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UNIFORMLY ACCURATE TIME-SPLITTING METHODS FOR
THE SEMICLASSICAL SCHRODINGER EQUATION
PART 2 : NUMERICAL ANALYSIS OF THE LINEAR CASE

PHILIPPE CHARTIER, LOIC LE TREUST, AND FLORIAN MEHATS

ABSTRACT. This article is second part of a twofold paper, devoted to the con-
struction of numerical methods which remain insensitive to the smallness of the
semiclassical parameter for the Schrodinger equation in the semiclassical limit.
Here, we specifically analyse the convergence behavior of the first-order splitting
introduced in Part I, for a linear equation with smooth potential. Our main
result is a proof of uniform accuracy.

1. Introduction

This paper is the follow-up of a first part which introduces high-order uniformly
accurate schemes in the non-linear case. We are concerned here with the numerical
approximation of the solution ¢ : R, x R? — C, d > 1, of the linear Schrodinger
equation in its semiclassical limit

2
w@wz—%Aw+vw (1.1)
where V is a smooth potential. The initial datum is assumed to be of the form
UE(0,) = Ag(-)e" 00/ with || Ag| 2 gay = 1. (1.2)

As described in Part I, the problem is reformulated according to the strategy adopted
in [2|. This is achieved by decomposing W€ as the product of a slowly varying
amplitude and a fast oscillating factor

\Ile(ta ) = Ae(t’ ‘)eiSE(t,-)/E, (13)
where (5S¢, A%) satisfies

€12
@¢+E%L+V:¥A$, (1.4a)

e A A°

AE
OtA® + VS - VA" + 7A55 = — e A°AS® (1.4b)
with S€(0,z) = So(x), A(0,2) = Ag(x) and z € R? Recall that system (1.4) is
equivalent to the original equation (1.1) (see Part I). The existence and uniqueness
of the solution of equation (1.1) is proved for instance in [4]. The corresponding
result for equations 1.4 will be derived in Section 3.4.
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In this second part, we concentrate on the numerical analysis of the first-order
splitting scheme introduced in the first part, which, we believe, is of interest for
its own sake. For the sake of clarity, we now recall it in this specific case (linear).
System (1.4) is split into four pieces as follows:

First flow: We denote gp}L the approximate flow at time h € R of the system

2
|Y§ =0, (1.5a)
A AA
@A+V$VA+5AS:ZQ.

The eikonal equation (1.5a) is solved by means of the method of characteristics,
while equation (1.5b) is dealt with by noticing that w = Aexp (i) satisfies the free
Schrédinger equation 0w = —%Aw.

OS +

(1.5b)

Second flow: We define gpi as the exact flow at time h € R of the system

oS =0, (1.6a)

(e —1)AA
@A:fﬁlal——, (1.6b)
which is solved in the Fourier space.

Third flow: The third flow @% is defined as the exact flow at time h € R of system

S = —V, (1.7a)
O A = 0. (1.7b)

Fourth flow: The fourth flow @% is defined as the exact flow at time h € Ry of

S = e?AS, (1.8a)

A = —ic AAS. (1.8b)
Equation (1.8a) is solved in the Fourier space and the solution of (1.8b) is simply
obtained through the formula A(h,-) = exp (—ie~!(S(h,-) — S(0,-))) A(0,-). No-
tice that <p;t can thus be viewed as a regularizing flow.

The first-order scheme that we consider for (1.4) is then the concatenation of all
previous flows

1.2 3 4
Ph O Ph©Pp O Ph- (1.9)
The main result of this part is the following theorem: it states that ¢} op? 03 o}
is uniformly accurate w.r.t. the semi-classical parameter €. The proper statement

of the result uses the norm || - ||s on the set ¥y = H*t2(R%) x H*(R?) defined for
s>0and u=(S,A) by

1/2
leall, = (USUZpovaqany + 1412 caey ) -
Theorem 1.1. Let s > d/2+ 1, emar > 0, ug € Xgyo and 0 < T < Ty, where

Taz =sup{t >0: 71— gb?(uo) € L*>([0,t]; Xs12)}



and ¢S denotes the flow at time T of (1.4). There exists C > 0 and hy > 0 such
that the following error estimate holds true for any € € (0,&maz], any h € [0, ho)
and n € N satisfying nh < T':

1(h © @k © @ 0 9h)" (o) — Gin(uo)lls < Ch.
The constants C' and hg do not depend on ¢.

Remark 1.2. The constant Tynae appearing in Theorem 1.1 is well-defined and
positive (see Theorem 2.1).

Our proof is reminiscent of two previous results related to, on the one hand,
splitting schemes for equations with Burgers nonlinearity [5] and on the other hand,
splitting scheme for NLS in the semiclassical limit with [3]. Nonetheless, due to the
finite-time existence of both exact and approximate flows, and to the peculiarity of
the Lipschitz-type stability of the exact flows (see Lemma 2.3), our proof follows a
different path. In particular, we lean the approximate solutions on the exact one to
ensure that they do not blow up. Besides, the application of Lady Windermere’s
fan argument is somehow hidden in an induction procedure. Finally, let us mention
that, in spite of the fact that we do not specifically address this case, it is our belief
that this result can be extended to the Schrodinger equation with a nonlinearity of
Hartree-type (see also [3, Remark 4.5]).

2. Numerical study of the scheme

2.1. Notations. Assume that ¢ € (0,&42) and s > d/2 + 1. For the sake of
simplicity, we keep the notation of all the flows independent of €. All the constants
appearing in the proof depend on V but not on € > 0. We denote

o 4 i ijk 4 Jk 1234 _ 1 234
Prn = PrOP P —PrC¥r s P —PrOPr

N; is the possibly nonlinear operator related to gpﬁl. The quantities dppp(u) and

Oa¢op (u) are the Fréchet derivatives of ¢ with respect to h and u. The commutator
of the nonlinear operators N; and N is given by

(NG NG (w) = DAG(u) - () — DA (u) - Niu).
2.2. Existence, uniqueness and uniform boundedness results. The following

theorem study some properties of the solutions of equations (1.4).

Theorem 2.1. Let €4, > 0, s > d/24 1 and ug € Xsq2. The following two points
are true.

(i) The quantity
Tmaa: = Sup{t >0: (bo(uO) € LOO([Oat]; 25—1—2)} (21)

18 well-defined and positive.
(ii) Let 0 < T < Typae- For all € € [0, epaz], there exists a unique solution

¢°(uo) € C([0,T], Xs12)
of system of equations (1.4). Moreover, ¢°(ug) is bounded in
C([07 T], 254—2)
uniformly in € € [0, €maz]-

The proof of Theorem 2.1 is given in Section 3.4.
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2.3. The main lemmas. In this subsection, we present the main ingredients needed
in the proof of Theorem 1.1. Their proof is postponed to Section 3.

Lemma 2.2. Let M > 0 and s > d/2+ 1. There exist hy = hi(M) > 0 such that
for any € € (0,emaz] and any ug € Xy satisfying

[[uolls < M,

we have that the solution ¢(up) of equation (1.4) is well-defined on [0, hi] and for
all t € [0, hq]

61 (uo)lls < 2M.

Lemma 2.3. Let M > 0 and s > d/2 + 1. There exist Co = Cao(M) > 0 such
that for any € € (0,emaz], any solutions ¢r(uy) € L®([0,T],Xs11) and ¢(ug) €
L>([0,T],%s) of equation (1.4), satisfying for all t € [0,T]

[@e(ur)lls+1 + [|Be(u2)lls < M
we have
[pe(ur) — de(u2)ls < llur — uz||s exp(Cat).

Remark 2.4. Let us insist on the fact that in Lemma 2.3, we have to control ¢¢(uq)
in Ysp1 and ¢i(ug) in Xg to get Lipschitz-type stability in .

Lemma 2.5. Let M > 0 and s > d/2 + 1. There exist h3 = h3(M) > 0 and
C3 = C3(M) > 0 such that for any € € (0, emaz], any ug € X satisfying ||uo||s < M
and any 0 <t < hz, we have

(a) [loi?** (uo)lls < 8M.
(b) Furthermore, if uy € Xs42, then

oz (uo)lls+2 < exp (Cst) ([uolls2 + tIV ] s+a) -

Lemma 2.6. Let M > 0 and s > d/2 + 1. There exist hy = hy(M) > 0 and
Ky = K4(M) > 0 such that for any € € (0, €maz] and any uy € X1 o satisfying

[uol[s+2 < M,
we have for any t € [0, hy] that
12 (o) — %> (wo) s < Kat®.
2.4. Proof of Theorem 1.1. Let us denote
M(T) := sup{||¢; (uo)l[s : 0 <t <T}. (2.2)

fore >0and T > 0.

Let s > d/2+4+ 1, ¢ € (0,&maz), w0 € Xs42, n € N and h > 0 be such that
nh < T < Thae (see (2.1)). By Theorem 2.1, there exist My, Msiq and Mo
independent of € € (0, &yq2] such that for all € € (0, £mqz],

Msa < M, M56+1 < M1 and M56+2 < Mgyo



(see (2.2)). We denote

t
(Z:Sllp{etj, tZO},

C = C3(2M,),
co = ||Juo||ss2 exp (CT) + a|| V|| gsae*7€ /C,
C' = Co(Mqyy + 4M),
&= Ku(co)ae®"/C".
Assume that
0 < h < min (hs(co), M/ h1(2Ms), ha(co)) - (2.3)

Here, hy, C3, hg, hy and K4 are defined in Lemmas 2.2, 2.3, 2.5 and 2.6.
We show by induction on 0 < k < n that

(1) (pE234)*(up) is well-defined, belongs to X542 and
o (kF1RC _ hC
16on™)" (uo) ls+2 < lluolls+2 exp (CkR) + hIV| pro+s — 55— < 0,

(i) [lown(uo) — (232 (uo)lls < h2Ky(co) o=t < Ch,

and Theorem 1.1 follows then from point (ii) with & = n.

The induction hypothesis are true for & = 0. Let us assume points (i) and (ii)
true for 0 < k <n — 1.

Lemma 2.5, point (i) and (2.3) ensure that

(@) (uo)
is well-defined and belongs to ¥,19. By Point (ii) and (2.3), we have

1R (wo)lls < M + [|dwn (u0) — (937" (uo)lls < 2M.
By Lemma 2.5 and (2.3), we have

1B s < exp (CR) (1124 (o) sz + bV e+

and point (i) ensures that

1234\ k+1 e(k+2)hC _ hC
1on™)" sz < Nluolls+2 exp (C(k + 1h) + hlV go+s——gz—7— < 0.

By Lemma 2.2 and (2.3), &' = ¢ps 0 (91234)*(up) is well-defined and satisfies for all
0<h<h
[@n © (@}1234)k(u0)us < 4M.
By Lemma 2.3, we obtain that
Gnck11) (o) = dn o (921  (wo)lls < loni(uo) — (@12*)* (uo) s exp(C'h).
By Lemma 2.6, point (i) and (2.3), we get
1 © (232)" (wo) — @42 o (93" (uo) s < Ka(co)h?,
so that

[ pnek1) (o) — (052 (uo)[|s < Ka(co)h® + || k(o) — (047**)* (uo)||s exp(C’h).
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By point (ii), we have then that

cCTh(k41) _q
16n (1) (w0) = (23> (uo) s < Kalco)h? (w '

Thus, points (i) and (ii) are true for k + 1.

3. Proof of the main lemmas

3.1. Auxiliary results. Let us denote by (-,-) the L? scalar product, for s > 0
AS — (1 _ A)s/27

Myu=3_S, Ilhu=A, foru= < i > (3.1)

and
(u1,u2)y = (Iliug, yus) (32)
+ <AS+1VH1U1, AS+1VH1’M2> + Re <ASH2u1, ASH2u2> . .

We recall two points that will be of constant use in the following: the Sobolev
space H® C L™ is an algebra for s > d/2 and the Kato-Ponce [6] inequality holds
true:

Proposition 3.1. Let so > d/2 + 1. There is ¢ > 0 such that for all f € H* (RY)
and g € H~H(RY)

1A% (fg) = FA?gllLe < (VLo llgllmso—r + [1f ]| 20 [l gl zoo)-
The following lemmas will be used several times in our proof.

Lemma 3.2. Let sg > d/2 + 1. There is C > 0 such that for all vy, v1 and
R € L>=([0, ho], H* (R)?) satisfying

oo + (v1 - V)vg = R,
we have
Aellvollrso < C (|lvollFrso Vvrllzos + Ilvollzzso [lvr | o [| Vo]l oo ) + (A% wo, A R)
< C|lvol|Fso llv1 || o + (A%vg, A R) .

Proof. We have by integration by parts that
HUOH%‘ISO _ S0 S0 _ S0 S0 . S0 S0
8,572 = (A*0vg, A% 0yvg) = — (A0, A% (vy - V)ug) + (A*°vg, A*° R)
1
= 5/ |A%0wo|* div o + [[vo | oo |[A%, (v1 - V)]wol| 12 + (A*0v, A R) .
R4

Proposition 3.1 ensures that

2
Vo s v
tH !HO S C(HUOHQHSOvaluLOO + ”UOHHSOHWHHSOH UO”LOO) <ASOUO7ASOR>'

O



Lemma 3.3. Let s > d/2 + 1. There exists C > 0 such that for all vi €
L>2([0, ho), H (RN ) and R € L>([0, ho], H*°(R?)) satisfying

d1v vy

OA+v - VA+ A

— R,

we have,

Ol AlIZs0 < C (IAlFso lorllwzee + [Allzso [lv1l o1 [ Allwaoo ) + Re (A0 A, A% R)
< Ol AlFso ||v1 | gso+1 + Re (A0 A A R) .

Proof. We have by integration by parts that

Al%,.
atH HH 0o _ Re (ASOA,ASOOtA> = —Re <Aso < v leU1> ASOA>

2
e i (55 B2 ) s meao o

[AS°7<v1-V+dWU1>]A

Proposition 3.1 ensures that
A%
g Al

S ”AHHSO + Re ASOA ASOR>

< CllA[ aso (IVvLlloe [V Al rso-1 + [[vrll o0 [V Al )
+ Cll Al s (1V(div vr) [ e[| Al grso-1 + [ div or[|zso [ Al L)
+ Re (A% A, A0 R)
< C (|70 vt lw2ee + 1 Allzzso [lo1 || grso+1 [ Allwroe) + Re (A% A, A R)
< C|| Al 0 [v1]l gso+r + Re (A A, A R) .
O

3.2. Study of the equation (1.4). Let us prove Lemma 2.2.

Proof. By the Cole-Hopf transform, we get that w® = exp ( 252) 1 is the solution
of

ot = 2 Aw® + % (w®+1), w*(0) =exp <—2S—€02> -1,

Hence, global existence and uniqueness of the solution S¢ of (1.4a) for fixed € €
(0, €maz], follows from standard semi-group theory. The function v® = V.S¢ solves
O 4 (v° - V) + VV = e2Av°

Since s > d/2, Lemma 3.2 and an integration by parts ensure that
A V%[ 2o < v ||3enn + (ASTL0S ASHL (—WV 4 £2A0F))
< el Fpeen + 07 rssa [Vl s
By (1.4a), we also have that

5, EH
5 <1872 (VI + 107 )174/2)

so that
OIS Frer2 <Vl grsea | S| s + ¢l S%[|3es2-
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The global existence and the uniqueness of a solution A® of equation (1.4b) follows
from the fact that
Ve = A® exp (i5° /¢)

satisfies equation (1.1). By Lemma 3.3, recalling that s > d/2 + 1, we also have

Oul| A%([Frs < cl| A®[I7s (157 | rove + Re (A°A%, A°R) .
where R = # — 16 A AS® so that an integration by parts gives us

Ol A% |[7s < cll A% |7 15% | s

We obtain that

il pe(uo)ll3 < erllde(uo) sVl gzs+2 + callpe(uo)I2
and

Bellpr(uo) s < er|[Vls+2 + c2llge(uo) 3-
We get then that

e (uo)||s < Mtan <t c162]| V|| gs+2 + arctan (M 672>>
C2 1Vl v

so that there is Ay = h1 (M) > 0 such that for all 0 <t < I
[t (uo)lls < 2M.
O

The following result will be used several times and in particular for the proof of
the stability of equation (1.4) in Lemma 2.3.

Lemma 3.4. Let so > d/2+ 1. Let u; = (S1,A41) be in L=([0,T],Xs,41), us =
(S2,42), (R1,5,R1,4) and (Ra,s, R2 4) be in L>°([0,T],Xs,). Assume moreover that
fori=1,2

|VS;|?
2

AS;

0S; +

= Ri,Sa

Then, we have

Orllur — wallZ, < cllur —uall?, ([urllsorr + lluallsy) + (u1 — ug, Ry — Ra),,
where R; = (R; 5, Ri,A)T.
Proof. Let sg > d/2+1. Let us define v; = V.S, vy = VSy, w = v1—v9, B = A;— Ay

and © = u; — us.
We have that
Ow = —(v1 - V)vr + (v2- V)va + V (R1,5 — Ra,5)
=—(v2-V)w—(w-V)v; +V (R1,5 — Ra,5)
and Lemma 3.2 ensures that
815H’U)H%{SO+1 < c||w||%so+1\|vg||Hso+1 + <AS°+1w,AS°+1R> .
where R = —(w - V)v; + V (R1,s — Ra,5) . We also have that

IR o1 < cllwll oo+ [Jon ]l oo+2 + (AT, ATV (Ry s — Ras))



and
Ollwlizsorr < cllwlFpsgsr (1Sl zrsors + G2l grso+2) + (AT w, AV (Ry s — Ry 5)) -

We also have

1
0 (S1 — S2) = —5(01 +v2) - w+ (R1,s — Ra.5)

so that
0i[[S1=Sa72 < cllS1=Sal L2 wll 2 ([1S1llwree + [ S2llwee)+(S1 — S2, Ris — Ra,s)
and then
341 = Szl Fso2 < CIIS1 = Sall7rsg+2 (1151l grs0+5 + [1S2l| roo+2)
+(S1 — S, Ri,g — Rog) + (A*TIV (S — S5) , ATV (Ry g — Ro5))
Let us study B, we have

A
3tB+VSg-VB+%B:R

where
div(w)
2

R=—-w-VA — A+ (R4 — R 4)

Hence, we obtain by Lemma 3.3
Oul|Bl7rs0 < €l Bliirso |Sallprso+2 + Re (A B, A*R)

< ¢||B|l3gs0llS2ll zreo+2 + ¢l Bll oo [lw]l grso-+1 | At || reo-+1
+ Re (ASOB, A% (RLA — R27A)>

and
Orllur — wall2) < ellur — uall3, (Jutllsor1 + lluallse) + (ur — ua, Ry — Ra),
The result follows. (]
Let us study now the stability of equation (1.4) and prove Lemma 2.3.
Proof. Let s > d/2+ 1 and € € (0, £mqz]). Let us define for ¢ = 1,2
Ris = -V +e’AS,

AA;
R@A =1 5 — Z6AZASZ
We apply Lemma 3.4 with sg = s. We have by integrations by parts that
(81— 82, Ris — Ra) + (A*T'V (S1s — S2) , ATV (Ry s — Ry)) <0,

and
Re (A* (A — Ag) ,A® (R4 — Ra.a)) < cl| A1 — As|| 3151 || g
+ C”A1 — AQ”HS ”Sl — SQHHS+2”A2HH5-
so that

Alle(ur) — dr(u2) |3 < cllur — uall? (Ipe(ua)lls41 + o (uz)lls)
and the result follows. O
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1234

3.3. Study of the numerical flow ¢ “°*. The following lemma is inspired by the

work of Holden, Lubich and Risebro [5].

Lemma 3.5. Let s > d/2+ 1 and M > 0. There exists hs = hs(M) > 0 such
that for any ug € Xy, satisfying ||uglls, < M and any 0 <t < hg, the following two
points are true.

(i) We have that ||} (uo)||s; < 2M.
(11) Let s1 > sg. There is C5 = C5(M) > 0 such that if ug € Xg,, then

i (uo)lls, < exp (Cst) [luolls, -

Proof. The existence of the solution S of (1.5a) follows for instance from the method
of characteristics. Lemma 3.2 ensures that for s > d/2 +1

OV SIierr < cllVS e [V (VS) e < ClIVS | Fesa IS @) oo

We also have
ail|S|172 < el S|z IV S@)]74
so that
OIS I Gere < CIS@ON 72 IS @) lw2ee
The remaining of the proof follows exactly the same lines as the one of Lemma 2.2.
By Lemma 3.3 and an integration by parts, we have

OellAllFre < C (IAN7 1S llwseo + Al S]] prs+2 ]| Allw)
< Cllpi (uo) 12102 (o) ws.oo swyrr.oo
and
Arlleet (uo)1Z < Cllog (wo) 2]l (uo) lwws.oo oo
< Cller (uo)I2.
Taking s = sg, we get that

M
i (o)l < T olt

and there is hs = hs(M) > 0 such that for all ¢ € [0, hg]
ot (wo) sy < 2M.
We also obtain for s = s1 > s9 > d/2+ 1 and t € [0, hg| that
Arllpi ()3, < Cllg (wo)lIZ, It (o) 5o
< 2CM |lpf (uo)|I3, -
and the result follows from Gronwall’s Lemma. O
We immediately get the following result for the second and the third flows.

Lemma 3.6. Let so > 0 and M > 0. There is hg = hg(M) such that for any
ug € Xy, satisfying ||uglls, < M any 0 <t < hg, the following two points holds true.

(i) 197 (uo)llsy < M and ||@} (uo)lls, < 2M,
(i1) Let s1 > 0. If moreover ug € Xg,, then, we have

7 (wo)llsy < lluolls, and [lg} (uo)lls; < lluollsy + tIVIIgror+e-

The following lemma study the fourth flow.
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Lemma 3.7. Let s > d/2+ 1 and M > 0. There exists hy = hy(M) > 0 such
that for any ug € Xy, satisfying ||uolls, < M and any 0 <t < hy, the following two
points holds true.

(i) llei (uo)llso < 2M,
(ii) Let sy > so. There is C7 = C7(M) > 0 such that if ug € X5,

i (uo)lls, < exp (Crt) [Juolls,
Proof. Let s > d/2 + 1. By integration by parts, we have (9t||‘5’(h)||fqer2 < 0 and

A%,
&5% = Re (A°A,A° (—icAAS)) = Re (A°A [N, —icAS|A)
< cl[Allas (IVAS)[| Lo [[All grs—1 4 | AS][ 15 | Al o)
< || Alfzgs 1S llws.co + | Allas |5 zrs+2 | All oo
We obtain for s = sg that

it (wo) 12, < clli (wo)3,
for s = s1 that

Oellpi (o) 2, < ellei (uo) 2, [l (uo)llso
and the result follows from the arguments of the end of the proof of Lemma 3.5. [J

Taking so = s and s; = sg+2, we immediately get Lemma 2.5 combining Lemmas

3.5, 3.6 and 3.7.

3.4. Proof of Theorem 2.1. Let M > 0. Lemma 2.2 ensures that there is h; =
hi(M) > 0 such that for any e € (0, nae| and any ug € X449 satisfying [Jugl|s+2 <
M, the solutions ¢ — ¢5(ug) of equation (1.4) are well-defined in L*°([0, h1], Xs42)
and uniformly bounded with respect to e.

Let €,&" € (0, &maz)s vo,uy € Lsia such that ||uglst2 < M and [Jup|st2 < M.
We define (S, A5)T = ¢°(ug), (S, A=) = ¢ (u})) and

Rig=-V+ 62ASE, Ryg=—-V+ 6/2A56/,

5 g

—ieA°AS®, Ry =ie —ig' AT AST

RLA =1

We apply Lemma 3.4 with sg = s, u; = ¢°(ug) and ug = ¢° (ug). We have by
integrations by parts that
(87 =57 Ris — Ras) + (A9 (87— 87) A1V (Ris = Ras) )
< cle = &'[|S% = S| pros2 ||| o4,
and
Re (A" (A% = A7) A" (Ria = RBo,a)) < cle — £/[I|47 = A7|| | A% g2
+ e AT — A% 1S [l prae + cll A% s [ AT = A s ]| S° = S o
+cle — /||| A% — A || A 115 | % | 542
so that
0|65 (u0) — &5 (up)[13 < el (wo) — 65 (u)|l3 <H¢§(uo)\|s+1 + H¢fl(u6)\|s>
+cle = €'[116F (uo) — & (ug) s (165 (uo)lls-+2 + 1165 (uo) 13).
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Gronwall’s Lemma ensures that for all ¢ € [0, hq]

165 (1) — & (up)lls < C (lluo — uplls + e — &'l (3-3)
where
C = O(||6° (w0) | Lo (0,011, 200)+ 116 (1) | L% (f0.00] 52)) > 0.
Thus, (¢§(uo))iefo,n,] is @ Cauchy sequence of & of L([0, h1], X). The limit ¢°(ug)
is solution of (1.4) with e = 0. Uniqueness follows from (3.3). We get immediately

that Lemma 2.2 is also true for e = 0 and ¢°(ug) € L>([0, h1], Xs12)-
Let

Trnae = sup{t > 0: ¢°(ug) € L>°([0,t]; Zs12)} > 0,
then, for any 0 < T' < Thae, ¢°(ug) € L2([0,T); Sss2). Let us define T = hy(2M9)
(see Lemma 2.2 and (2.2)), C' = C(MY,,,2MY) (see inequality (3.3)) and N the
smallest n € N such that B
nT >1T.
Let g9 > 0 be such that &g Zjvzl C7 < MY and € € (0,g0]. By inequality (3.3) and
Lemma 2.2, we obtain by induction on 0 < k£ < N that

k
167 (wo)lls < ll6¢ (o) ls + ll6¢ (o) — & (o) s < M +ed €7 < MJ < 2M]
j=1

for all ¢ € [0,kT]. Thus, ¢¢(ug) is well-defined on [0,77], belongs to L>([0,T]; %)
and

16° (w0) | Los (fo,17;3) < 2M. (3.4)
Following the arguments of the proofs of Lemmas 3.5, 3.6 and 3.7, we obtain that

Oell6® (o) 1342 < clld® (uo) 2 12ll¢° (wo)lls + 6% (wo) s2l V]l groa.
Grénwall’s lemma ensures that there is C = C (M§) > 0 independent of € such that

167 () ls+2 < exp(tC) (V| ro+s + luolls+2)

for all ¢ € [0,7]. Moreover, ¢(ug) is well-defined in L*°([0,T], ¥s42) for any
e € (0,maz]. Then, the same arguments ensure that ¢ € (0,&maz] — (o)
is continuous in L*([0,T],%;) so that (¢°(uo))=¢| is uniformly bounded in
L>([0,T],Xs42) and the result follows.

ngmaz}

3.5. The local error estimates. The proof of Lemma 2.6 given in this section is
inspired by [1] where the two flows case is treated. The local error of scheme (1.9)
is defined by

P (h,u) = 03 (u) — on(u).

3.5.1. Main lemmas. Let us give the main ingredients that will be used in the proof
of Lemma 2.6. The balls in g, are denoted by

By (M) = {u € Xy ¢ Julls, < M} (3.5)

for so > 0 and M > 0. The strategy to get estimates on Z(h,u) is to differentiate
Z with respect to h. Hence, we will be in need of the following lemma whose proof
is postponed to Appendix A.

Lemma 3.8. Let s > d/2+ 1 and M > 0. There exists hg = hg(M) > 0 such that
the following two points hold true.
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(i) Let sy > s. The functions
(R, u) € [0,hg] x (Bs(M) N 5y, 43) = gp(u) € By,
(h,u) € [0, hg] X (Bs(M) N X4, 10) — @i(u) € Xy,
(h,u) € [0, hg] x (Bs(M) N S,) — ¢p(u) € X,

are C-applications.
(ii) Let so > s and My > 0. There exists Cs = Cs(M, M) > 0 such that for any
u € Bs(M) N Bg,41(Ma), h € [0, hg] and any ug € Xs,, we have

102603, (u) - wols, < exp (Csh) [Juolls,.
102607, (u) - wols, < exp (Csh) [Juolls,.
102605 (u) - wolls, < exp (Csh) [Juolls,.

and
| (uo, DN (¢ () - o), | < Cslluoll,,

[ (0, DN (u)) - w0),. | < Cilluol2,,
| (w0, DN3(¢5(w)) - wo),, | < Cslluoll3,
where (-,-) . is defined in (3.2) and Bs,(M) in (3.5).

The following lemma ensures that the object studied in the proof of Lemma 2.6
are well-defined.

Lemma 3.9. Let s > d/2+ 1 and M > 0. There is hg = hg(M) > 0 such that the
following three points are true. Let w € Yqy7 such that ||ul|syo < M.

(i) We have for all h € [0, h],
e (w), @it (w), @i (u) and @ (u)
are well-defined, belong to L*°([0, hgl, Xs17) and satisfy
max ([ (w)ls2: lon () ls2, l97 ™ (w)l]s12) < 4M.

(11) The application h € [0, hg] — Z(h,u) € X5 is differentiable,
4
O (h,u) = ZNk(@}le(u)) = Ni(¢n(w)) + 7 (h,u),
k=1

Z#(0,u) = 0.

where

(h,u) = (x12 + X138 + x14) (h, 03 (u))

+ 90" (h, 072 (1)) - (x23 + X24) (B, 03 (w))
+ 920" (h, 034 (u)) - D20* (h, 03 (u)) - x34(h, 0 (1))

and x;;(h,v) = daipl (v) - Nj(v) — Nj(5 (v)) (see [1, Section 3]).
(117) Let v € Ygy7. We have,

Onxij(h,v) = DNi(g},(v)) - xij(h, v) + NG, N (¢, (v))
Xij(07 1)) =0.

The following lemma gives bounds on the commutators.
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Lemma 3.10. Let s > d/2+ 1. There is C > 0 such that for any u € ¥si9 and
any 1 <i < j <4, we have

1IN Nil(w)lls < ClluflZea (1 + [Jullst2)-
C' does not depend on € € (0, Emaz]-

3.5.2. Proof of Lemma 2.6. Let s > d/2+ 1 and M > 0. Let us define hy =
ha(M) = hg(M). Assume for the moment that u € Y47 and [Julls42 < M. By
Lemmas 3.8, 3.9, 3.10 and Gronwall’s Lemma, there is C = C'(M) > 0 such that
for any h € [0, hy]

Ix12(h, 234(”))Hs + [Ixas(h 90%34( Nls + Ixaa(h, @3> (w))lls < Ch,

Ix23 (R, 05" ()5 + Ix24(h, 03" ()l < Ch

Ix3a (R, ), (w))lls < Ch.

Using again Lemmas 3.8 and 3.9, we obtain that
[ (h, u)ls < Ch.
Let us define

R, S = -V + 52AH1¢h( )
Rys = =V + e Alli;* (u) + 1.7 (h, u),

1e ATl CAII U

RI,A _ ;@h( ) — e lgh( )Hngh(u),

iaAH24p,11234(u) . AH1<p,11234(u)
i

2 B 2

H2301234( ) + o (h, u)

Ry o =
where II; and Il are defined in (3.1). Then, Lemma 3.4 ensures that
Oellon (u) = dn(w)ll2 < Cligp? (w) = dn(w)lZ + Cllei?™ (w) = én(w) 5[l (b, w) -
Gronwall’s lemma ensures that there is Ky = K4(M) such that
lon” (u) = gn(u)|Z < Kah?.

Let us insist on the fact that K4 and h4 only depend on M. Hence, using the fact
that for all h € [0, hy], the applications

u € Mgro > dp(u) € 3y
and
U € Ygio s 0 (u) € 2,
are continuous (see Lemma 2.3 and the proof of Lemma 3.8), we get that

oF?34 (u) — pp(u)]|? < Kyh?.

holds true for any u € ¥49 such that ||u|sy2 < M/2 and the result follows.
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3.5.3. Proof of Lemma 3.9. Let u € ¥, 7 such that ||u|sy2 < M. Let us define
0 < hg = ho(M) := min (h5(4M), he(2M), h7 (M), hs(4M)) (3.6)

where hs, hg, hy and hg are defined by Lemmas 3.5, 3.6, 3.7 and 3.8. Using these
lemmas, we get that for all h € [0, hg],

ot (W), @it (u), @y (u) and g (u)
are well-defined, belong to L>([0, hg|, ¥s+7) and satisfy
mase (g ) 2 63 ) s, 1934 ()l 12) < AM.
Let define for i = 1,2,3,4, h > 0 and ug € X442, the applications
ﬁi(hau(]) = (ha SD;L(UO))T and E(hau(]) = Up-
By Lemma 3.8, we obtain that
h € [0, ho] — 234 (u) € By(8M)
is a Cl-application since ¢}?34(u) = Z 09! 092 0 93 0 ¥4 (h,u). We have that
Onpr?™ (u) = N1y (u) + e (057 (1)) - Nawi (u)
+ 02 (5" () - ooy (01 (w)) - Ny (u)
+ 0o (0 (u) - Do (' (w) - Boh (94 (w) - N (u)
h\Ph 2Pp (P (U 2Pp(Pp U 4Pp U
so that
8h80}11234(u)

= N2 (u) + Nowp ! (u) + N3y (w) + Nagj?* (u)
+x12(h, 037 () + xas(h, 03> () + x1a(h, 7 (u))
+ 00 (i () - (xas(hs 3" () + xaa(h, @3 (u))
+ Do (0 (u)) - Doy (3 (w) - X3a(h, 2 ()
Let us show the last point. We have for ug € 34,7 that,
n, (92}, (v) - ug) = DN, (v)) - (D2}, (v) - o)
so that

Onxij(h,v) = DNi(¢},(v)) - D2}, (v) - Nj(v) — DN (¢}, () - Onep (v)
= DNi(2},(v)) - xi5(h, v) + NG, NG (5, (0)).
3.5.4. Proof of Lemma 3.10. Let us consider

A (S0
u—<A> andu0—<A0>.

~VS- VS,
~VS - VAg— Aga2 — VS VA— A8  j&de )

We have
DN (u) - up = (

DN (u) - ug = Naug = ( i(e _%AAO ) :
2
DN3(u) - ug =0,

62AS()
DNy(u) - up = ( —ie (AgAS + AASy) > '
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so that, [N1,N3](u) = 0, [N2, N3](u) =0, [N3,Ng|(u) = 0 and
N1, Na](u) = DN (u) - Na(u) — DNa(u) - Ni(u)

(e —1) 0
T2 VAS-VA+ AR o5 VoS- VoA + 9 AR%S )~
We obtain
IV M) (W)l < Cllull?yo-

We also have

[./\/1,./\/4](u) = D./\/l(u) ./\/4(u) — DN4(U) Nl(u)

B 25 VoS - VLS
I <VAS VA + AATQS) — AL YOS VS

and
IV Nal ()l < eCllullZ i (1+ [lullss2)
We also get
[Na, Na|(u) = DNo(u) - Ny(u) — DNy(u) - Na(u)
(e—1) 0
2 < AA%S +2VA-VAS > ’
so that

1INz, Mal(w)lls < eClull3y

and the result follows.

Appendix A. Proof of Lemma 3.8

A.1. Study of the differentiability of ©'. The proof of this lemma is divided in
several steps. Let us fix s > d/2+1 and M > 0.

A.1.1. Notations. For any Banach space E and F, we denote Z(E, F') the set of
continuous linear maps between E and F' endowed with the norm

1l 2(z,r) = sup{[ll(x)||F, € E, |lulz <1}

where || - |g and || - || are the norm of E and F.
Let us define for ug = (S, Ao)

9!
h

o0}, = DN1 (¢} (u)) - ©F

@(l)-uo = ug.

the solution of

We denote I'}, = ¢} (u + uo) — ¢}, (u) — O}, - ug,

1
oh(u) = (j@),¢k<u+uo>:<%>,

v =VSt vt =vS}, ot =VSh wl =8} — S} — S} and B} = A} — AL — Al
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A.1.2. Definition of hg. Lemma 3.5 ensures that for any u € Bs(2M), we have for
h € [0, h5(2M)] that

i (w)lls < 4M. (A1)

We denote hg(M) = hs(2M).
Let s’ > s. If moreover, u € X, then we have

lon (w)llsr < exp (C5(2M)h) [fuls - (A.2)

A.1.3. Continuity of . Let s’ > s, M' > 0 and uy,us € Bs(M) N By 1(M').
By (A.1) and (A.2), we obtain that ¢} (u1) and ¢} (u2) are well-defined on [0, hs]
and satisfy

loh (un)llsr+1 + lln (uz)lls+1 < 2exp (C5(2M)hs) M’

for all h € [0, hg]. By Lemma 3.4 and an integration by parts, we get that there
exists C' = C (M, M') > 0 such that for all h € [0, hg]

llo (1) = @i (u2)lls < Cllur — ualy41- (A3)

Moreover, for fixed u € Bg(M) N By 1(M'), Lemma 3.5 ensures that h € [0, hg] —
go,ll(u) € Y is continuous so that

(h,u) € [0,hg] X Bgy1 — @f (u) € g (A4)
is also continuous.

A.1.4. Well-posedness, continuity and estimates on the norm for @}L. Let so > s,
My > 0, u € Bg(M) N Bsy41(Ms) and ug € Xgs,. We recall that the function
O} ~ug =: (S}, AT satisfies

S} +VSE. VS =0
~ ~ Al ~ AL~ ~
oA}, +VSE- VAL + 7’%5,1 =-VS} - VA} — 7’%5}1 - iAA,g

and 9(1] -ug = ug. The existence and uniqueness of 5% follows for instance from the
method of characteristics. We have

o+ (v, - V) op = — (0} - V) vpy
and Lemma 3.2 with R = — ('6}11 : V) v}l gives us that
OnloplFreass < ClORNFroz41 1Shll mrsavs < ClT N Frogallon () [lsa+1-

We also have B B B

nlIShlzz < ClSHIL2lShll 1157 0o
so that N N

OnIShllFrsnvz < ClISHIFsns2 [l (@) [ls341-

The existence and uniqueness of E}L follows from the fact that w} = g}l exp (ZS}L)
satisfies

A ~ Al
IO W), = —5{5}1 - (vs}L -VA} + 7’%5,1) exp (iS}) .
Lemma 3.3 with R = —V§,1L . VA}L — AT’ILAgi + %AE}L ensures that

Oel| A2 < €O}, - uollZ, llon (u)lsa1
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so that
011}, - uoll2, < C|16, - uollZ, loh ()|l sy41-

By (A.2) and Gronwall’s Lemma, there is Cg = Cg(M, My) > 0 such that for any
h € [O, hg],

164 - wolls, < exp (Csh) [luolls. (A.5)

Using directly the integrations by parts of the proof of Lemmas 3.2 and 3.3, we
obtain actually that

| (w0, DN (4 (w)) - uo),, | < Cslluoll,,
for all ug € Xs,.

A.1.5. Differentiability of ©*. By Lemma 3.5 and equations (1.5), the application
h € [0, hg] — @} (u) € Sy,

is differentiable in h for any u € Bs(M) N Xy, 2.

Let us prove that 4,0,11 is differentiable in v and that @}l is its derivative.

Let My > 0 and w,ug € Bs(M)N By, +2(M7). We have that u, u+wug € Bs(2M)N
Bs,+2(2My). By (A.1) and (A.2), we obtain that for all h € [0, hg],

lon(@)lsi+2 + l0h (u+ o) s, +2 < 4exp (C5(2M)h) M.
We have
WVwh = —(vy +03) - V(Vwp) — (Vewp, - V) vy — (05 - V) T
By Lemma 3.2, we obtain taking v; = v}l + fﬁ}ll and
R=—(Ve}V)eh— (3} 9) 3
that
Ol VenlFrrer < ClIVWRIZsr 1 (l0nlls+r + 53 graner + whl s +2)
+ Ol Vwp |l groa+1 0870y 42

Moreover, we have
1 ~ -
Onwp, = =5 (Vwp, - (B + vp) + v, - Veoy, + [53]7)
so that
OnllwhllFror+2 < 1185 - woll5, 11

+ Cllwpllzsre (1+ llon () llsy + llon (u+uo)llsy 41 + 105 - uolls,)

We also have

LAS} - A
OhBl = =VS},- VB — B\=2L = Vul - V(4] + 4}) - (4} + 4}) ;"h
Bl _ - LAS!
+i—h _VS}. VA — A} =k 5
and Lemma 3.3 ensures taking
~ Awj  ABL @ o3 L AS}
R=—Vuw} V(AL + Ab) — (A} + A})=h i h L vAl - A1=h

2 2
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that,
Ol BallFrs1 < 104, - wolls, 41
+CITLIE, (L4 llpn(u +uo)llsy + lon(@)llsi 1+ 105, - wollsy+1)

and
OnlITHIIZ, < 1O - uolls, 1

+ CITRIZ, (1 + lon(u + uo) i1+ loh (w)llsy1 + 1O - wolsy+1) -

By (A.5) with sa = s; + 1 and Gronwall’s Lemma, we get that there exists C' =
C(M, M) > 0 such that for all h € [h, hg],

IThlls: < Clluollz, 1 < Clluollz, 42
We proved that for any h € [0, hg]
0 Bs(M) N2y, 10 = S,
is differentiable in Bs(M) N X, 4o.
A.1.6. Proof of point (i). Let us prove that the application
(h,u) € [0, hs] X (Bs(M) N g, 44) = 03 (u) € By

is a C''-function.
Using equations (1.5) and (A.4), we get that

(h,u) € [0,hg] X (Bs(M) N4, 13) — @ (u) € Xy, 10

is continuous so that the partial derivative

(h,u) € [0, hs] x (Bs(M) N Z,45) = Onpp(u) = Ny (u) € By,
is also continuous. Let us study the continuity of

(h,u) — Oaop (u).

Let uy, us € Bs(M)NBs, 12(My). We denote ¢} (u;) = (S,i’i, A,ll’i) and Oa0} (u;)-up =
(S}IL’Z, A,ll’z) for i =1,2. We have

Sl 512 1,1 Sl g2 1,1 1,2 a1,2

on (St = S) + stV (5 =87 = -V (s - 537) - VS)
so that
on (V8 = 87) + (V') (V8! - v87)
=~ (V8 =v87) V) (Vsit + 50?)
1,2 1,1 1,2
— (V82-9) (vsy! - vsy?).
By Lemma 3.2 with vy = VS}L’l and
1,1 1,2 L1, &l2
R=—((vS'-v8?)-v) (vsp'+87)
1,2 1,1 1,2
— (VS V) (Vs - vs?).

which satisfies

IRl s < CUSE = 832 lee (IS lazevss + 1532l o1 )

+CIIS, = S o519y a2
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we obtain that
VS = V8 Bersr < CIVEY = 5B perer (183 Nazerss + 153 | gzeass)
+ CIVSt = V82l gorsi 1Sy = Syl grsr 3118, ror 2.
Moreover, we have
Sy = 8,717
< OIS = 5% ee (1S5 = S I3 lwo + 1S3 = Sl 154l o)
so that
ISy = 8 Bersa < CISY" = 53213 psssa (1S Nazerss + 153 N pgerss)
+ OISyt = Sy s 150 = S azores 1532 [ gos 2.

We also have

o () st ow (B A) (3 ) 25
= _V <Si,1 _ 51?2) _vglllﬂ o gA (5}11,1 _ 5}11,2>
v/ (gi,l B 51172) _VAill,l . #A <§i71 _ §i,2>

(- )

S (Al - al?) ASE 4 LA (AL - AL

Using Lemma 3.3 with v; = VSill’l and

R=—v (st - s1?) vk - A (510 512)
Ao (s -8

_ vg}L,Q v <A}L,1 _ A}L’2> _ <A}z71 ; A}Lg)

v (8- 52) - vay -

ASH ¢ Lo (AR - A).
which satisfies
Re <A51 </~1};1 - Z}f) ,A51R>
< CIAL = A2 1St = S g AR | e
+ ClIALY = AP e 1Sy = Sp2 | provre | ALl o1
+ O = A o 143" = Ay o2 18y | e 2
we obtain that
Ol (D20 (ur) — Daepp, (u2)) - uoZ,
< Ol (Daspp(ur) — Dapp, (ua)) - woll3, (Ilh (ur)llsi1 + 1920 (u2) - uolls11)
+ O (Daph(u1) — Dop (ua)) - olls, [leh, (ur) — @, (ua) sy +111020p, (ua) - wollsy 41-
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Let us recall that uj,us € Bs(M) N Bs,+2(M;). By (A.2), (A.3) and (A.5) with
s9 = s1 and Gronwall’s Lemma, we get that for all h € [0, hg],

u € By(M) N Xy, 12 = dogj(u) € ZL(Ss, 42, %)
is continuous. Hence, we obtain that
(h,u) € [0,hg] x (Bs(M) N Xy, 13) = (aZ‘P}L(u%ah(Pllm(u)) € L (X543, 8sy) X Xy
is continuous and the result follows.

A.2. Study of the differentiability of ©? and ¢3. Let u,ug € 3,. Since Ny is
linear, we have that

@% t Uy = @%L(uo)v
go% is differentiable on ¥, and for any h > 0,

10260 (u) - wolls = |7 (uo) s = Iluolls,
| (w0, DN2 (5 (u) - uo), | < Cluolf3.

and the result follows. We easily prove that gog’ is differentiable, that for any h > 0,
@% - ug = ug, that \ \

167, - uolls = 165 - uolls = [uolls-
and

| (X (DNa(@i(w) - X)), | < ClIxl3,
for all x € 3.
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