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Abstract

This paper investigates stochastic and adversarial combinatorial multi-armed ban-
dit problems. In the stochastic setting under semi-bandit feedback, we derive
a problem-specific regret lower bound, and discuss its scaling with the dimen-
sion of the decision space. We propose ESCB, an algorithm that efficiently ex-
ploits the structure of the problem and provide a finite-time analysis of its regret.
ESCB has better performance guarantees than existing algorithms, and signifi-
cantly outperforms these algorithms in practice. In the adversarial setting under
bandit feedback, we propose COMBEXP, an algorithm with the same regret scal-
ing as state-of-the-art algorithms, but with lower computational complexity for
some combinatorial problems.

1 Introduction

Multi-Armed Bandits (MAB) problems [1] constitute the most fundamental sequential decision
problems with an exploration vs. exploitation trade-off. In such problems, the decision maker selects
an arm in each round, and observes a realization of the corresponding unknown reward distribution.
Each decision is based on past decisions and observed rewards. The objective is to maximize the
expected cumulative reward over some time horizon by balancing exploitation (arms with higher
observed rewards should be selected often) and exploration (all arms should be explored to learn
their average rewards). Equivalently, the performance of a decision rule or algorithm can be mea-
sured through its expected regret, defined as the gap between the expected reward achieved by the
algorithm and that achieved by an oracle algorithm always selecting the best arm. MAB problems
have found applications in many fields, including sequential clinical trials, communication systems,
economics, see e.g. [2, 3].

In this paper, we investigate generic combinatorial MAB problems with linear rewards, as introduced
in [4]. In each round n ≥ 1, a decision maker selects an arm M from a finite setM ⊂ {0, 1}d and
receives a reward M>X(n) =

∑d
i=1MiXi(n). The reward vector X(n) ∈ Rd+ is unknown.

We focus here on the case where all arms consist of the same number m of basic actions in the
sense that ‖M‖1 = m, ∀M ∈ M. After selecting an arm M in round n, the decision maker
receives some feedback. We consider both (i) semi-bandit feedback under which after round n, for
all i ∈ {1, . . . , d}, the component Xi(n) of the reward vector is revealed if and only if Mi = 1; (ii)
bandit feedback under which only the reward M>X(n) is revealed. Based on the feedback received
up to round n − 1, the decision maker selects an arm for the next round n, and her objective is to
maximize her cumulative reward over a given time horizon consisting of T rounds. The challenge in
these problems resides in the very large number of arms, i.e., in its combinatorial structure: the size
ofM could well grow as dm. Fortunately, one may hope to exploit the problem structure to speed
up the exploration of sub-optimal arms.

We consider two instances of combinatorial bandit problems, depending on how the sequence
of reward vectors is generated. We first analyze the case of stochastic rewards, where for all
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Algorithm LLR CUCB CUCB ESCB
[9] [10] [11] (Theorem 5)

Regret O
(
m3d∆max

∆2
min

log(T )
)
O
(
m2d
∆min

log(T )
)
O
(

md
∆min

log(T )
)
O
( √

md
∆min

log(T )
)

Table 1: Regret upper bounds for stochastic combinatorial optimization under semi-bandit feedback.

i ∈ {1, . . . , d}, (Xi(n))n≥1 are i.i.d. with Bernoulli distribution of unknown mean. The reward
sequences are also independent across i. We then address the problem in the adversarial setting
where the sequence of vectors X(n) is arbitrary and selected by an adversary at the beginning of
the experiment. In the stochastic setting, we provide sequential arm selection algorithms whose per-
formance exceeds that of existing algorithms, whereas in the adversarial setting, we devise simple
algorithms whose regret have the same scaling as that of state-of-the-art algorithms, but with lower
computational complexity.

2 Contribution and Related Work

2.1 Stochastic combinatorial bandits under semi-bandit feedback

Contribution. (a) We derive an asymptotic (as the time horizon T grows large) regret lower bound
satisfied by any algorithm (Theorem 1). This lower bound is problem-specific and tight: there
exists an algorithm that attains the bound on all problem instances, although the algorithm might
be computationally expensive. To our knowledge, such lower bounds have not been proposed in
the case of stochastic combinatorial bandits. The dependency in m and d of the lower bound is
unfortunately not explicit. We further provide a simplified lower bound (Theorem 2) and derive its
scaling in (m, d) in specific examples.

(b) We propose ESCB (Efficient Sampling for Combinatorial Bandits), an algorithm whose re-
gret scales at most asO(

√
md∆−1

min log(T )) (Theorem 5), where ∆min denotes the expected reward
difference between the best and the second-best arm. ESCB assigns an index to each arm. The
index of given arm can be interpreted as performing likelihood tests with vanishing risk on its av-
erage reward. Our indexes are the natural extension of KL-UCB indexes defined for unstructured
bandits [5]. Numerical experiments for some specific combinatorial problems are presented in the
supplementary material, and show that ESCB significantly outperforms existing algorithms.

Related work. Previous contributions on stochastic combinatorial bandits focused on specific com-
binatorial structures, e.g. m-sets [6], matroids [7], or permutations [8]. Generic combinatorial prob-
lems were investigated in [9, 10, 11, 12]. The proposed algorithms, LLR and CUCB are variants
of the UCB algorithm, and their performance guarantees are presented in Table 1. Our algorithms
improve over LLR and CUCB by a multiplicative factor of

√
m.

2.2 Adversarial combinatorial problems under bandit feedback

Contribution. We present algorithm COMBEXP, whose regret is

O
(√

m3T (d+m1/2λ−1) logµ−1
min

)
, where µmin = mini∈[d]

1
m|M|

∑
M∈MMi and λ is

the smallest nonzero eigenvalue of the matrix E[MM>] when M is uniformly distributed overM
(Theorem 6). For most problems of interest m(dλ)−1 = O(1) [4] and µ−1

min = O(poly(d)), so that
COMBEXP has O(

√
m3dT log(d/m)) regret. A known regret lower bound is Ω(m

√
dT ) [13], so

the regret gap between COMBEXP and this lower bound scales at most as m1/2 up to a logarithmic
factor.

Related work. Adversarial combinatorial bandits have been extensively investigated recently,
see [13] and references therein. Some papers consider specific instances of these problems, e.g.,
shortest-path routing [14], m-sets [15], and permutations [16]. For generic combinatorial problems,
known regret lower bounds scale as Ω

(√
mdT

)
and Ω

(
m
√
dT
)

(if d ≥ 2m) in the case of semi-
bandit and bandit feedback, respectively [13]. In the case of semi-bandit feedback, [13] proposes
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Algorithm Regret
Lower Bound [13] Ω

(
m
√
dT
)

, if d ≥ 2m

COMBAND [4] O
(√

m3dT log d
m

(
1 + 2m

dλ

))
EXP2 WITH JOHN’S EXPLORATION [18] O

(√
m3dT log d

m

)
COMBEXP (Theorem 6) O

(√
m3dT

(
1 + m1/2

dλ

)
logµ−1

min

)

Table 2: Regret of various algorithms for adversarial combinatorial bandits with bandit feedback.
Note that for most combinatorial classes of interests, m(dλ)−1 = O(1) and µ−1

min = O(poly(d)).

OSMD, an algorithm whose regret upper bound matches the lower bound. [17] presents an algorithm
with O(m

√
dL?T log(d/m)) regret where L?T is the total reward of the best arm after T rounds.

For problems with bandit feedback, [4] proposes COMBAND and derives a regret upper bound which
depends on the structure of action setM. For most problems of interest, the regret under COMBAND

is upper-bounded byO(
√
m3dT log(d/m)). [18] addresses generic linear optimization with bandit

feedback and the proposed algorithm, referred to as EXP2 WITH JOHN’S EXPLORATION, has a
regret scaling at most as O(

√
m3dT log(d/m)) in the case of combinatorial structure. As we show

next, for many combinatorial structures of interest (e.g. m-sets, matchings, spanning trees), COMB-
EXP yields the same regret as COMBAND and EXP2 WITH JOHN’S EXPLORATION, with lower
computational complexity for a large class of problems. Table 2 summarises known regret bounds.

Example 1: m-sets.M is the set of all d-dimensional binary vectors with m non-zero coordinates.
We have µmin = m

d and λ = m(d−m)
d(d−1) (refer to the supplementary material for details). Hence when

m = o(d), the regret upper bound of COMBEXP becomes O(
√
m3dT log(d/m)), which is the

same as that of COMBAND and EXP2 WITH JOHN’S EXPLORATION.

Example 2: matchings. The set of armsM is the set of perfect matchings in Km,m. d = m2 and
|M| = m!. We have µmin = 1

m , and λ = 1
m−1 . Hence the regret upper bound of COMBEXP is

O(
√
m5T log(m)), the same as for COMBAND and EXP2 WITH JOHN’S EXPLORATION.

Example 3: spanning trees. M is the set of spanning trees in the complete graph KN . In this
case, d =

(
N
2

)
, m = N − 1, and by Cayley’s formula M has NN−2 arms. logµ−1

min ≤ 2N for
N ≥ 2 and m

dλ < 7 when N ≥ 6, The regret upper bound of COMBAND and EXP2 WITH JOHN’S

EXPLORATION becomes O(
√
N5T log(N)). As for COMBEXP, we get the same regret upper

bound O(
√
N5T log(N)).

3 Models and Objectives

We consider MAB problems where each arm M is a subset of m basic actions taken from [d] =
{1, . . . , d}. For i ∈ [d], Xi(n) denotes the reward of basic action i in round n. In the stochastic
setting, for each i, the sequence of rewards (Xi(n))n≥1 is i.i.d. with Bernoulli distribution with
mean θi. Rewards are assumed to be independent across actions. We denote by θ = (θ1, . . . , θd)

> ∈
Θ = [0, 1]d the vector of unknown expected rewards of the various basic actions. In the adversarial
setting, the reward vector X(n) = (X1(n), . . . , Xd(n))> ∈ [0, 1]d is arbitrary, and the sequence
(X(n), n ≥ 1) is decided (but unknown) at the beginning of the experiment.

The set of armsM is an arbitrary subset of {0, 1}d, such that each of its elements M has m basic
actions. Arm M is identified with a binary column vector (M1, . . . ,Md)

>, and we have ‖M‖1 =
m, ∀M ∈ M. At the beginning of each round n, a policy π, selects an arm Mπ(n) ∈ M based on
the arms chosen in previous rounds and their observed rewards. The reward of arm Mπ(n) selected
in round n is

∑
i∈[d]M

π
i (n)Xi(n) = Mπ(n)>X(n).
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We consider both semi-bandit and bandit feedbacks. Under semi-bandit feedback and policy π,
at the end of round n, the outcome of basic actions Xi(n) for all i ∈ Mπ(n) are revealed to the
decision maker, whereas under bandit feedback, Mπ(n)>X(n) only can be observed.

Let Π be the set of all feasible policies. The objective is to identify a policy in Π maximizing the
cumulative expected reward over a finite time horizon T . The expectation is here taken with respect
to possible randomness in the rewards (in the stochastic setting) and the possible randomization in
the policy. Equivalently, we aim at designing a policy that minimizes regret, where the regret of
policy π ∈ Π is defined by:

Rπ(T ) = max
M∈M

E

[
T∑
n=1

M>X(n)

]
− E

[
T∑
n=1

Mπ(n)>X(n)

]
.

Finally, for the stochastic setting, we denote by µM (θ) = M>θ the expected reward of arm M ,
and let M?(θ) ∈ M, or M? for short, be any arm with maximum expected reward: M?(θ) ∈
arg maxM∈M µM (θ). In what follows, to simplify the presentation, we assume that the optimal
M? is unique. We further define: µ?(θ) = M?>θ, ∆min = minM 6=M? ∆M where ∆M =
µ?(θ)− µM (θ), and ∆max = maxM (µ?(θ)− µM (θ)).

4 Stochastic Combinatorial Bandits under Semi-bandit Feedback

4.1 Regret Lower Bound

Given θ, define the set of parameters that cannot be distinguished from θ when selecting action
M?(θ), and for which arm M?(θ) is suboptimal:

B(θ) = {λ ∈ Θ : M?
i (θ)(θi − λi) = 0, ∀i, µ?(λ) > µ?(θ)}.

We define X = (R+)|M| and kl(u, v) the Kullback-Leibler divergence between Bernoulli distri-
butions of respective means u and v, i.e., kl(u, v) = u log(u/v) + (1 − u) log((1 − u)/(1 − v)).
Finally, for (θ, λ) ∈ Θ2, we define the vector kl(θ, λ) = (kl(θi, λi))i∈[d].

We derive a regret lower bound valid for any uniformly good algorithm. An algorithm π is uniformly
good iff Rπ(T ) = o(Tα) for all α > 0 and all parameters θ ∈ Θ. The proof of this result relies on
a general result on controlled Markov chains [19].

Theorem 1 For all θ ∈ Θ, for any uniformly good policy π ∈ Π, lim infT→∞
Rπ(T )
log(T ) ≥ c(θ),

where c(θ) is the optimal value of the optimization problem:

inf
x∈X

∑
M∈M

xM (M?(θ)−M)>θ s.t.
( ∑
M∈M

xMM
)>

kl(θ, λ) ≥ 1 , ∀λ ∈ B(θ). (1)

Observe first that optimization problem (3) is a semi-infinite linear program which can be solved for
any fixed θ, but its optimal value is difficult to compute explicitly. Determining how c(θ) scales as
a function of the problem dimensions d and m is not obvious. Also note that (3) has the following
interpretation: assume that (3) has a unique solution x?. Then any uniformly good algorithm must
select action M at least x?M log(T ) times over the T first rounds. From [19], we know that there
exists an algorithm which is asymptotically optimal, so that its regret matches the lower bound of
Theorem 1. However this algorithm suffers from two problems: it is computationally infeasible
for large problems since it involves solving (3) T times, furthermore the algorithm has no finite
time performance guarantees, and numerical experiments suggests that its finite time performance
on typical problems is rather poor. Further remark that if M is the set of singletons (classical
bandit), Theorem 1 reduces to the Lai-Robbins bound [20] and if M is the set of m-sets (bandit
with multiple plays), Theorem 1 reduces to the lower bound derived in [6]. Finally, Theorem 1 can
be generalized in a straightforward manner for when rewards belong to a one-parameter exponential
family of distributions (e.g., Gaussian, Exponential, Gamma etc.) by replacing kl by the appropriate
divergence measure.
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A Simplified Lower Bound We now study how the regret c(θ) scales as a function of the problem
dimensions d and m. To this aim, we present a simplified regret lower bound. Given θ, we say that
a set H ⊂ M \M? has property P (θ) iff, for all (M,M ′) ∈ H2, M 6= M ′ we have MiM

′
i(1 −

M?
i (θ)) = 0 for all i. We may now state Theorem 2.

Theorem 2 Let H be a maximal (inclusion-wise) subset ofM with property P (θ). Define β(θ) =
minM 6=M?

∆M

|M\M?| . Then:

c(θ) ≥
∑
M∈H

β(θ)

maxi∈M\M? kl
(
θi,

1
|M\M?|

∑
j∈M?\M θj

) .
Corollary 1 Let θ ∈ [a, 1]d for some constant a > 0 andM be such that each arm M ∈ M,M 6=
M? has at most k suboptimal basic actions. Then c(θ) = Ω(|H|/k).

Theorem 2 provides an explicit regret lower bound. Corollary 1 states that c(θ) scales at least
with the size of H. For most combinatorial sets, |H| is proportional to d −m (see supplementary
material for some examples), which implies that in these cases, one cannot obtain a regret smaller
than O((d − m)∆−1

min log(T )). This result is intuitive since d − m is the number of parameters
not observed when selecting the optimal arm. The algorithms proposed below have a regret of
O(d
√
m∆−1

min log(T )), which is acceptable since typically,
√
m is much smaller than d.

4.2 Algorithms

Next we present ESCB, an algorithm for stochastic combinatorial bandits that relies on arm indexes
as in UCB1 [21] and KL-UCB [5]. We derive finite-time regret upper bounds for ESCB that hold
even if we assume that ‖M‖1 ≤ m, ∀M ∈ M, instead of ‖M‖1 = m, so that arms may have
different numbers of basic actions.

4.2.1 Indexes

ESCB relies on arm indexes. In general, an index of arm M in round n, say bM (n), should be
defined so that bM (n) ≥M>θ with high probability. Then as for UCB1 and KL-UCB, applying the
principle of optimism against uncertainty, a natural way to devise algorithms based on indexes is to
select in each round the arm with the highest index. Under a given algorithm, at time n, we define
ti(n) =

∑n
s=1Mi(s) the number of times basic action i has been sampled. The empirical mean

reward of action i is then defined as θ̂i(n) = (1/ti(n))
∑n
s=1Xi(s)Mi(s) if ti(n) > 0 and θ̂i(n) =

0 otherwise. We define the corresponding vectors t(n) = (ti(n))i∈[d] and θ̂(n) = (θ̂i(n))i∈[d].

The indexes we propose are functions of the round n and of θ̂(n). Our first index for arm M ,
referred to as bM (n, θ̂(n)) or bM (n) for short, is an extension of KL-UCB index. Let f(n) =

log(n) + 4m log(log(n)). bM (n, θ̂(n)) is the optimal value of the following optimization problem:

max
q∈Θ

M>q s.t. (Mt(n))>kl(θ̂(n), q) ≤ f(n), (2)

where we use the convention that for v, u ∈ Rd, vu = (viui)i∈[d]. As we show later, bM (n) may be
computed efficiently using a line search procedure similar to that used to determine KL-UCB index.

Our second index cM (n, θ̂(n)) or cM (n) for short is a generalization of the UCB1 and UCB-tuned
indexes:

cM (n) = M>θ̂(n) +

√√√√f(n)

2

(
d∑
i=1

Mi

ti(n)

)
Note that, in the classical bandit problems with independent arms, i.e., when m = 1, bM (n) re-
duces to the KL-UCB index (which yields an asymptotically optimal algorithm) and cM (n) reduces
to the UCB-tuned index. The next theorem provides generic properties of our indexes. An impor-
tant consequence of these properties is that the expected number of times where bM?(n, θ̂(n)) or
cM?(n, θ̂(n)) underestimate µ?(θ) is finite, as stated in the corollary below.

5



Theorem 3 (i) For all n ≥ 1, M ∈M and τ ∈ [0, 1]d, we have bM (n, τ) ≤ cM (n, τ).
(ii) There exists Cm > 0 depending on m only such that, for all M ∈M and n ≥ 2:

P[bM (n, θ̂(n)) ≤M>θ] ≤ Cmn−1(log(n))−2.

Corollary 2
∑
n≥1 P[bM?(n, θ̂(n)) ≤ µ?] ≤ 1 + Cm

∑
n≥2 n

−1(log(n))−2 <∞.

Statement (i) in the above theorem is obtained combining Pinsker and Cauchy-Schwarz inequalities.
The proof of statement (ii) is based on a concentration inequality on sums of empirical KL diver-
gences proven in [22]. It enables to control the fluctuations of multivariate empirical distributions
for exponential families. It should also be observed that indexes bM (n) and cM (n) can be extended
in a straightforward manner to the case of continuous linear bandit problems, where the set of arms
is the unit sphere and one wants to maximize the dot product between the arm and an unknown
vector. bM (n) can also be extended to the case where reward distributions are not Bernoulli but
lie in an exponential family (e.g. Gaussian, Exponential, Gamma, etc.), replacing kl by a suitably
chosen divergence measure. A close look at cM (n) reveals that the indexes proposed in [10], [11],
and [9] are too conservative to be optimal in our setting: there the “confidence bonus”

∑d
i=1

Mi

ti(n)

was replaced by (at least) m
∑d
i=1

Mi

ti(n) . Note that [10], [11] assume that the various basic actions
are arbitrarily correlated, while we assume independence among basic actions. When independence
does not hold, [11] provides a problem instance where the regret is at least O( md

∆min
log(T )). This

does not contradict our regret upper bound (scaling as O( d
√
m

∆min
log(T ))), since we have added the

independence assumption.

4.2.2 Index computation

While the index cM (n) is explicit, bM (n) is defined as the solution to an optimization problem. We
show that it may be computed by a simple line search. For λ ≥ 0, w ∈ [0, 1] and v ∈ N, define:

g(λ,w, v) =
(

1− λv +
√

(1− λv)2 + 4wvλ
)
/2.

Fix n, M , θ̂(n) and t(n). Define I = {i : Mi = 1, θ̂i(n) 6= 1}, and for λ > 0, define:

F (λ) =
∑
i∈I

ti(n)kl(θ̂i(n), g(λ, θ̂i(n), ti(n))).

Theorem 4 If I = ∅, bM (n) = ||M ||1. Otherwise: (i) λ 7→ F (λ) is strictly increasing, and
F (R+) = R+. (ii) Define λ? as the unique solution to F (λ) = f(n). Then bM (n) = ||M ||1−|I|+∑
i∈I g(λ?, θ̂i(n), ti(n)).

Theorem 4 shows that bM (n) can be computed using a line search procedure such as bisection,
as this computation amounts to solving the nonlinear equation F (λ) = f(n), where F is strictly
increasing. The proof of Theorem 4 follows from KKT conditions and the convexity of KL diver-
gence.

4.2.3 The ESCB Algorithm

The pseudo-code of ESCB is presented in Algorithm 1. We consider two variants of the algorithm
based on the choice of the index ξM (n): ESCB-1 when ξM (n) = bM (n) and ESCB-2 if ξM (n) =
cM (n). In practice, ESCB-1 outperforms ESCB-2. Introducing ESCB-2 is however instrumental
in the regret analysis of ESCB-1 (in view of Theorem 3 (i)). The following theorem provides a
finite time analysis of our ESCB algorithms. The proof of this theorem borrows some ideas from
the proof of [11, Theorem 3].

Theorem 5 The regret under algorithms π ∈ {ESCB-1, ESCB-2} satisfies for all T ≥ 1:

Rπ(T ) ≤ 16d
√
m∆−1

minf(T ) + 4dm3∆−2
min + C ′m,

where C ′m ≥ 0 does not depend on θ, d and T . As a consequence Rπ(T ) = O(d
√
m∆−1

min log(T ))
when T →∞.
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Algorithm 1 ESCB
for n ≥ 1 do

Select arm M(n) ∈ arg maxM∈M ξM (n).
Observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈M(n).

end for

Algorithm 2 COMBEXP

Initialization: Set q0 = µ0, γ =

√
m log µ−1

min√
m log µ−1

min+
√
C(Cm2d+m)T

and η = γC, with C = λ

m3/2 .

for n ≥ 1 do
Mixing: Let q′n−1 = (1− γ)qn−1 + γµ0.
Decomposition: Select a distribution pn−1 overM such that

∑
M pn−1(M)M = mq′n−1.

Sampling: Select a random arm M(n) with distribution pn−1 and incur a reward Yn =
∑
iXi(n)Mi(n).

Estimation: Let Σn−1 = E
[
MM>

]
, where M has law pn−1. Set X̃(n) = YnΣ+

n−1M(n), where Σ+
n−1

is the pseudo-inverse of Σn−1.
Update: Set q̃n(i) ∝ qn−1(i) exp(ηX̃i(n)), ∀i ∈ [d].
Projection: Set qn to be the projection of q̃n onto the set P using the KL divergence.

end for

ESCB with time horizon T has a complexity of O(|M|T ) as neither bM nor cM can be written
as M>y for some vector y ∈ Rd. Assuming that the offline (static) combinatorial problem is
solvable in O(V (M)) time, the complexity of CUCB algorithm in [10] and [11] after T rounds is
O(V (M)T ). Thus, if the offline problem is efficiently implementable, i.e., V (M) = O(poly(d)),
CUCB is efficient, whereas ESCB is not since |M| may have exponentially many elements. In §2.5
of the supplement, we provide an extension of ESCB called EPOCH-ESCB, that attains almost the
same regret as ESCB while enjoying much better computational complexity.

5 Adversarial Combinatorial Bandits under Bandit Feedback

We now consider adversarial combinatorial bandits with bandit feedback. We start with the follow-
ing observation:

max
M∈M

M>X = max
µ∈Co(M)

µ>X,

with Co(M) the convex hull of M. We embed M in the d-dimensional simplex by dividing its
elements by m. Let P be this scaled version of Co(M).

Inspired by OSMD [13, 18], we propose the COMBEXP algorithm, where the KL divergence
is the Bregman divergence used to project onto P . Projection using the KL divergence is
addressed in [23]. We denote the KL divergence between distributions q and p in P by
KL(p, q) =

∑
i∈[d] p(i) log p(i)

q(i) . The projection of distribution q onto a closed convex set Ξ of
distributions is p? = arg minp∈Ξ KL(p, q).

Let λ be the smallest nonzero eigenvalue of E[MM>], where M is uniformly distributed overM.
We define the exploration-inducing distribution µ0 ∈ P: µ0

i = 1
m|M|

∑
M∈MMi, ∀i ∈ [d], and

let µmin = minimµ
0
i . µ

0 is the distribution over basic actions [d] induced by the uniform distri-
bution over M. The pseudo-code for COMBEXP is shown in Algorithm 2. The KL projection
in COMBEXP ensures that mqn−1 ∈ Co(M). There exists λ, a distribution over M such that
mqn−1 =

∑
M λ(M)M . This guarantees that the system of linear equations in the decomposition

step is consistent. We propose to perform the projection step (the KL projection of q̃ onto P) using
interior-point methods [24]. We provide a simpler method in §3.4 of the supplement. The decom-
position step can be efficiently implemented using the algorithm of [25]. The following theorem
provides a regret upper bound for COMBEXP.

Theorem 6 For all T ≥ 1: RCOMBEXP(T ) ≤ 2

√
m3T

(
d+ m1/2

λ

)
logµ−1

min + m5/2

λ logµ−1
min.

7



For most classes ofM, we have µ−1
min = O(poly(d)) and m(dλ)−1 = O(1) [4]. For these classes,

COMBEXP has a regret of O(
√
m3dT log(d/m)), which is a factor

√
m log(d/m) off the lower

bound (see Table 2).

It might not be possible to compute the projection step exactly, and this step can be solved up
to accuracy εn in round n. Namely we find qn such that KL(qn, q̃n)−minp∈Ξ KL(p, q̃n) ≤ εn.
Proposition 1 shows that for εn = O(n−2 log−3(n)), the approximate projection gives the same
regret as when the projection is computed exactly. Theorem 7 gives the computational complexity of
COMBEXP with approximate projection. When Co(M) is described by polynomially (in d) many
linear equalities/inequalities, COMBEXP is efficiently implementable and its running time scales
(almost) linearly in T . Proposition 1 and Theorem 7 easily extend to other OSMD-type algorithms
and thus might be of independent interest.

Proposition 1 If the projection step of COMBEXP is solved up to accuracy
εn = O(n−2 log−3(n)), we have:

RCOMBEXP(T ) ≤ 2

√
2m3T

(
d+

m1/2

λ

)
logµ−1

min +
2m5/2

λ
logµ−1

min.

Theorem 7 Assume that Co(M) is defined by c linear equalities and s linear inequalities. If the
projection step is solved up to accuracy εn = O(n−2 log−3(n)), then COMBEXP has time com-
plexity O(T [

√
s(c+ d)3 log(T ) + d4]).

The time complexity of COMBEXP can be reduced by exploiting the structure of M (See [24,
page 545]). In particular, if inequality constraints describing Co(M) are box constraints, the time
complexity of COMBEXP is O(T [c2

√
s(c+ d) log(T ) + d4]).

The computational complexity of COMBEXP is determined by the structure of Co(M) and COMB-
EXP has O(T log(T )) time complexity due to the efficiency of interior-point methods. In con-
trast, the computational complexity of COMBAND depends on the complexity of sampling fromM.
COMBAND may have a time complexity that is super-linear in T (see [16, page 217]). For instance,
consider the matching problem described in Section 2. We have c = 2m equality constraints and
s = m2 box constraints, so that the time complexity of COMBEXP is: O(m5T log(T )). It is noted
that using [26, Algorithm 1], the cost of decomposition in this case is O(m4). On the other hand,
COMBBAND has a time complexity of O(m10F (T )), with F a super-linear function, as it requires
to approximate a permanent, requiring O(m10) operations per round. Thus, COMBEXP has much
lower complexity than COMBAND and achieves the same regret.

6 Conclusion

We have investigated stochastic and adversarial combinatorial bandits. For stochastic combinatorial
bandits with semi-bandit feedback, we have provided a tight, problem-dependent regret lower bound
that, in most cases, scales at least as O((d −m)∆−1

min log(T )). We proposed ESCB, an algorithm
with O(d

√
m∆−1

min log(T )) regret. We plan to reduce the gap between this regret guarantee and
the regret lower bound, as well as investigate the performance of EPOCH-ESCB. For adversarial
combinatorial bandits with bandit feedback, we proposed the COMBEXP algorithm. There is a gap
between the regret of COMBEXP and the known regret lower bound in this setting, and we plan to
reduce it as much as possible.
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Supplementary Materials and Proofs

A Stochastic Combinatorial Bandits: Regret Lower Bounds

A.1 Proof of Theorem 1

To derive regret lower bounds, we apply the techniques used by Graves and Lai [19] to investigate
efficient adaptive decision rules in controlled Markov chains. First we give an overview of their
general framework.

Consider a controlled Markov chain (Xn)n≥0 on a finite state space S with a control set U . The
transition probabilities given control u ∈ U are parameterized by θ taking values in a compact
metric space Θ: the probability to move from state x to state y given the control u and the parameter
θ is p(x, y;u, θ). The parameter θ is not known. The decision maker is provided with a finite set
of stationary control laws G = {g1, . . . , gK}, where each control law gj is a mapping from S to
U : when control law gj is applied in state x, the applied control is u = gj(x). It is assumed that if
the decision maker always selects the same control law g, the Markov chain is then irreducible with
stationary distribution πgθ . Now the reward obtained when applying control u in state x is denoted by
r(x, u), so that the expected reward achieved under control law g is: µθ(g) =

∑
x r(x, g(x))πgθ (x).

There is an optimal control law given θ whose expected reward is denoted by µ?θ = maxg∈G µθ(g).
Now the objective of the decision maker is to sequentially select control laws so as to maximize
the expected reward up to a given time horizon T . As for MAB problems, the performance of a
decision scheme can be quantified through the notion of regret which compares the expected reward
to that obtained by always applying the optimal control law.

Proof. The parameter θ takes values in [0, 1]d. The Markov chain has values in S = {0, 1}d. The set
of controls corresponds to the set of feasible actionsM, and the set of control laws is alsoM. These
laws are constant, in the sense that the control applied by control law M ∈ M does not depend on
the state of the Markov chain, and corresponds to selecting action M . The transition probabilities
are given as follows: for all x, y ∈ S,

p(x, y;M, θ) = p(y;M, θ) =
∏
i∈[d]

pi(yi;M, θ),

where for all i ∈ [d], if Mi = 0, pi(0;M, θ) = 1, and if Mi = 1, pi(yi;M, θ) = θyii (1 − θi)1−yi .
Finally, the reward r(y,M) is defined by r(y,M) = M>y. Note that the state space of the Markov
chain is here finite, and so, we do not need to impose any cost associated with switching control
laws (see the discussion on page 718 in [19]).

We can now apply Theorem 1 in [19]. Note that the KL number under action M is

klM (θ, λ) =
∑
i∈[d]

Mikl(θi, λi).

From [19, Theorem 1], we conclude that for any uniformly good rule π,

lim inf
T→∞

Rπ(T )

log(T )
≥ c(θ),

where c(θ) is the optimal value of the following optimization problem:

inf
xM≥0,M∈M

∑
M 6=M?

xM (µ? − µM (θ)), (3)

s.t. inf
λ∈B(θ)

∑
Q 6=M?

xQklQ(θ, λ) ≥ 1. (4)

The result is obtained by observing that B(θ) =
⋃
M 6=M? BM (θ), where

BM (θ) = {λ ∈ Θ : M?
i (θ)(θi − λi) = 0,∀i, µ?(θ) < µM (λ)}.

�
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A.2 Proof of Theorem 2

The proof proceeds in three steps. In the subsequent analysis, given the optimization problem P, we
use val(P) to denote its optimal value.

Step 1. In this step, first we introduce an equivalent formulation for problem (3) above by simpli-
fying its constraints. We show that constraint (4) is equivalent to:

inf
λ∈BM (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q∈M

QixQ ≥ 1, ∀M 6= M?.

Observe that:∑
Q6=M?

xQklQ(θ, λ) =
∑
Q6=M?

xQ
∑
i∈[d]

Qikl(θi, λi) =
∑
i∈[d]

kl(θi, λi)
∑
Q6=M?

QixQ.

Fix M 6= M?. In view of the definition of BM (θ), we can find λ ∈ BM (θ) such that λi = θi,∀i ∈
([d] \M) ∪M?. Thus, for the r.h.s. of the M -th constraint in (4), we get:

inf
λ∈BM (θ)

∑
Q 6=M?

xQklQ(θ, λ) = inf
λ∈BM (θ)

∑
i∈[d]

kl(θi, λi)
∑
Q6=M?

QixQ

= inf
λ∈BM (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q

QixQ,

and therefore problem (3) can be equivalently written as:

c(θ) = inf
xM≥0,M∈M

∑
M 6=M?

xM (µ? − µM (θ)), (5)

s.t. inf
λ∈BM (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q

QixQ ≥ 1, ∀M 6= M?. (6)

Next, we formulate an LP whose value gives a lower bound for c(θ). Define λ̂(M) = (λ̂i(M), i ∈
[d]) with

λ̂i(M) =

{
1

|M\M?|
∑
j∈M?\M θj if i ∈M \M?,

θi otherwise.

Clearly λ̂(M) ∈ BM (θ), and therefore:

inf
λ∈BM (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q

QixQ ≤
∑

i∈M\M?

kl(θi, λ̂i(M))
∑
Q

QixQ,

Then, we can write:

c(θ) ≥ inf
x≥0

∑
M 6=M?

∆MxM (7)

s.t.
∑

i∈M\M?

kl(θi, λ̂i(M))
∑
Q

QixQ ≥ 1, ∀M 6= M?. (8)

For any M 6= M? introduce: gM = maxi∈M\M? kl(θi, λ̂i(M)). Now we form P1 as follows:

P1: inf
x≥0

∑
M 6=M?

∆MxM (9)

s.t.
∑

i∈M\M?

∑
Q

QixQ ≥
1

gM
, ∀M 6= M?. (10)

Observe that c(θ) ≥ val(P1) since the feasible set of problem (7) is contained in that of P1.
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Step 2. In this step, we formulate an LP to give a lower bound for val(P1). To this end, for any
suboptimal basic action i ∈ [d], we define zi =

∑
M MixM . Further, we let z = [zi, i ∈ [d]]. Next,

we represent the objective of P1 in terms of z, and give a lower bound for it as follows:

∑
M 6=M?

∆MxM =
∑

M 6=M?

xM
∑

i∈M\M?

∆M

|M \M?|

=
∑

M 6=M?

xM
∑

i∈[d]\M?

∆M

|M \M?|
Mi

≥ min
M 6=M?

∆M

|M \M?|
·
∑

i∈[d]\M?

∑
M ′ 6=M?

M ′ixM ′

= min
M 6=M?

∆M

|M \M?|
·
∑

i∈[d]\M?

zi

= β(θ)
∑

i∈[d]\M?

zi.

Then, defining

P2: inf
z≥0

β(θ)
∑

i∈[d]\M?

zi

s.t.
∑

i∈M\M?

zi ≥
1

gM
, ∀M 6= M?,

yields: val(P1) ≥ val(P2).

Step 3. Introduce setH satisfying property P (θ) as stated in Section 4. Now define

Z =
{
z ∈ Rd+ :

∑
i∈M\M?

zi ≥
1

gM
, ∀M ∈ H

}
,

and

P3: inf
z∈Z

β(θ)
∑

i∈[d]\M?

zi.

Observe that val(P2) ≥ val(P3) since the feasible set of P2 is contained in Z . The definition of H
implies that

∑
i∈[d]\M? zi =

∑
M∈H

∑
i∈M\M? zi. It then follows that

val(P3) =
∑
M∈H

β(θ)

gM

≥
∑
M∈H

β(θ)

maxi∈M\M? kl(θi, λ̂i(M))

=
∑
M∈H

β(θ)

maxi∈M\M? kl
(
θi,

1
|M\M?|

∑
j∈M?\M θj

) .
The proof is completed by observing that: c(θ) ≥ val(P1) ≥ val(P2) ≥ val(P3). �
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(a) M? (b) (c) (d) (e) (f) (g)

Figure 1: Matchings in K4,4: (a) The optimal matching M?, (b)-(g) Elements ofH.

A.3 Proof of Corollary 1

Fix M 6= M?. For any i ∈M \M?, we have:

kl
(
θi,

1

|M \M?|
∑

j∈M?\M

θj

)
≤ 1

|M \M?|
∑

j∈M?\M

kl (θi, θj) (By convexity of kl(., .))

≤ 1

|M \M?|
∑

j∈M?\M

(θi − θj)2

θj(1− θj)

≤ 1

|M \M?|
∑

j∈M?\M

(1− θj)2

θj(1− θj)

≤ 1

|M \M?|
∑

j∈M?\M

(
1

θj
− 1

)
≤ 1

minj∈M?\M θj
− 1

≤ 1

a
− 1,

where the second inequality follows from the inequality kl(p, q) ≤ (p−q)2
q(1−q) for all (p, q) ∈ [0, 1]2.

Moreover, we have that

β(θ) = min
M 6=M?

∆M

|M \M?|
≥ ∆min

maxM |M \M?|
=

∆min

k
.

Applying Theorem 2, we get:

c(θ) ≥
∑
M∈H

β(θ)

maxi∈M\M? kl
(
θi,

1
|M\M?|

∑
j∈M?\M θj

) ≥ ∆mina

k(1− a)
|H|,

which gives the required lower bound and completes the proof. �

A.4 Examples of Scaling of the Lower Bound

A.4.1 Matchings

In the first example, we assume that M is the set of perfect matchings in the complete bipartite
graph Km,m, with |M| = m! and d = m2. A maximal subsetH ofM satisfying property P (θ) can
be constructed by adding all matchings that differ from the optimal matching by only two edges, see
Figure 1 for illustration in the case of m = 4. Here |H| =

(
m
2

)
and thus, |H| scales as m2 = d.

A.4.2 Spanning trees

Consider the problem of finding the minimum spanning tree in a complete graph KN . This corre-
sponds to lettingM be the set of all spanning trees inKN , where |M| = NN−2 (Cayley’s formula).
In this case, we have d =

(
N
2

)
= N(N−1)

2 , which is the number of edges of KN , and m = N − 1.
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(a) M? (b) (c) (d) (e) (f) (g)

Figure 2: Spanning trees in K5: (a) The optimal spanning tree M?, (b)-(g) Elements ofH.

(a) (b) (c)

(d) (e)

Figure 3: Routing in a grid: (a) Grid topology with source (red) and destination (blue) nodes, (b)
Optimal path M?, (c)-(e) Elements ofH.

A maximal subset H of M satisfying property P (θ) can be constructed by composing all span-
ning trees that differ from the optimal tree by one edge only, see Figure 2. In this case, H has
d−m = (N−1)(N−2)

2 elements.

A.4.3 Routing in a grid

Now we give an example, in which |H| is not scaling as Ω(d). Consider routing in an N -by-N
directed grid, whose topology is shown in Figure 3(a) where the source (resp. destination) node is
shown in red (resp. blue). HereM is the set of all

(
2N−2
N−1

)
paths with m = 2(N − 1) edges. We

further have d = 2N(N − 1). In this example, elements of any maximal set H satisfying P (θ) do
not cover all basic actions. For instance, for the grid shown in Figure 3(a), the two edges incident to
the right lower corner do not appear in any arm in H. It can be easily verified that in this case, |H|
scales as N rather than N2 = d.

A.5 Lower Bound Example

Here we provide an example, motivated by [11], to investigate the tightness of the regret bounds of
our algorithms. Consider the topology shown in Figure 4, where there are d

m paths, each consisting
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of m links. Let parameter θ be defined such that

θi =

{
0.5 if i belongs to the first path
0.5− δ otherwise.

The first path is the optimal path and for any M 6= 1 we have: ∆M = ∆ = mδ. Since various paths
are independent, this problem reduces to a classical MAB problem with d

m arms. It is observed that
the total reward of each path is the sum of m independent Bernoulli random variables with the same
parameter. Hence, it is distributed according to a binomial distribution. It then follows that

Figure 4: Lower bound example

lim inf
T→∞

R(T )

log(T )
≥

∑
M 6=M?

∆M

KL(Bin(m, 0.5− δ),Bin(m, 0.5))

=

(
d

m
− 1

)
· ∆

mkl(0.5− δ, 0.5)

≥ (d−m)∆

4m2δ2

=
d−m

4∆
,

where the first equality follows from the fact that the KL divergence between two Binomial distri-
butions with respective parameters (m,u) and (m, v) is mkl(u, v), and where the last step is due to
inequality kl(x, y) ≤ (x−y)2

y(1−y) for all x, y ∈ (0, 1).

B Stochastic Combinatorial Bandits: Regret Analysis of ESCB

We use the convention that for v, u ∈ Rd, vu = (viui)i∈[d].

B.1 A concentration inequality

We first recall Lemma 1, a concentration inequality derived in [22, Theorem 2].

Lemma 1 There exists a number Cm > 0 depending only onm such that, for allM and all n ≥ 2:

P[(Mt(n))>kl(θ̂(n), θ) ≥ f(n)] ≤ Cmn−1(log(n))−2.

B.2 Proof of Theorem 3

First statement:

Consider q ∈ Θ, and apply the Cauchy-Schwartz inequality:

M>(q − θ̂(n)) =

d∑
i=1

√
ti(n)(qi − θ̂i(n))

Mi√
ti(n)

≤

√√√√ d∑
i=1

Miti(n)(qi − θ̂i(n))2

√√√√ d∑
i=1

Mi

ti(n)
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By Pinsker’s inequality, for all (p, q) ∈ [0, 1]2 we have 2(p− q)2 ≤ kl(p, q) so that:

M>(q − θ̂(n)) ≤

√
(Mt(n))>kl(θ̂(n), q)

2

√√√√ d∑
i=1

Mi

ti(n)

Hence, (Mt(n))>kl(θ̂(n), q) ≤ f(n) implies:

M>q = M>θ̂(n) +M>(q − θ̂(n)) ≤M>θ̂(n) +

√√√√f(n)

2

d∑
i=1

Mi

ti(n)
= cM (n).

so that, by definition of bM (n), we have bM (n) ≤ cM (n).

Second statement:

If (Mt(n))>kl(θ̂(n), θ) ≤ f(n) then, by definition of bM (n) we have bM (n) ≥ M>θ. Therefore,
using Lemma 1, there exists Cm such that for all n ≥ 2 we have:

P[bM (n) < M>θ] ≤ P[(Mt(n))>kl(θ̂(n), θ) ≥ f(n)] ≤ Cmn−1(log(n))−2,

which concludes the proof.

B.3 Proof of Theorem 4

We recall the following facts about the KL divergence kl, for all p ∈ [0, 1]:

(i) q 7→ kl(p, q) is strictly convex on [0, 1] and attains its minimum at p, with kl(p, p) = 0.

(ii) Its derivative with respect to the second parameter q 7→ kl′(p, q) = q−p
q(1−q) is strictly

increasing on (p, 1).
(iii) For p < 1, we have kl(p, q) →

q→1−
∞ and kl′(p, q) →

q→1−
∞.

Consider M and n fixed throughout the proof. Define I = {i ∈ M : θ̂i(n) 6= 1}. Consider q? ∈ Θ
the optimal solution of optimization problem:

max
q∈Θ

M>q

s.t. (Mt(n))>kl(θ̂(n), q) ≤ f(n).

so that bM (n) = M>q?. Consider i 6∈ M , then M>q does not depend on qi and from (i) we get
qi = θ̂i(n). Now consider i ∈M . From (i) we get that 1 ≥ q?i ≥ θ̂i(n). Hence q?i = 1 if θ̂i(n) = 1.
If I is empty, then q?i = 1 for all i ∈M , so that bM (n) = ||M ||1.

Consider the case where I 6= ∅. From (iii) and the fact that t(n)>kl(θ̂(n), q?) <∞ we get θ̂i(n) ≤
q?i < 1. From the Karush-Kuhn-Tucker (KKT) conditions, there exists λ? > 0 such that for all
i ∈ I:

1 = λ?ti(n)kl′(θ̂i(n), q?i ).

For λ > 0 define θ̂i(n) ≤ qi(λ) < 1 a solution to the equation:

1 = λti(n)kl′(θ̂i(n), qi(λ)).

From (i) we have that λ 7→ qi(λ) is uniquely defined, is strictly decreasing and θ̂i(n) < qi(λ) < 1.
From (iii) we get that qi(R+) = [θ̂i(n), 1]. Define the function:

F (λ) =
∑
i∈I

ti(n)kl(θ̂(n), qi(λ)).

From the reasoning below, F is well defined, strictly increasing and F (R+) = R+. Therefore, λ? is
the unique solution to F (λ?) = f(n), and q?i = qi(λ

?). Furthermore, replacing kl′ by its expression
we obtain the quadratic equation:

qi(λ)2 + qi(λ)(λti(n)− 1)− λti(n)θ̂i(n) = 0.

Solving for qi(λ), we obtain that qi(λ) = g(λ, θ̂i(n), ti(n)), which concludes the proof. �
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B.4 Proof of Theorem 5

To prove Theorem 5, we borrow some ideas from proof of [11, Theorem 3].

For any n ∈ N, s ∈ Rd, and M ∈ M define hn,s,M =
√

f(n)
2

∑d
i=1

Mi

si
, and introduce the

following events:

Gn = {(M?t(n))>kl(θ̂(n), θ) > f(n)},
Hi,n = {Mi(n) = 1, |θ̂i(n)− θi| ≥ m−1∆min/2}, Hn = ∪di=1Hi,n,

Fn = {∆M(n) ≤ 2hT,t(n),M(n)}.
Then the regret can be bounded as:

Rπ(T ) = E[

T∑
n=1

∆M(n)] ≤ E[

T∑
n=1

∆M(n)(1{Gn}+ 1{Hn})] + E[

T∑
n=1

∆M(n)1{Gn, Hn}]

≤ mE[

T∑
n=1

(1{Gn}+ 1{Hn})] + E[

T∑
n=1

∆M(n)1{Gn, Hn}],

since ∆M(n) ≤ m.

Next we show that for any n such that M(n) 6= M?, it holds that Gn ∪Hn ⊂ Fn. Re-
call that cM (n) ≥ bM (n) for any M and n (Theorem 3). Moreover, if Gn holds, we have
(M?t(n))>kl(θ̂(n), θ) ≤ f(n), which by definition of bM implies: bM?(n) ≥ M?>θ. Hence
we have:

1{Gn, Hn, M(n) 6= M?} = 1{Gn, Hn, ξM(n)(n) ≥ ξM?(n)}

≤ 1{Hn, cM(n)(n) ≥M?>θ}

= 1{Hn, M(n)>θ̂(n) + hn,t(n),M(n) ≥M?>θ}

≤ 1{M(n)>θ + ∆M(n)/2 + hn,t(n),M(n) ≥M?>θ}
= 1{2hn,t(n),M(n) ≥ ∆M(n)}
≤ 1{2hT,t(n),M(n) ≥ ∆M(n)}
= 1{Fn},

where the second inequality follows from the fact that eventGn implies: M(n)>θ̂(n) ≤M(n)>θ+
∆min/2 ≤M(n)>θ + ∆M(n)/2.

Hence, the regret is upper bounded by:

Rπ(T ) ≤ mE[

T∑
n=1

1{Gn}] +mE[

T∑
n=1

1{Hn}] + E[

T∑
n=1

∆M(n)1{Fn}].

We will prove the following inequalities: (i) E[
∑T
n=1 1{Gn}] ≤ m−1C ′m, with C ′m ≥ 0 inde-

pendent of θ, d, and T , (ii) E[
∑T
n=1 1{Hn}] ≤ 4dm2∆−2

min, and (iii) E[
∑T
n=1 ∆M(n)1{Fn}] ≤

16d
√
m∆−1

minf(T ).

Hence as announced:

Rπ(T ) ≤ 16d
√
m∆−1

minf(T ) + 4dm3∆−2
min + C ′m.

Inequality (i): An application of Lemma 1 gives

E[

T∑
n=1

1{Gn}] =

T∑
n=1

P[(M?t(n))>kl(θ̂(n), θ) > f(n)]

≤ 1 +
∑
n≥2

Cmn
−1(log(n))−2 ≡ m−1C ′m <∞.
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Inequality (ii): Fix i and n. Define s =
∑n
n′=1 1{Hn′,i}. Observe that Hn′,i implies Mi(n

′) = 1,
hence ti(n) ≥ s. Therefore, applying [27, Lemma B.1], we have that

∑T
n=1 P[Hn,i] ≤ 4m2∆−2

min.
Using the union bound:

∑T
n=1 P[Hn] ≤ 4dm2∆−2

min.

Inequality (iii): Let ` > 0. For any n introduce the following events:

Sn = {i ∈M(n) : ti(n) ≤ 4mf(T )∆−2
M(n)},

An = {|Sn| ≥ `},
Bn = {|Sn| < `, [∃i ∈M(n) : ti(n) ≤ 4`f(T )∆−2

M(n)]}.

We claim that for any n such that M(n) 6= M?, we have Fn ⊂ (An ∪ Bn). To prove this, we
show that when Fn holds and M(n) 6= M?, the event An ∪Bn cannot happen. Let n be a time
instant such that M(n) 6= M? and Fn holds, and assume that An ∪Bn = {|Sn| < `, [∀i ∈M(n) :
ti(n) > 4`f(T )∆−2

M(n)]} happens. Then Fn implies:

∆M(n) ≤ 2hT,t(n),M(n) = 2

√
f(T )

2

√√√√ ∑
i∈[d]\Sn

Mi(n)

ti(n)
+
∑
i∈Sn

Mi(n)

ti(n)

< 2

√
f(T )

2

√
m

∆2
M(n)

4mf(T )
+ |Sn|

∆2
M(n)

4`f(T )
< ∆M(n), (11)

where the last inequality uses the observation that An ∪Bn implies |Sn| < `. Clearly, (11) is a
contradiction. Thus Fn ⊂ (An ∪Bn) and consequently:

T∑
n=1

∆M(n)1{Fn} ≤
T∑
n=1

∆M(n)1{An}+

T∑
n=1

∆M(n)1{Bn}. (12)

To further bound the r.h.s. of the above, we introduce the following events for any i:

Ai,n = An ∩ {i ∈M(n), ti(n) ≤ 4mf(T )∆−2
M(n)},

Bi,n = Bn ∩ {i ∈M(n), ti(n) ≤ 4`f(T )∆−2
M(n)}.

It is noted that: ∑
i∈[d]

1{Ai,n} = 1{An}
∑
i∈[d]

1{i ∈ Sn} = |Sn|1{An} ≥ `1{An},

and hence: 1{An} ≤ 1
`

∑
i∈[d] 1{Ai,n}. Moreover 1{Bn} ≤

∑
i∈[d] 1{Bi,n}. Let each basic

action i belong to Ki suboptimal arms, ordered based on their gaps as: ∆i,1 ≥ · · · ≥ ∆i,Ki > 0.
Also define ∆i,0 =∞. Plugging the above inequalities into (12), we have
T∑
n=1

∆M(n)1{Fn} ≤
T∑
n=1

d∑
i=1

∆M(n)

`
1{Ai,n}+

T∑
n=1

d∑
i=1

∆M(n)1{Bi,n}

=

T∑
n=1

d∑
i=1

∆M(n)

`
1{Ai,n, M(n) 6= M?}+

T∑
n=1

d∑
i=1

∆M(n)1{Bi,n, M(n) 6= M?}

≤
T∑
n=1

d∑
i=1

∑
k∈[Ki]

∆i,k

`
1{Ai,n, M(n) = k}+

T∑
n=1

d∑
i=1

∑
k∈[Ki]

∆i,k
1{Bi,n, M(n) = k}

≤
d∑
i=1

T∑
n=1

∑
k∈[Ki]

∆i,k

`
1{i ∈M(n), ti(n) ≤ 4mf(T )(∆i,k)−2, M(n) = k}

+

d∑
i=1

T∑
n=1

∑
k∈[Ki]

∆i,k
1{i ∈M(n), ti(n) ≤ 4`f(T )(∆i,k)−2, M(n) = k}

≤ 8df(T )

∆min

(m
`

+ `
)
,
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where the last inequality follows from Lemma 2, which is proven next. The proof is completed by
setting ` =

√
m. �

Lemma 2 Let C > 0 be a constant independent of n. Then for any i such that Ki ≥ 1:
T∑
n=1

Ki∑
k=1

1{i ∈M(n), ti(n) ≤ C(∆i,k)−2, M(n) = k}∆i,k ≤ 2C

∆min
.

Proof. We have:
T∑
n=1

Ki∑
k=1

1{i ∈M(n), ti(n) ≤ C(∆i,k)−2, M(n) = k}∆i,k

=

T∑
n=1

Ki∑
k=1

k∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) = k}∆i,k

≤
T∑
n=1

Ki∑
k=1

k∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) = k}∆i,j

≤
T∑
n=1

Ki∑
k=1

Ki∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) = k}∆i,j

≤
T∑
n=1

Ki∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) 6= M?}∆i,j

≤ C

∆i,1
+

Ki∑
j=2

C((∆i,j)−2 − (∆i,j−1)−2)∆i,j

≤ C

∆i,1
+

∫ ∆i,2

∆i,Ki

Cx−2dx ≤ 2C

∆i,Ki
≤ 2C

∆min
,

which completes the proof. �

B.5 EPOCH-ESCB: An algorithm with lower computational complexity

ESCB with time horizon T has a complexity of O(|M|T ) as neither bM nor cM can be written as
M>y for some vector y ∈ Rd. SinceM typically has exponentially many elements, we deduce that
ESCB is not computationally efficient. Assuming that the offline (static) combinatorial problem is
solvable in O(V (M)) time, the complexity of CUCB algorithm in [10] and [11] after T rounds is
O(V (M)T ). Thus, if the offline problem is efficiently implementable, i.e., V (M) = O(poly(d)),
CUCB is efficient, whereas ESCB is not. We next propose an extension to ESCB, called EPOCH-
ESCB, that attains almost the same regret as ESCB while enjoying much better computational
complexity.

EPOCH-ESCB algorithm in epochs of varying lengths. Epoch k comprises rounds {Nk, . . . , Nk+1−
1}, where Nk+1 (and thus the length of the k-th epoch) is determined at time n = Nk. The algo-
rithm simply consists in playing the arm with the maximal index at the beginning of every epoch,
and playing the current leader (i.e., the arm with the highest empirical average reward) in the rest of
rounds. If the leader is the arm with the maximal index, the length of epoch k will be set twice as
long as the previous epoch k − 1, i.e., Nk+1 = Nk + 2(Nk −Nk−1). Otherwise, it will be set to 1.
In contrast to ESCB, EPOCH-ESCB computes the maximal index infrequently, and more precisely
(almost) at an exponentially decreasing rate. Thus, one might expect that after T rounds, the max-
imal index will be computed O(log(T )) times. The pseudo-code of EPOCH-ESCB is presented in
Algorithm 3.

We assess the performance of EPOCH-ESCB through numerical experiments in the next subsection,
and leave the analysis of its regret as a future work. These experiments corroborate our conjecture
that he complexity of EPOCH-ESCB after T rounds will be O(V (M)T + log(T )|M|). Compared
to CUCB, the complexity is penalized by |M| log(T ), which may become dominated by the term
V (M)T as T grows large.
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Algorithm 3 EPOCH-ESCB
Initialization: Set k = 1 and N0 = N1 = 1.
for n ≥ 1 do

Compute L(n) ∈ arg maxM∈MM>θ̂(n).
if n = Nk then

Select arm M(n) ∈ arg maxM∈M ξM (n).
if M(n) = L(n) then

Set Nk+1 = Nk + 2(Nk −Nk−1).
else

Set Nk+1 = Nk + 1.
end if
Increment k.

else
Select arm M(n) = L(n).

end if
Observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈M(n).

end for
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Figure 5: Regret of various algorithms for matchings with a = 0.7 and b = 0.5.

B.6 Numerical Experiments

In this section, we compare the performance of ESCB against existing algorithms through numer-
ical experiments for some classes ofM. When implementing ESCB we replace f(n) by log(n),
ignoring the term proportional to log(log(n)), as is done when implementing KL-UCB in practice.

B.6.1 Experiment 1: Matching

In our first experiment, we consider the matching problem with N1 = N2 = 5, which corresponds
to d = 52 = 25 and m = 5. We also set θ such that θi = a if i ∈ M?, and θi = b otherwise, with
0 < b < a < 1. In this case the lower bound becomes c(θ) = m(m−1)(a−b)

2kl(b,a) .

Figure 5(a)-(b) depicts the regret of various algorithms for the case of a = 0.7 and b = 0.5. The
curves in Figure 5(a) are shown with a 95% confidence interval. We observe that ESCB-1 has
the lowest regret. Moreover, ESCB-2 significantly outperforms CUCB and LLR, and is close to
ESCB-1. Moreover, we observe that the regret of EPOCH-ESCBattains is quite close to that of
ESCB-2.

Figures 6(a)-(b) presents the regret of various algorithms for the case of a = 0.95 and b = 0.3.
The difference compared to the former case is that ESCB-1 significantly outperforms ESCB-2.
The reason is that in the former case, mean rewards of the most of the basic actions were close to
1/2, for which the performance of UCB-type algorithms are closer to their KL-divergence based
counterparts. On the other hand, when mean rewards are not close to 1/2, there exists a significant
performance gap between ESCB-1 and ESCB-2. Comparing the results with the ‘lower bound’
curve, we highlight that ESCB-1 gives close-to-optimal performance in both cases. Furthermore,
similar to previous experiment, EPOCH-ESCBattains a regret whose curve is almost indistinguish-
able from that of ESCB-2.
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Figure 6: Regret of various algorithms for matchings with a = 0.95 and b = 0.3.
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Figure 7: Number of epochs in EPOCH-ESCB vs. time for Experiment 1 and 2 (%95 confidence
interval).

The number of epochs in EPOCH-ESCB vs. time for the two examples is displayed in Figure 7(a)-
(b), where the curves are shown with 95% confidence intervals. We observe that in both cases, the
number of epochs grows at a rate proportional to log(n)/n at round n. Since the number of epochs
is equal to the number of times the algorithm computes indexes, these curves suggest that index
computation after n rounds requires a number of operations that scales as |M| log(n).

B.6.2 Experiment 2: Spanning Trees

In the second experiment, we consider spanning trees problem described in Section A.4.2 for the
case of N = 5. In this case, we have d =

(
5
2

)
= 10, m = 4, and |M| = 53 = 125.

Figure 8 portrays the regret of various algorithms with 95% confidence intervals, with ∆min = 0.54.
Our algorithms significantly outperform CUCB and LLR.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

Time

R
eg

re
t

LLR
CUCB
ESCB−1 
ESCB−2

(a)

10
1

10
2

10
3

10
40

50

100

150

200

250

300

Time

R
eg

re
t

LLR
CUCB 
ESCB−1 
ESCB−2

(b)

Figure 8: Regret of various algorithms for spanning trees with N = 5 and ∆min = 0.54.
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C Proofs for Adversarial Combinatorial Bandits

C.1 Proof of Theorem 6

We first prove a simple result:

Lemma 3 For all x ∈ Rd, we have Σ+
n−1Σn−1x = x, where x is the orthogonal projection of x

onto span(M), the linear space spanned byM.

Proof: Note that for all y ∈ Rd, if Σn−1y = 0, then we have

y>Σn−1y = E
[
y>MM>y

]
= E

[
(y>M)2

]
= 0, (13)

whereM has law pn−1 such that
∑
M Mipn−1(M) = q′n−1(i), ∀i ∈ [d] and q′n−1 = (1−γ)qn−1+

γµ0. By definition of µ0, each M ∈M has a positive probability. Hence, by (13), y>M = 0 for all
M ∈ M. In particular, we see that the linear application Σn−1 restricted to span(M) is invertible
and is zero on span(M)⊥, hence we have Σ+

n−1Σn−1x = x. �

Lemma 4 We have for any η ≤ γλ
m3/2 and any q ∈ P ,

T∑
n=1

q>X̃(n)−
T∑
n=1

q>n−1X̃(n) ≤ η

2

T∑
n=1

q>n−1X̃
2(n) +

KL(q, q0)

η
,

where X̃2(n) is the vector that is the coordinate-wise square of X̃(n).

Proof: We have

KL(q, q̃n)−KL(q, qn−1) =
∑
i∈[d]

q(i) log
qn−1(i)

q̃n(i)
= −η

∑
i∈[d]

q(i)X̃i(n) + logZn,

with

logZn = log
∑
i∈[d]

qn−1(i) exp
(
ηX̃i(n)

)
≤ log

∑
i∈[d]

qn−1(i)
(

1 + ηX̃i(n) + η2X̃2
i (n)

)
(14)

≤ ηq>n−1X̃(n) + η2q>n−1X̃
2(n), (15)

where we used exp(z) ≤ 1 + z + z2 for all |z| ≤ 1 in (14) and log(1 + z) ≤ z for all z > −1 in
(15). Later we verify the condition for the former inequality.

Hence we have

KL(q, q̃n)−KL(q, qn−1) ≤ ηq>n−1X̃(n)− ηq>X̃(n) + η2q>n−1X̃
2(n).

Generalized Pythagorean inequality (see Theorem 3.1 in [23]) gives

KL(q, qn) + KL(qn, q̃n) ≤ KL(q, q̃n).

Since KL(qn, q̃n) ≥ 0, we get

KL(q, qn)−KL(q, qn−1) ≤ ηq>n−1X̃(n)− ηq>X̃(n) + η2q>n−1X̃
2(n).

Finally, summing over n gives

T∑
n=1

(
q>X̃(n)− q>n−1X̃(n)

)
≤ η

T∑
n=1

q>n−1X̃
2(n) +

KL(q, q0)

η
.
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To satisfy the condition for the inequality (14), i.e., η|X̃i(n)| ≤ 1, ∀i ∈ [d], we find the upper bound
for maxi∈[d] |X̃i(n)| as follows:

max
i∈[d]
|X̃i(n)| ≤ ‖X̃(n)‖2

= ‖Σ+
n−1M(n)Yn‖2

≤ m‖Σ+
n−1M(n)‖2

≤ m
√
M(n)>Σ+

n−1Σ+
n−1M(n)

≤ m‖M(n)‖2
√
λmax

(
Σ+
n−1Σ+

n−1

)
= m3/2

√
λmax

(
Σ+
n−1Σ+

n−1

)
= m3/2 λmax

(
Σ+
n−1

)
=

m3/2

λmin (Σn−1)
,

where λmax(A) and λmin(A) respectively denote the maximum and the minimum nonzero eigen-
value of matrix A. Note that µ0 induces uniform distribution over M. Thus by q′n−1 =
(1−γ)qn−1 +γµ0 we see that pn−1 is a mixture of uniform distribution and the distribution induced
by qn−1. Note that, we have:

λmin (Σn−1) = min
‖x‖2=1,x∈span(M)

x>Σn−1x.

Moreover, we have

x>Σn−1x = E
[
x>M(n)M(n)>x

]
= E

[
(M(n)>x)2

]
≥ γE

[
(M>x)2

]
,

where in the last inequality M has law µ0. By definition, we have for any x ∈ span(M) with
‖x‖2 = 1,

E
[
(M>x)2

]
≥ λ,

so that in the end, we get λmin(Σn−1) ≥ γλ, and hence η|X̃i(n)| ≤ ηm3/2

γλ , ∀i ∈ [d]. Finally, we

choose η ≤ γλ
m3/2 to satisfy the condition for the inequality we used in (14).

�

We have

En
[
X̃(n)

]
= En

[
YnΣ+

n−1M(n)
]

= En
[
Σ+
n−1M(n)M(n)>X(n)

]
= Σ+

n−1Σn−1X(n) = X(n),

where the last equality follows from Lemma 3 and X(n) is the orthogonal projection of X(n) onto
span(M). In particular, for any mq′ ∈ Co(M), we have

En
[
mq′>X̃(n)

]
= mq′>X(n) = mq′>X(n).

Moreover, we have:

En
[
q>n−1X̃

2(n)
]

=
∑
i∈[d]

qn−1(i)En
[
X̃2
i (n)

]
=
∑
i∈[d]

q′n−1(i)− γµ0(i)

1− γ
En
[
X̃2
i (n)

]
≤ 1

m(1− γ)

∑
i∈[d]

mq′n−1(i)En
[
X̃2
i (n)

]
=

1

m(1− γ)
En
[∑
i∈[d]

M̃i(n)X̃2
i (n)

]
,
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where M̃(n) is a random arm with the same law as M(n) and independent of M(n). Note that
M̃2
i (n) = M̃i(n), so that we have

En
[∑
i∈[d]

M̃i(n)X̃2
i (n)

]
= En

[
X(n)>M(n)M(n)>Σ+

n−1M̃(n)M̃(n)>Σ+
n−1M(n)M(n)>X(n)

]
≤ m2En[M(n)>Σ+

n−1M(n)],

where we used the bound M(n)>X(n) ≤ m. By [4, Lemma 15], En[M(n)>Σ+
n−1M(n)] ≤ d, so

that we have:

En
[
q>n−1X̃

2(n)
]
≤ md

1− γ
.

Observe that

En
[
q?>X̃(n)− q′>n−1X̃(n)

]
= En

[
q?>X̃(n)− (1− γ)q>n−1X̃(n)− γµ0>X̃(n)

]
= En

[
q?>X̃(n)− q>n−1X̃(n)

]
+ γq>n−1X(n)− γµ0>X(n)

≤ En
[
q?>X̃(n)− q>n−1X̃(n)

]
+ γq>n−1X(n)

≤ En
[
q?>X̃(n)− q>n−1X̃(n)

]
+ γ.

Using Lemma 4 and the above bounds, we get withmq? the optimal arm, i.e. q?(i) = 1
m iffM?

i = 1,

RCOMBEXP(T ) = E
[ T∑
n=1

mq?>X̃(n)−
T∑
n=1

mq′>n−1X̃(n)
]

≤ E
[ T∑
n=1

mq?>X̃(n)−
T∑
n=1

mq>n−1X̃(n)
]

+mγT

≤ ηm2dT

1− γ
+
m logµ−1

min

η
+mγT,

since

KL(q?, q0) = − 1

m

∑
i∈M?

logmµ0
i ≤ logµ−1

min.

Choosing η = γC with C = λ
m3/2 gives

RCOMBEXP(T ) ≤ γCm2dT

1− γ
+
m logµ−1

min

γC
+mγT

=
Cm2d+m−mγ

1− γ
γT +

m logµ−1
min

γC

≤ (Cm2d+m)γT

1− γ
+
m logµ−1

min

γC
.

The proof is completed by setting γ =

√
m log µ−1

min√
m log µ−1

min+
√
C(Cm2d+m)T

. �

C.2 Proof of Proposition 1

We first provide a simple result:

Lemma 5 The KL-divergence z 7→ KL(z, q) is 1-strongly convex with respect to the ‖ · ‖1 norm.
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Proof. To prove the lemma, it suffices to show that for any x, y ∈ P:

(∇KL(x, q)−∇KL(y, q))>(x− y) ≥ ‖x− y‖21.
We have

(∇KL(x, q)−∇KL(y, q))>(x− y) =
∑
i∈[d]

(
1 + log

x(i)

q(i)
− 1− log

y(i)

q(i)

)
(x(i)− y(i))

=
∑
i∈[d]

(1 + log x(i)− 1− log y(i))(x(i)− y(i))

=
(
∇
∑
i∈[d]

x(i) log x(i)−∇
∑
i∈[d]

y(i) log y(i)
)>

(x− y)

≥ ‖x− y‖21,
where the last inequality follows from strong convexity of the entropy function z 7→

∑
i∈[d] zi log zi

with respect to the ‖ · ‖1 norm [28, Proposition 5.1]. �

Recall that un = arg minp∈P KL(p, q̃n) and that qn is an εn-optimal solution for the projection
step, that is

KL(un, q̃n) ≥ KL(qn, q̃n)− εn.
By Lemma 5, we have

KL(qn, q̃n)−KL(un, q̃n) ≥ (qn − un)>∇KL(un, q̃n) +
1

2
‖qn − un‖21 ≥

1

2
‖qn − un‖21,

where we used (qn − un)>∇KL(un, q̃n) ≥ 0 due to first-order optimality condition for un. Hence
KL(qn, q̃n)−KL(un, q̃n) ≤ εn implies that ‖qn − un‖∞ ≤ ‖qn − un‖1 ≤

√
2εn.

Consider q?, the distribution over P for the optimal arm, i.e. q?(i) = 1
m iff M?

i = 1. Recall that
from proof of Lemma 4, for q = q? we have

KL(q?, q̃n)−KL(q?, qn−1) ≤ ηq>n−1X̃(n)− ηq?>X̃(n) + η2q>n−1X̃
2(n). (16)

Generalized Pythagorean Inequality (see Theorem 3.1 in [23]) gives

KL(q?, q̃n) ≥ KL(q?, un) + KL(un, q̃n). (17)

Let q
n

= mini qn(i). Observe that

KL(q?, un) =
∑
i∈[d]

q?(i) log
q?(i)

un(i)
= − 1

m

∑
i∈M?

logmun(i)

≥ − 1

m

∑
i∈M?

logm(qn(i) +
√

2εn) ≥ − 1

m

∑
i∈M?

(
logmqn(i) +

√
2εn
q
n

)
≥ −
√

2εn
q
n

− 1

m

∑
i∈M?

logmqn(i) = −
√

2εn
q
n

+ KL(q?, qn),

Plugging this into (17), we get

KL(q?, q̃n) ≥ KL(q?, qn)−
√

2εn
q
n

+ KL(un, q̃n) ≥ KL(q?, qn)−
√

2εn
q
n

.

Putting this together with (16) yields

KL(q?, qn)−KL(q?, qn−1) ≤ ηq>n−1X̃(n)− ηq?>X̃(n) + η2q>n−1X̃
2(n) +

√
2εn
q
n

.

Finally, summing over n gives
T∑
n=1

(
q?>X̃(n)− q>n−1X̃(n)

)
≤ η

T∑
n=1

q>n−1X̃
2(n) +

KL(q?, q0)

η
+

1

η

T∑
n=1

√
2εn
q
n

.

26



Defining

εn =

(
q
n

logµ−1
min

)2

32n2 log3(n)
, ∀n ≥ 1,

and recalling that KL(q?, q0) ≤ logµ−1
min, we get

T∑
n=1

(
q?>X̃(n)− q>n−1X̃(n)

)
≤ η

T∑
n=1

q>n−1X̃
2(n) +

logµ−1
min

η
+

logµ−1
min

η

T∑
n=1

√
2

32n2 log3(n+ 1)

≤ η
T∑
n=1

q>n−1X̃
2(n) +

2 logµ−1
min

η
,

where we used the fact
∑
n≥1 n

−1(log(n + 1))−3/2 ≤ 4. We remark that by the properties of KL
divergence and since q′n−1 ≥ γµ0 > 0, we have q

n
> 0 at every round n, so that εn > 0 at every

round n.

Using the above result and following the same lines as in the proof of Theorem 6, we have

RCOMBEXP(T ) ≤ ηm2dT

1− γ
+

2m logµ−1
min

η
+mγT.

Choosing η = γC with C = λ
m3/2 gives

RCOMBEXP(T ) ≤ (Cm2d+m)γT

1− γ
+

2m logµ−1
min

γC
.

The proof is completed by setting γ =

√
2m log µ−1

min√
2m log µ−1

min+
√
C(Cm2d+m)T

. �

C.3 Proof of Theorem 7

We calculate the time complexity of the various steps of COMBEXP at round n ≥ 1.

(i) Mixing: This step requires O(d) time.

(ii) Decomposition: Using the algorithm of [25], the vector mq′n−1 may be represented as a
convex combination of at most d + 1 arms in O(d4) time, so that pn−1 may have at most
d + 1 non-zero elements (observe that the existence of such a representation follows from
Carathéodory Theorem).

(iii) Sampling: This step takes O(d) time since pn−1 has at most d+ 1 non-zero elements.

(iv) Estimation: The construction of matrix Σn−1 is done in time O(d2) since pn has at most
d+1 non-zero elements andMM> is formed inO(d) time. Computing the pseudo-inverse
of Σn−1 costs O(d3).

(v) Update: This step requires O(d) time.

(vi) Projection: The projection step is equivalent to solving a convex program up to accuracy
εn = O(n−2 log−3(n)). We use the Interior-Point Method (Barrier method). The total
number of Newton iterations to achieve accuracy εn is O(

√
s log(s/εn)) [24, Ch. 11].

Moreover, the cost of each iteration isO((d+ c)3) [24, Ch. 10], so that the total cost of this
step becomes O(

√
s(c+ d)3 log(s/εn)). Plugging εn = O(n−2 log−3(n)) and noting that

O(
∑T
n=1 log(s/εn)) = O(T log(T )), the cost of this step is O(

√
s(c+ d)3T log(T )).

Hence the total time complexity after T rounds is O(T [
√
s(c+ d)3 log(T ) + d4]), which completes

the proof. �
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C.4 Implementation: The Case of Graph Coloring

In this subsection, we present an iterative algorithm for the projection step of COMBEXP, for the
graph coloring problem described next.

Consider a graph G = (V,E) consisting of m nodes indexed by i ∈ [m]. Each node can use one
of the c ≥ m available colors indexed by j ∈ [c]. A feasible coloring is represented by a matrix
M ∈ {0, 1}m×c, where Mij = 1 if and only if node i is assigned color j. Coloring M is feasible
if (i) for all i, node i uses at most one color, i.e.,

∑
j∈[c]Mij ∈ {0, 1}; (ii) neighboring nodes are

assigned different colors, i.e., for all i, i′ ∈ [m], (i, i′) ∈ E implies for all j ∈ [c], MijMi′j = 0. In
the following we denote by K = {K`, ` ∈ [k]} the set of maximal cliques of the graph G. We also
introduce K`i ∈ {0, 1} such that K`i = 1 if and only if node i belongs to the maximal clique K`.
There is a specific case where our algorithm can be efficiently implementable: when the convex hull
Co(M) can be captured by polynomial in m many constraints. Note that this cannot be ensured
unless restrictive assumptions are made on the graph G since there are up to 3m/3 maximal cliques
in a graph with m vertices [29]. There are families of graphs in which the number of cliques
is polynomially bounded. These families include chordal graphs, complete graphs, triangle-free
graphs, interval graphs, and planar graphs. Note however, that a limited number of cliques does
not ensure a priori that Co(M) can be captured by a limited number of constraints. To the best of
our knowledge, this problem is open and only particular cases have been solved as for the stable set
polytope (corresponding to the case c = 2, Xi1 = 1 and Xi2 = 0 with our notation) [30].

For the coloring problem described above we have

Co(M) = Co{∀i,
∑
j∈[c]

Mij ≤ 1, ∀`, j,
∑
i∈[m]

K`iMij ≤ 1}. (18)

Note that in the special case where G is the complete graph, such a representation becomes

Co(M) = Co{
∑
j∈[c]

Mij ≤ 1, ∀i,
∑
i∈[m]

Mij ≤ 1, ∀j}.

We now give an algorithm for the projection a distribution p onto P using KL divergence. Since P
is a scaled version of Co(M), we give an algorithm for the projection of mp onto Co(M) given by
(18).

Set λi(0) = µj(0) = 0 for all i, j and then define for t ≥ 0,

∀i ∈ [m], λi(t+ 1) = log
(∑

j

mpije
−µj(t)

)
(19)

∀j ∈ [c], µj(t+ 1) = max
`

log
(∑

i

Ki`mpije
−λi(t+1)

)
. (20)

We can show that

Proposition 2 Let p?ij = limt→∞ pije
−λi(t)−µj(t). Then mp? is the projection of mp onto Co(M)

using the KL divergence.

Although this algorithm is shown to converge, we must stress that the step (20) might be expensive
as the number of distinct values of ` might be exponential in m. When G is a complete graph, this
step is easy and our algorithm reduces to Sinkhorn’s algorithm (see [26] for a discussion).

Proof: First note that the definition of projection can be extended to non-negative vectors thanks to
the relation

KL(p?, q) = min
p∈Ξ

KL(p, q).

More precisely, given an alphabetA and a vector q ∈ RA+, we have for any probability vector p ∈ RA+∑
a∈A

p(a) log
p(a)

q(a)
≥
∑
a

p(a) log

∑
a p(a)∑
a q(a)

= log
1

‖q‖1
,
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thanks to the log-sum inequality. Hence we see that p?(a) = q(a)
‖q‖1 is the projection of q onto the

simplex of RA+.

Now define Ai = Co{Mij ,
∑
jMij ≤ 1} and B`j = Co{Mij ,

∑
iK`iMij ≤ 1}. Hence⋂

iAi
⋂⋂

`j B`j = Co(M). By the argument described above, iteration (19) (resp. (20)) cor-
responds to the projection onto Ai (resp.

⋂
` B`j) and the proposition follows from Theorem 5.1 in

[23]. �

C.5 Examples

In this subsection, we compare the performance of COMBEXP against state-of-the-art algorithms
(refer to Table 2 for the summary of regret of various algorithms).

C.5.1 m-sets

In this case,M is the set of all d-dimensional binary vectors with m ones. We have

µmin = min
i

1(
d
m

) ∑
M

Mi =

(
d−1
m−1

)(
d
m

) =
m

d
.

Moreover, according to [4, Proposition 12], we have λ = m(d−m)
d(d−1) . When m = o(d), the regret of

COMBEXP becomes O(
√
m3dT log(d/m)), namely it has the same performance as COMBAND

and EXP2 WITH JOHN’S EXPLORATION.

C.5.2 Matching

LetM be the set of perfect matchings in Km,m, where we have d = m2 and |M| = m!. We have

µmin = min
i

1

m!

∑
M

Mi =
(m− 1)!

m!
=

1

m
,

Furthermore, from [4, Proposition 4] we have that λ = 1
m−1 , thus giving RCOMBEXP(T ) =

O(
√
m5T log(m)), which is the same as the regret of COMBAND and EXP2 WITH JOHN’S EX-

PLORATION in this case.

C.5.3 Spanning Trees

In our next example, we assume thatM is the set of spanning trees in the complete graph KN . In
this case, we have d =

(
N
2

)
, m = N −1, and by Cayley’s formulaM hasNN−2 elements. Observe

that

µmin = min
i

1

NN−2

∑
M

Mi =
(N − 1)N−3

NN−2
,

which gives for N ≥ 2

logµ−1
min = log

(
NN−2

(N − 1)N−3

)
= (N − 3) log

(
N

N − 1

)
+ logN

≤ (N − 3) log 2 + log(N) ≤ 2N.

From [4, Corollary 7], we also get λ ≥ 1
N −

17
4N2 . For N ≥ 6, the regret of COMBAND takes the

form O(
√
N5T log(N)) since m

dλ < 7 when N ≥ 6. Further, EXP2 WITH JOHN’S EXPLORATION

attains the same regret. On the other hand, we get

RCOMBEXP(T ) = O(
√
N5T log(N)), N ≥ 6,

and therefore it gives the same regret as COMBAND and EXP2 WITH JOHN’S EXPLORATION.
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C.5.4 Cut sets

Consider the case whereM is the set of balanced cuts of the complete graphK2N , where a balanced
cut is defined as the set of edges between a set of N vertices and its complement. It is easy to verify
that d =

(
2N
2

)
and m = N2. Moreover,M has

(
2N
N

)
balanced cuts and hence

µmin = min
i

1(
2N
N

) ∑
M

Mi =

(
2N−2
N−1

)(
2N
N

) =
N

4N − 2
,

Moreover, by [4, Proposition 9], we have

λ =
1

4
+

8N − 7

4(2N − 1)(2N − 3)
, N ≥ 2,

and consequently, the regret of COMBEXP becomes O(N4
√
T ) for N ≥ 2, which is the same as

that of COMBAND and EXP2 WITH JOHN’S EXPLORATION.

30


	1 Introduction
	2 Contribution and Related Work
	2.1 Stochastic combinatorial bandits under semi-bandit feedback
	2.2 Adversarial combinatorial problems under bandit feedback

	3 Models and Objectives
	4 Stochastic Combinatorial Bandits under Semi-bandit Feedback
	4.1 Regret Lower Bound
	4.2 Algorithms
	4.2.1 Indexes
	4.2.2 Index computation
	4.2.3 The ESCB Algorithm


	5 Adversarial Combinatorial Bandits under Bandit Feedback
	6 Conclusion
	A Stochastic Combinatorial Bandits: Regret Lower Bounds
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Corollary 1
	A.4 Examples of Scaling of the Lower Bound
	A.4.1 Matchings
	A.4.2 Spanning trees
	A.4.3 Routing in a grid

	A.5 Lower Bound Example

	B Stochastic Combinatorial Bandits: Regret Analysis of ESCB
	B.1 A concentration inequality
	B.2 Proof of Theorem 3
	B.3 Proof of Theorem 4
	B.4 Proof of Theorem 5
	B.5 Epoch-ESCB: An algorithm with lower computational complexity
	B.6 Numerical Experiments
	B.6.1 Experiment 1: Matching
	B.6.2 Experiment 2: Spanning Trees


	C Proofs for Adversarial Combinatorial Bandits
	C.1 Proof of Theorem 6
	C.2 Proof of Proposition 1
	C.3 Proof of Theorem 7
	C.4 Implementation: The Case of Graph Coloring
	C.5 Examples
	C.5.1 m-sets
	C.5.2 Matching
	C.5.3 Spanning Trees
	C.5.4 Cut sets



