation algorithm for this
problem. Now we make the transformations between the problems. Let G = (V, E) be any graph
and C be a set of conflicts. Each vertex is associated to a boolean variable xi (to simplify xi will
denote the variable and the associated vertex). For each edge xixj of G, we add the “positive”
clause (xi∨xj) in FORM. For each conflict {xi, xj} ∈ C, we add the “negative” clause (¬xi∨¬xj)
in FORM.

By construction, FORM is a 2-SAT formula. Let τ be a truth assignment of FORM and S
be the set of vertices xi of G such that τ(xi) = 1 (note that |S| = |τ |). We prove now that S is a
VCwnC of G if and only if τ satisfies FORM.

Indeed, suppose τ satisfies FORM; then all the positive clauses (xi ∨ xj) are satisfied and
consequently all edges of E are covered by S. Similarly, negative clauses (¬xi ∨ ¬xj) are satisfied
and consequently for each conflict in C there is at most one of these two vertices in S. Thus S is a
VCwnC of G. Conversely if S is a VCwnC of G then all edges of E have at least one vertex in S and
then positive clauses (xi ∨ xj) are satisfied. Moreover, as each conflict of C has at most one vertex
in S then negative clauses (¬xi ∨ ¬xj) are satisfied. Hence truth assignment τ satisfies FORM.

By the previous polynomial transformations and by using algorithms of [10] or [1], given G and
C it is polynomial to determine whether G contains a VCwnC and in the positive case to construct
one.

It is easy to prove that S is an optimal VCwnC of G if and only if τ is a minimal assignment,
since by construction |S| = |τ |. Hence, finding an optimal VCwnC is equivalent to construct a
minimal truth assignment. Using our previously described polynomial transformation and the 2-
approximation of [5] for the minimal assignment problem, we naturally get a 2-approximation for
our minimal VCwnC problem. Based on all these elements we get:

Theorem 3.1 Given (G, C) it is polynomial to construct a VCwnC iff there exists one. There is a
2-approximation algorithm for the problem of minimizing its size.

To finish we can mention that these results can be extended to the more general weighted cases.

3.2 Connected Vertex Cover With no conflict

A Connected Vertex Cover with no conflict (CVCwnC ) in (G, C) is a vertex cover S of G such
that G[S] is connected and such that no pair of vertices of S is in C. In this Section we prove
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that deciding whether there exists a CVCwnC is NP-complete. Note that when C = ∅ (i.e. the
“classical” version), there exists a connected vertex cover iff G is connected.

We make a reduction to the well-known NP-complete problem Exact 3-Cover (X3C) [4]: Let
X = {u1, u2, . . . , u3q} be a set of elements and H be a set of k subsets Ci ⊆ X and |Ci| = 3 such
that ∪ki=1Ci = X . The X3C problem is to decide whether there is an exact cover SH ⊆ H of X :

∀Ci, Cj ∈ SH, i 6= j, Ci ∩ Cj = ∅ and
⋃

Ci∈SH

Ci = X .

Theorem 3.2 The problem of deciding whether there exists a CVCwnC is NP-complete, even in
bipartite graphs.

Preuve. The problem is clearly in NP. Let (X ,H) be any instance of X3C. We construct an
instance (G, C) as follows: Each ui ∈ X is a vertex of G (also noted ui). Each Ci ∈ H is a vertex of
G (also noted Ci). A new vertex r is added. Vertex r is connected to each Ci. In G each vertex Ci

is connected to the 3 vertices ua, ub, uc iff in H the set Ci = {ua, ub, uc}. Two different vertices Ci

and Cj are in conflict ({Ci, Cj} ∈ C) iff in H, Ci ∩Cj 6= ∅. This construction is polynomial and the
graph G is bipartite.

Let (X ,H) be any instance of X3C and (G, C) be its associated instance. Suppose there exists
a solution SH for the X3C instance (X ,H). Let us consider S = {r} ∪ SH ∪ X . G[S] is connected
(vertices Ci are connected via r ∈ S and each ui is connected to one Cj because SH covers X ). Each
edge of E is covered by S (since S contains r and all the ui ∈ X ). Hence S is a connected vertex cover
of G. Moreover there is no conflict in S since the conflicts only occur between vertices of type Ci that
have at least one common vertex. But as SH is a solution of X3C, ∀Ci, Cj ∈ SH, i 6= j, Ci ∩Cj = ∅.
S is a CVCwnC .

Suppose now that (G, C) contains a CVCwnC S. As G[S] is connected, S necessarily contains
vertices of type Ci. Let SH be this set of vertices. As S contains no conflict we have: ∀Ci, Cj ∈
SH, Ci ∩ Cj = ∅. We also have

⋃
Ci∈SH Ci = X , otherwise ∃x ∈ X such that x /∈

⋃
Ci∈SH Ci. This

means that we are in one of the following two cases: (1) x /∈ S but as x has at least one incident
edge, this edge is not covered and this is a contradiction with the fact that S is a vertex cover. (2)
x ∈ S; in this case its incident edges are covered by S but x is then an isolated vertex of G[S] (no
neighbor of x is in S) but this is in contradiction with the fact that G[S] is connected. �

3.3 Independent Dominating Set With no conflict

Given (G, C), an Independent Dominating set with no conflict (IDwnC) is a set S ⊆ V such that
S is a dominating set of G (∀u ∈ V, u ∈ S or N(u) ∩ S 6= ∅), S is an independent set of G (for all
u ∈ S and all v ∈ S, uv 6∈ E) and S contains no conflict (∀u, v ∈ S, {u, v} /∈ C). It is known that
in any graph G there is always an independent dominating set but in (G, C) an IDwnC does not
always exist.

Theorem 3.3 The problem of deciding whether there exists an IDwnC is NP-complete, even in
bipartite graphs.

Preuve. The problem is clearly in NP. We make a reduction to X3C (see Section 3.2 for
notations). Let (X ,H) be any instance of X3C. We construct an instance (G, C) of our problem:
Each ui ∈ X is a vertex of G (also noted ui). Each Ci ∈ H is a vertex of G (also noted Ci). Each
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vertex Ci is connected to a new vertex ri (only connected to Ci). In G each vertex Ci is connected
to the 3 vertices ua, ub, uc iff in H the set Ci = {ua, ub, uc}. Let us construct C: Two different
vertices Ci and Cj are in conflict ({Ci, Cj} ∈ C) iff in H, Ci ∩ Cj 6= ∅. Each vertex ui is in conflict
with all the others vertices of G. The construction of the instance (G, C) is polynomial and graph
G is bipartite.

Figure 2 shows an example of construction of the graph G from a X3C instance: X = {u1, . . . , u9}
and C1 = {u1, u2, u3}, C2 = {u3, u4, u5}, C3 = {u5, u6, u7} and C4 = {u4, u8, u9}.

Figure 2: Graph G from an instance of IDwFaRV .

Suppose there exists a solution H’ for the X3C instance (X ,H). Let S be the set composed
of all the vertices Ci ∈ H′ and for each Cj 6∈ H′ we add to S its neighbor rj . Clearly S is an
independent set of G. S is also a dominating set of G (each ui is dominated by exactly one Cj ∈ H′,
each Cj 6∈ H′ is dominated by rj ∈ S and each ri is either in S or dominated by its neighbor Ci).
S contains no conflict (since H′ is a partition of X and vertices of type Ci are in conflict together
if and only if they are not disjoint).

Suppose now that there exists S an IDwnC of (G, C). As S contains no conflict, it contains no
vertex of X (that are in conflict with all the other vertices). Hence it necessarily contains vertices
of type Ci; Let H′ be the set of these vertices. As S is a dominating set of G, ∪Ci∈H′Ci = X .
Moreover, as S contains no conflict, for all Ci ∈ H′ and all Cj ∈ H′, i 6= j, we have Ci ∩ Cj = ∅.
Hence H’ is a solution of the X3C problem. �

3.4 Dominating Set With no conflict

Given (G, C), a Dominating set with no conflict (DwnC) is a set S ⊆ V such that S is a dominating
set of G (∀u ∈ V, u ∈ S or N(u) ∩ S 6= ∅), and S contains no conflict (∀u, v ∈ S, {u, v} /∈ C). It is
easy to see that in any graph G there is a dominating set but in (G, C) a DwnC does not always
exist.

Theorem 3.4 The problem of deciding whether there exists a DwnC is NP-complete, even in
bipartite graphs.

Preuve. The problem is clearly in NP. Let (G, C) be any instance of the problem IDwnC. Let
C′ = C ∪ E (each edge uv of G is considered as a conflict {u, v} in C′). It is now easy to show that:
S is an IDwnC of (G, C) if and only if S is a DwnC of (G, C′). This equivalence and Theorem 3.3
show the result. �
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3.5 Steiner Tree With no conflict

Let G = (V, E) be any graph, C be any set of conflicts of G and M be any subset of vertices of G
(M ⊆ V). A Steiner Tree with no conflict (STwnC ) for the instance (G, C,M) is a tree T = (VT , ET )
covering M (M ⊆ VT ⊆ V) in G (ET ⊆ E) containing no conflict of C (for all u ∈ VT and all v ∈ VT ,
{u, v} 6∈ C). Given only G and M it is polynomial to decide if there exists a tree covering M in G.
Adding conflicts leads to an NP-complete problem.

Theorem 3.5 The problem of deciding whether there exists a STwnC is NP-complete, even in
bipartite graphs.

Preuve. The problem is in NP. The reduction, again, is done with X3C (see Section 3.2 for
notations). Let (X ,H) be any instance of X3C. Let us construct an instance (G, C,M) of STwnC :
Each ui ∈ X is a vertex of G (also noted ui). Each Ci ∈ H is a vertex of G (also noted Ci). A
new vertex r is added. Vertex r is connected to each Ci. In G each vertex Ci is connected to the
3 vertices ua, ub, uc iff in H the set Ci = {ua, ub, uc}. We set M = X . Two different vertices Ci

and Cj are in conflict ({Ci, Cj} ∈ C) iff in H, Ci ∩Cj 6= ∅. This construction is polynomial and the
graph G is bipartite. Let (X ,H) be any instance of X3C and (G, C,M) the associated instance of
STwnC .

To illustrate this construction, Figure 3 presents graph G from the following X3C instance:
X = {u1, . . . , u9} and C1 = {u1, u2, u3}, C2 = {u3, u4, u5}, C3 = {u5, u6, u7} and C4 = {u4, u8, u9}.

Figure 3: Graph G from an instance of X3C .

Suppose there exists a solution SH for the X3C problem. Let S = {r} ∪ SH ∪X . S contains all
the vertices of M because M = X ⊂ S. G[S] is connected: The Ci are connected via r ∈ S and
each ui is connected to a Cj because SH covers X . Hence G[S] contains a tree containing all the
vertices of M . Moreover, there is no conflict since the only possible conflicts are between vertices
of type Ci which are non disjoint and that is not the case here because SH is a partition of X .

Suppose now that there exists T = (VT , ET ) a STwnC of (G, C,M). As T is connected, it
necessarily contains vertices of type Ci. Let SH be this set of vertices. As T contains no conflict
we have: ∀Ci, Cj ∈ SH, i 6= j, Ci ∩ Cj = ∅. We also have

⋃
Ci∈SH Ci = M = X . Otherwise ∃x ∈M

such that x /∈
⋃

Ci∈SH Ci. But we are then in one of the following cases: (1) x /∈ T , but this is in
contradiction with the fact that T covers M ; (2) x ∈ T ; in this case, x is an isolated vertex of T
but this is in contradiction with the fact that T is a tree. �
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4 Conclusion and perspectives

In Section 2 we proved that, given an instance (G, F,R), it is polynomial to decide whether it
contains a vertex cover or a connected vertex cover or a dominating set or a Steiner tree containing
all vertices of R and no vertices of F . Moreover, we proposed approximation algorithms to construct
solutions of controlled size (compared to the optimal one) when it is possible. We also showed that
it is NP-complete to decide whether it contains an independent dominating set with all vertices of
R and no vertices of F .

In Section 3 we proposed and solved a new variant for this 5 problems, namely constructing a
solution containing at most one of two vertices that are in conflict (if one is in a solution, the other
one cannot be). For the vertex cover with no conflict we shown that any instance can be transformed
in an instance of a 2-SAT in polynomial time and that well-known algorithms for 2-SAT can be used.
The optimization version can be treated by a 2-approximation algorithm. Unfortunately adding
conflicts in other classical problems (dominating set, independent dominating set and Steiner tree)
leads to problems where it is NP-complete even to know whether there exists a solution.

Our models can be used to take into account practical constraints implying devices that are
incompatible, regardless the nature of this compatibility. We can note that in case of conflicts the
problems become much harder than their classical counterparts.

A first natural perspective is to do the same study to other optimization problems. A second
perspective, that can be of theoretical interest, is to propose exact (but non polynomial) algorithms
to solve the hard problems we obtained. In a more general algorithmic perspective, the same kind
of study can be done by defining sets of forbidden and required edges instead of vertices for other
problems of graphs.
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Czech Republic, January 24-29, 2015. Proceedings, pages 327–338, 2015.

[13] G. Robins and A. Zelikovsky. Improved steiner tree approximation in graphs. In SODA, pages
770–779. Citeseer, 2000.

[14] C. Savage. Depth-first search and the vertex cover problem. Inf. Process. Lett., 14(5):233–235,
July 1982.

[15] S. Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete Applied Mathe-
matics, 126(2-3):261–273, 2003.

[16] V. V. Vazirani. Approximation algorithms. Springer, 2001.

15


