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UNIFORMLY ACCURATE TIME-SPLITTING METHODS FOR THE
SEMICLASSICAL LINEAR SCHRÖDINGER EQUATION

Philippe Chartier1, Löıc Le Treust2 and Florian Méhats3,∗

Abstract. This article is devoted to the construction of numerical methods which remain insensitive
to the smallness of the semiclassical parameter for the linear Schrödinger equation in the semiclassical
limit. We specifically analyse the convergence behavior of the first-order splitting. Our main result is a
proof of uniform accuracy. We illustrate the properties of our methods with simulations.

Mathematics Subject Classification. 35Q55, 35F21, 65M99, 76A02, 76Y05, 81Q20, 82D50.

Received October 2, 2017. Accepted October 3, 2018.

1. Introduction

We are concerned here with the uniformly accurate numerical approximation of the solution Ψε : R+×Rd → C,
d ≥ 1, of the linear Schrödinger equation in its semiclassical limit

iε∂tΨε = −ε
2

2
∆Ψε + VΨε (1.1)

where V is a smooth potential which does not depend on time. The initial datum is assumed to be of the form

Ψε(0, ·) = A0(·)eiS0(·)/ε with ‖A0‖L2(Rd) = 1. (1.2)

Note that the L2-norm, the energy and the momentum of Ψε(0, ·), namely

Mass: ‖Ψε(t, ·)‖2L2(Rd), (1.3)

Energy:
∫

Rd

(
ε2|∇Ψε(t, x)|2 + V|Ψε(t, x)|2

)
dx, (1.4)

Momentum: ε Im
∫

Rd

Ψε(t, x)∇Ψε(t, x)dx, (1.5)

are all preserved by the flow of (1.1), whenever Ψε(0, ·) ∈ H1(Rd).

Keywords and phrases. Schrödinger equation, semiclassical limit, numerical simulation, uniformly accurate, Madelung transform,
splitting schemes.
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Owing to its numerous occurrences in a vast number of domains of applications in physics, equation (1.1) has
been widely studied (see for instance [27, 32] and the references therein). In the semiclassical regime where the
rescaled Planck constant ε is small, its asymptotic study allows for an appropriate description of the observables
of Ψε through the laws of hydrodynamics. We refer to [12] for a detailed presentation of the semiclassical analysis
and to [25] for a review of both theoretical and numerical issues.

Let us also mention that we do not consider the case where the initial datas are Gaussian wave packets for
which efficient schemes have already been developed [21–23].

1.1. Motivation

Generally speaking, numerical methods for equation (1.1) exhibit an error of size ∆tp/εr + ∆xq/εs, where
∆t and ∆x are the time and space steps and p, q, r, s strictly positive numbers. For time-splitting methods
for instance, the error on the wave function behaves like ∆x/ε + ∆tp/ε [5, 17]. Even if we content ourselves
with observables1, the error of a splitting method of Bao et al. [5] grows like ∆x/ε + ∆tp. Now, achieving a
fixed accuracy for varying values of ε requires to keep both ratios ∆t/εr/p and ∆x/εs/q constant, and becomes
prohibitively costly when ε → 0. Our aim, in this article, is thus to develop new numerical schemes that are
Uniformly Accurate (UA) w.r.t. ε, i.e. whose accuracy does not deteriorate for vanishing ε. In other words,
schemes for which r, s = 0. This seems highly desirable as all available methods with the exception of [9], namely
finite difference methods [1,16,26,35], splitting methods [8,17,18,29,31,34], asymptotic splitting methods [3,4],
relaxation schemes [7] and symplectic methods [33] fail to be UA.

It is the belief of the authors that, prior to the construction of UA-schemes, it is necessary to reformulate
(1.1) as in [9] and we now describe how this can be done.

1.2. Reformulation of the problem

In the spirit of the Wentzel-Kramers-Brillouin (WKB) techniques, we decompose Ψε as the product of a
slowly varying amplitude and a fast oscillating factor2

Ψε(t, ·) = Aε(t, ·)eiS
ε(t,·)/ε. (1.7)

From this point onwards, various choices are possible, depending on whether Aε is complex or not3: taking
Aε ∈ C leads to the following system [12]

∂tS
ε +
|∇Sε|2

2
+ V = 0, (1.8a)

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
(1.8b)

1These authors performed extensive numerical tests in both linear and nonlinear cases [5, 6].
2Considering the WKB-ansatz (1.7) transforms the invariants (1.3) into respectively

‖Aε‖2
L2(Rd)

,

∫

Rd

(
|ε∇Aε + iAε∇Sε|2 + V|Aε|2

)
dx and Im

∫

Rd
Aε (ε∇Aε + iAε∇Sε) dx. (1.6)

3The Madelung transform [30] relates the semiclassical limit of (1.1) to hydrodynamic equations

Ψε(t, ·) =
√
ρε(t, ·)eiSε(t,·)/ε

and amounts to choosing Aε ∈ R+. However, this formulation leads to both analytical and numerical difficulties in the presence of
vacuum, i.e. whenever ρε vanishes [14,15].
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with Sε(0, ·) = S0(·) and Aε(0, ·) = A0(·). Under appropriate smoothness assumptions, (Aε, Sε) ∈ C × R
converges when ε→ 0 to the solution (A0, S0) of

∂tS
0 +
|∇S0|2

2
+ V = 0, (1.9a)

∂tA
0 +∇S0 · ∇A0 +

A0

2
∆S0 = 0. (1.9b)

Notice that (ρ, v) = (|A0|2,∇S0) is then solution of the Euler system

∂tv + v · ∇v +∇V = 0, (1.10a)
∂tρ+ div(ρv) = 0. (1.10b)

Now, an important drawback of (1.8) stems from the formation of caustics in finite time [12]: the solution
of (1.8) may indeed cease to be smooth even though Ψε is globally well-defined for ε > 0. In order to obtain
global existence for ε > 0, Besse, Carles and Mhats [9] suggested an alternative formulation by introducing an
asymptotically-vanishing viscosity term in the eikonal equation (1.8a). Therein, system (1.8) is replaced by

∂tS
ε +
|∇Sε|2

2
+ V = ε2∆Sε, (1.11a)

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
− iεAε∆Sε (1.11b)

where Sε(0, x) = S0(x), Aε(0, x) = A0(x) and where x ∈ Rd. Let us emphasize that both (1.8) and (1.11) are
equivalent to (1.1) in the following sense: as long as the solution (Sε, Aε) of (1.8) (resp. (1.11)) is smooth, the
function Ψε defined by (1.7) solves (1.1). The well-posedeness of (1.11) and the uniform control of the solutions
with respect to ε are stated in Theorem 2.1 below.

The main advantage of the WKB reformulation (1.11) over (1.1) is apparent: the semiclassical parameter
ε does not give rise to singular perturbations4. Hence, it constitutes a good basis for the development of UA
schemes (at least prior to the appearance of caustics), as witnessed by the methods introduced later in this
paper.

1.3. Construction of the schemes

First and only (up to our knowledge) UA schemes are based on the formulation (1.11) introduced in [9].
Nevertheless, these schemes are still subject to CFL stability conditions and are of low order in time and space.
In this paper, we consider, in lieu of finite differences as in [9], time-splitting methods, for they enjoy the
following favorable features:

(i) they do not suffer from stability restrictions on the time step;
(ii) they are easy to implement;
(iii) they preserve exactly the L2-norm;
(iv) they can be adapted to semilinear Schrödinger equations;
(v) they can be composed to attain high-order of convergence in time while remaining spectrally convergent in

space.

4 The Cole–Hopf transformation ([20], Sect. 4.4.1)

wε = exp

(
−
Sε

2ε2

)
− 1 (1.12)

transforms (1.11a) into ∂twε− V
2ε2 (wε + 1) = ε2∆wε for which the regularizing effect of the viscosity term becomes arguably more

apparent.
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Points (iv) and (v) will be addressed in a forthcoming work using complex time steps (see [10]), while, in this
paper, we introduce first and second order in time splitting-schemes and concentrate on the numerical analysis
of the first-order one for the sake of clarity.

System (1.11) is split into four pieces as follows:
First flow: We denote ϕ1

h the approximate flow at time h ∈ R of the system

∂tS +
|∇S|2

2
= 0, (1.13a)

∂tA+∇S · ∇A+
A

2
∆S =

i∆A
2
· (1.13b)

The eikonal equation (1.13a) is solved by means of the method of characteristics, while equation (1.13b) is
dealt with by noticing that w = A exp (iS) satisfies the free Schrödinger equation i∂tw = − 1

2∆w.
Second flow: We define ϕ2

h as the exact flow at time h ∈ R of the system

∂tS = 0, (1.14a)

∂tA =
i (ε− 1) ∆A

2
, (1.14b)

which is solved in the Fourier space.
Third flow: The third flow ϕ3

h is defined as the exact flow at time h ∈ R of system

∂tS = −V, (1.15a)
∂tA = 0. (1.15b)

Fourth flow: The fourth flow ϕ4
h is defined as the exact flow at time h ∈ R+ of

∂tS = ε2∆S, (1.16a)
∂tA = −iεA∆S. (1.16b)

Equation (1.16a) is solved in Fourier space and the solution of (1.16b) is simply obtained through the formula
A(h, ·) = exp

(
−iε−1(S(h, ·)− S(0, ·))

)
A(0, ·). Notice that ϕ4

h can thus be viewed as a regularizing flow.
The first-order scheme that we consider for (1.11) is then the concatenation of all previous flows

ϕ1
h ◦ ϕ2

h ◦ ϕ3
h ◦ ϕ4

h (1.17)

while the second-order scheme is given by

ϕ1
h/2 ◦ ϕ

2
h/2 ◦ ϕ

3
h/2 ◦ ϕ

4
h ◦ ϕ3

h/2 ◦ ϕ
2
h/2 ◦ ϕ

1
h/2. (1.18)

1.4. Main result

The main result of this paper is the following theorem: it states that ϕ1
h ◦ ϕ2

h ◦ ϕ3
h ◦ ϕ4

h is uniformly accurate
w.r.t. the semi-classical parameter ε. The proper statement of the result uses the norm ‖ · ‖s on the set Σs =
Hs+2(Rd)×Hs(Rd) defined for s ≥ 0 and u = (S,A) by

‖u‖s =
(
‖S‖2Hs+2(Rd) + ‖A‖2Hs(Rd)

)1/2

.

Theorem 1.1. Let s > d/2 + 1, εmax > 0, u0 ∈ Σs+2 and 0 < T < Tmax where

Tmax = sup{t > 0 : τ 7→ φ0
τ (u0) ∈ L∞([0, t];Σs+2)}
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and φετ denotes the flow at time τ of (1.11).
There exists C > 0 and h0 > 0 such that the following error estimate holds true for any ε ∈ (0, εmax], any

h ∈ [0, h0] and n ∈ N satisfying nh ≤ T :

‖(ϕ1
h ◦ ϕ2

h ◦ ϕ3
h ◦ ϕ4

h)n(u0)− φεnh(u0)‖s ≤ Ch.

The constants C and h0 do not depend on ε.

Remark 1.2. The constant Tmax appearing in Theorem 1.1 is well-defined and positive since τ 7→ φ0
τ exists

locally in time (see Thm. 2.1).

Remark 1.3. The numerical analysis performed for the proof of Theorem 1.1 can immediately be extended
after the caustics for Tmax ≤ T and ε > 0 since the solution of (1.11) (as the one of (1.1)) are global. Nevertheless,
the constants C and h0 appearing in the result will not be independent on ε anymore. This point is illustrated
in Section 4.

Remark 1.4. The proof of Theorem 1.1 can be adapted to any time-splitting method of order 1 obtained after
permutation of the four flows in (1.17).

Our proof is reminiscent of two previous results related to, on the one hand, splitting schemes for equations
with Burgers nonlinearity [24] and on the other hand, splitting scheme for NLS in the semiclassical limit with
[13]. Nonetheless, due to the finite-time existence of both exact and approximate flows, and to the peculiarity of
the Lipschitz-type stability of the exact flows (see Lem. 2.3), our proof follows a different path. In particular, we
lean the approximate solutions on the exact one to ensure that they do not blow up. Besides, the application of
Lady Windermere’s fan argument is somehow hidden in an induction procedure. Finally, let us mention that, in
spite of the fact that we do not specifically address this case, it is our belief that this result can be extended to
Schrödinger equations with time dependent potentials, to the second-order scheme, to the Schrödinger equation
with a nonlinearity of Hartree-type and to the weakly nonlinear Schrödinger equation (see also [13], Rem. 4.5).

The paper is organized as follows. In Section 2, we first give a theorem of well-posedness of the Cauchy
problem for (1.11). Then Theorem 1.1 is proved using four technical lemmas. Section 3 is devoted to the proof
of these lemmas. We illustrate the properties of our methods in Section 4.

2. Preparatiory results and proof of Theorem 1.1

2.1. Notations

Assume that ε ∈ (0, εmax] and s > d/2 + 1. For the sake of simplicity, we keep the notation of all the flows
independent of ε. All the constants appearing in the proof depend on V but not on ε > 0. We denote

ϕijh = ϕih ◦ ϕ
j
h, ϕ

ijk
h = ϕih ◦ ϕ

jk
h ,

ϕ1234
h = ϕ1

h ◦ ϕ234
h = ϕ1

h ◦ ϕ2
h ◦ ϕ3

h ◦ ϕ4
h,

Ni is the possibly nonlinear operator related to ϕih so that

∂hϕ
i
h = Niϕih.

The quantities ∂hϕh(u) and ∂2ϕh(u) are the Frèchet derivatives of ϕ with respect to h and u. The commutator
of the nonlinear operators Ni and Nj is given by

[Ni,Nj ](u) = DNi(u) · Nj(u)−DNj(u) · Ni(u).
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2.2. Existence, uniqueness and uniform boundedness results

The following theorem study some properties of the solutions of equations (1.11).

Theorem 2.1. Let εmax > 0, s > d/2 + 1 and u0 ∈ Σs+2. The following two points are true.

(i) The quantity
Tmax = sup{t > 0 : φ0(u0) ∈ L∞([0, t];Σs+2)} (2.1)

is well-defined and positive.
(ii) Let 0 < T < Tmax. For all ε ∈ [0, εmax], there exists a unique solution

φε(u0) ∈ C([0, T ], Σs+2)

of the systems of equations (1.11). Moreover, φε(u0) is bounded in

C([0, T ], Σs+2)

uniformly in ε ∈ [0, εmax].

The proof of Theorem 2.1 is given in Section 3.4.

2.3. The main lemmas

In this subsection, we present the main ingredients needed in the proof of Theorem 1.1. Their proof is
postponed to Section 3.

Lemma 2.2. Let M > 0 and s > d/2 + 1. There exist h1 = h1(M) > 0 such that for any ε ∈ (0, εmax] and any
u0 ∈ Σs satisfying

‖u0‖s ≤M,

we have that the solution φt(u0) of equation (1.11) is well-defined on [0, h1] and for all t ∈ [0, h1]

‖φt(u0)‖s ≤ 2M.

Lemma 2.3. Let M > 0 and s > d/2 + 1. There exist C2 = C2(M) > 0 such that for any ε ∈ (0, εmax], any
solutions φt(u1) ∈ L∞([0, T ], Σs+1) and φt(u2) ∈ L∞([0, T ], Σs) of equation (1.11), satisfying for all t ∈ [0, T ]

‖φt(u1)‖s+1 + ‖φt(u2)‖s ≤M

we have
‖φt(u1)− φt(u2)‖s ≤ ‖u1 − u2‖s exp(C2t).

Remark 2.4. Let us insist on the fact that in Lemma 2.3, we have to control φt(u1) in Σs+1 and φt(u2) in Σs
to get Lipschitz-type stability in Σs.

Lemma 2.5. Let M > 0 and s > d/2 + 1. There exist h3 = h3(M) > 0 and C3 = C3(M) > 0 such that for any
ε ∈ (0, εmax], any u0 ∈ Σs satisfying ‖u0‖s ≤M and any 0 ≤ t ≤ h3, we have

(a) ‖ϕ1234
t (u0)‖s ≤ 8M .

(b) Furthermore, if u0 ∈ Σs+2, then

‖ϕ1234
t (u0)‖s+2 ≤ exp (C3t) (‖u0‖s+2 + t‖V‖Hs+4) .

Lemma 2.6. Let M > 0 and s > d/2 + 1. There exist h4 = h4(M) > 0 and K4 = K4(M) > 0 such that for
any ε ∈ (0, εmax] and any u0 ∈ Σs+2 satisfying

‖u0‖s+2 ≤M,

we have for any t ∈ [0, h4] that
‖φt(u0)− ϕ1234

t (u0)‖s ≤ K4t
2.
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2.4. Proof of Theorem 1.1

Let us denote
Mε
s (T ) := sup{‖φεt (u0)‖s : 0 ≤ t ≤ T}. (2.2)

for ε ≥ 0 and T ≥ 0.
Let s > d/2 + 1, ε ∈ (0, εmax], u0 ∈ Σs+2, n ∈ N and h > 0 be such that nh ≤ T < Tmax (see (2.1)). By

Theorem 2.1, there exist Ms, Ms+1 and Ms+2 independent of ε ∈ (0, εmax] such that for all ε ∈ (0, εmax],

Mε
s ≤Ms, M

ε
s+1 ≤Ms+1 and Mε

s+2 ≤Ms+2

(see (2.2)). We denote

C = C3(2Ms),

c0 = ‖u0‖s+2 exp (CT ) + ‖V‖Hs+4e2TC/C,

C ′ = C2(Ms+1 + 4Ms),

c̃ = K4(c0)aeC
′T /C ′.

Assume that
0 ≤ h ≤ min (h3(c0),Ms/c̃, h1(2Ms), h4(c0)) . (2.3)

Here, h1, C2, h3, h4 and K4 are defined in Lemmas 2.2, 2.3, 2.5 and 2.6.
We show by induction on 0 ≤ k ≤ n that

(i) (ϕ1234
h )k(u0) is well-defined, belongs to Σs+2 and

‖(ϕ1234
h )k(u0)‖s+2 ≤ ‖u0‖s+2 exp (Ckh) + h‖V‖Hs+4

e(k+1)hC − ehC

ehC − 1
≤ c0,

(ii) ‖φkh(u0)− (ϕ1234
h )k(u0)‖s ≤ h2K4(c0) eC′hk−1

eC′h−1
≤ c̃h,

and Theorem 1.1 follows then from point (ii) with k = n.
The induction hypothesis is true for k = 0. Let us assume points (i) and (ii) true for 0 ≤ k ≤ n− 1.
Lemma 2.5, point (i) and (2.3) ensure that

(ϕ1234
h )k+1(u0)

is well-defined and belongs to Σs+2. By Point (ii) and (2.3), we have

‖(ϕ1234
h )k(u0)‖s ≤Ms + ‖φkh(u0)− (ϕ1234

h )k(u0)‖s ≤ 2Ms.

By Lemma 2.5 and (2.3), we have

‖(ϕ1234
h )k+1‖s+2 ≤ exp (Ch)

(
‖(ϕ1234

h )k(u0)‖s+2 + h‖V‖Hs+4

)
and point (i) ensures that

‖(ϕ1234
h )k+1‖s+2 ≤ ‖u0‖s+2 exp (C(k + 1)h) + h‖V‖Hs+4

e(k+2)hC − ehC

ehC − 1
≤ c0.

By Lemma 2.2 and (2.3), h′ 7→ φh′ ◦ (ϕ1234
h )k(u0) is well-defined and satisfies for all 0 ≤ h′ ≤ h

‖φh′ ◦ (ϕ1234
h )k(u0)‖s ≤ 4Ms.
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By Lemma 2.3, we obtain that

‖φh(k+1)(u0)− φh ◦ (ϕ1234
h )k(u0)‖s ≤ ‖φhk(u0)− (ϕ1234

h )k(u0)‖s exp(C ′h).

By Lemma 2.6, point (i) and (2.3), we get

‖φh ◦ (ϕ1234
h )k(u0)− ϕ1234

h ◦ (ϕ1234
h )k(u0)‖s ≤ K4(c0)h2,

so that

‖φh(k+1)(u0)− (ϕ1234
h )k+1(u0)‖s ≤ K4(c0)h2 + ‖φhk(u0)− (ϕ1234

h )k(u0)‖s exp(C ′h).

By point (ii), we have then that

‖φh(k+1)(u0)− (ϕ1234
h )k+1(u0)‖s ≤ K4(c0)h2

(
eC
′h(k+1) − 1
eC′h − 1

)
·

Thus, points (i) and (ii) are true for k + 1.

3. Proof of the main lemmas

3.1. Auxiliary results

Let us denote by 〈·, ·〉 the L2 scalar product, for s > 0

Λs = (1−∆)s/2,

Π1u = S, Π2u = A, for u =
(
S
A

)
(3.1)

and

〈u1, u2〉s = 〈Π1u1,Π1u2〉
+
〈
Λs+1∇Π1u1,Λs+1∇Π1u2

〉
+ Re 〈ΛsΠ2u1,ΛsΠ2u2〉 .

(3.2)

We recall two points that will be of constant use in the following: the Sobolev space Hs ⊂ L∞ is an algebra
for s > d/2 and the Kato-Ponce [28] inequality holds true:

Proposition 3.1. Let s0 > d/2 + 1. There is c > 0 such that for all f ∈ Hs0(Rd) and g ∈ Hs0−1(Rd)

‖Λs0(fg)− fΛs0g‖L2 ≤ c(‖∇f‖L∞‖g‖Hs0−1 + ‖f‖Hs0‖g‖L∞).

The following lemmas will be used several times in our proof.

Lemma 3.2. Let s0 > d/2+1. There is C > 0 such that for all v0, v1 and R ∈ L∞([0, h0], Hs0(Rd)d) satisfying

∂tv0 + (v1 · ∇)v0 = R,

we have

∂t‖v0‖2Hs0 ≤ C
(
‖v0‖2Hs0 ‖∇v1‖L∞ + ‖v0‖Hs0 ‖v1‖Hs0 ‖∇v0‖L∞

)
+ 2 〈Λs0v0,Λs0R〉

≤ C‖v0‖2Hs0‖v1‖Hs0 + 2 〈Λs0v0,Λs0R〉 .
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Proof. We have by integration by parts that

∂t
‖v0‖2Hs0

2
= 〈Λs0v0,Λs0∂tv0〉 = −〈Λs0v0,Λs0(v1 · ∇)v0〉+ 〈Λs0v0,Λs0R〉

≤ 1
2

∫
Rd

|Λs0v0|2 div v1 + ‖v0‖Hs0‖[Λs0 , (v1 · ∇)]v0‖L2 + 〈Λs0v0,Λs0R〉 .

Proposition 3.1 ensures that

∂t
‖v0‖2Hs0

2
≤ c

(
‖v0‖2Hs0‖∇v1‖L∞ + ‖v0‖Hs0‖v1‖Hs0‖∇v0‖L∞

)
+ 〈Λs0v0,Λs0R〉 .

�

Lemma 3.3. Let s0 > d/2 + 1. There exists C > 0 such that for all A ∈ W 1,∞([0, h0], Hs0(Rd)), v1 ∈
L∞([0, h0], Hs0+1(Rd)d) and R ∈ L∞([0, h0], Hs0(Rd)) satisfying

∂tA+ v1 · ∇A+A
div v1

2
= R,

we have,

∂t‖A‖2Hs0 ≤ C
(
‖A‖2Hs0‖v1‖W 2,∞ + ‖A‖Hs0 ‖v1‖Hs0+1‖A‖W 1,∞

)
+ 2 Re 〈Λs0A,Λs0R〉

≤ C‖A‖2Hs0 ‖v1‖Hs0+1 + 2 Re 〈Λs0A,Λs0R〉 .

Proof. We have by integration by parts that

∂t
‖A‖2Hs0

2
= Re 〈Λs0A,Λs0∂tA〉 = −Re

〈
Λs0A,

(
v1 · ∇+

div v1

2

)
Λs0A

〉
− Re

〈
Λs0A,

[
Λs0 ,

(
v1 · ∇+

div v1

2

)]
A

〉
+ Re 〈Λs0A,Λs0R〉

≤ ‖A‖Hs0

∥∥∥∥[Λs0 ,(v1 · ∇+
div v1

2

)]
A

∥∥∥∥
L2

+ Re 〈Λs0A,Λs0R〉 .

Proposition 3.1 ensures that

∂t
‖A‖2Hs0

2
≤ C‖A‖Hs0 (‖∇v1‖L∞‖∇A‖Hs0−1 + ‖v1‖Hs0‖∇A‖L∞)

+ C‖A‖Hs0 (‖∇(div v1)‖L∞‖A‖Hs0−1 + ‖ div v1‖Hs0 ‖A‖L∞)
+ Re 〈Λs0A,Λs0R〉

≤ C
(
‖A‖2Hs0 ‖v1‖W 2,∞ + ‖A‖Hs0 ‖v1‖Hs0+1‖A‖W 1,∞

)
+ Re 〈Λs0A,Λs0R〉

≤ C‖A‖2Hs0‖v1‖Hs0+1 + Re 〈Λs0A,Λs0R〉 .

�

3.2. Study of the equation (1.11)

Let us prove Lemma 2.2.

Proof. By the Cole–Hopf transform, we get that wε = exp
(
− Sε

2ε2

)
− 1 is the solution of

∂tw
ε = ε2∆wε +

V
2ε2

(wε + 1) , wε(0) = exp
(
− S0

2ε2

)
− 1,
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Hence, global existence and uniqueness of the solution Sε of (1.11a) for fixed ε ∈ (0, εmax], follows from
standard semi-group theory. The function vε = ∇Sε solves

∂tv
ε + (vε · ∇)vε +∇V = ε2∆vε.

Since s > d/2, Lemma 3.2 and an integration by parts ensure that

∂t‖vε‖2Hs+1 ≤ c‖vε‖3Hs+1 +
〈
Λs+1vε,Λs+1

(
−∇V + ε2∆vε

)〉
≤ c‖vε‖3Hs+1 + ‖vε‖Hs+1‖V‖Hs+2 .

By (1.11a), we also have that

∂t
‖Sε‖2L2

2
≤ ‖Sε‖L2

(
‖V‖L2 + ‖vε‖2L4/2

)
so that

∂t‖Sε‖2Hs+2 ≤ c‖V‖Hs+2‖Sε‖Hs+2 + c‖Sε‖3Hs+2 .

The global existence and the uniqueness of a solution Aε of equation (1.11b) follows from the fact that

Ψε = Aε exp (iSε/ε)

satisfies equation (1.1). By Lemma 3.3, recalling that s > d/2 + 1, we also have

∂t‖Aε‖2Hs ≤ c‖Aε‖2Hs‖Sε‖Hs+2 + Re 〈ΛsAε,ΛsR〉 .

where R = iε∆Aε

2 − iεAε∆Sε so that an integration by parts gives us

∂t‖Aε‖2Hs ≤ c‖Aε‖2Hs‖Sε‖Hs+2 .

We obtain that
∂t‖φt(u0)‖2s ≤ c1‖φt(u0)‖s‖V‖Hs+2 + c2‖φt(u0)‖3s

and
∂t‖φt(u0)‖s ≤ c1‖V‖Hs+2 + c2‖φt(u0)‖2s.

We get then that

‖φt(u0)‖s ≤

√
c1‖V‖Hs+2

c2
tan

(
t
√
c1c2‖V‖Hs+2 + arctan

(
M

√
c2

c1‖V‖Hs+2

))
so that there is h1 = h1(M) > 0 such that for all 0 ≤ t ≤ h1

‖φt(u0)‖s ≤ 2M.

�

The following result will be used several times and in particular for the proof of the stability of equation
(1.11) in Lemma 2.3.



UNIFORMLY ACCURATE TIME-SPLITTING METHODS 453

Lemma 3.4. Let s0 > d/2 + 1. Let u1 = (S1, A1) be in L∞([0, T ], Σs0+1), u2 = (S2, A2), (R1,S , R1,A) and
(R2,S , R2,A) be in L∞([0, T ], Σs0). Assume moreover that for i = 1, 2

∂tSi +
|∇Si|2

2
= Ri,S ,

∂tAi +∇Si · ∇Ai +Ai
∆Si

2
= Ri,A.

Then, we have

∂t‖u1 − u2‖2s0 ≤ c‖u1 − u2‖2s0 (‖u1‖s0+1 + ‖u2‖s0) + 2 〈u1 − u2, R1 −R2〉s0

where Ri = (Ri,S , Ri,A)T .

Proof. Let s0 > d/2 + 1. Let us define v1 = ∇S1, v2 = ∇S2, w = v1 − v2, B = A1 −A2 and u = u1 − u2.
We have that

∂tw = −(v1 · ∇)v1 + (v2 · ∇)v2 +∇ (R1,S −R2,S)
= −(v2 · ∇)w − (w · ∇)v1 +∇ (R1,S −R2,S)

and Lemma 3.2 ensures that

∂t‖w‖2Hs0+1 ≤ c‖w‖2Hs0+1‖v2‖Hs0+1 + 2
〈
Λs0+1w,Λs0+1R

〉
.

where R = −(w · ∇)v1 +∇ (R1,S −R2,S) . We also have that

‖(w · ∇)v1‖Hs0+1 ≤ c‖w‖Hs0+1‖v1‖Hs0+2

and

∂t‖w‖2Hs0+1 ≤ c‖w‖2Hs0+1 (‖S1‖Hs0+3 + ‖S2‖Hs0+2) + 2
〈
Λs0+1w,Λs0+1∇ (R1,S −R2,S)

〉
.

We also have
∂t(S1 − S2) = −1

2
(v1 + v2) · w + (R1,S −R2,S)

so that

∂t‖S1 − S2‖2L2 ≤ c‖S1 − S2‖L2‖w‖L2 (‖S1‖W 1,∞ + ‖S2‖W 1,∞) + 2 〈S1 − S2, R1,S −R2,S〉

and then

∂t‖S1 − S2‖2Hs0+2 ≤ C‖S1 − S2‖2Hs0+2 (‖S1‖Hs0+3 + ‖S2‖Hs0+2)
+ 2 〈S1 − S2, R1,S −R2,S〉+ 2

〈
Λs0+1∇ (S1 − S2) ,Λs0+1∇ (R1,S −R2,S)

〉
Let us study B, we have

∂tB +∇S2 · ∇B +
∆S2

2
B = R

where

R = −w · ∇A1 −
div(w)

2
A1 + (R1,A −R2,A)
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Hence, we obtain by Lemma 3.3

∂t‖B‖2Hs0 ≤ c‖B‖2Hs0‖S2‖Hs0+2 + 2 Re 〈Λs0B,Λs0R〉
≤ c‖B‖2Hs0‖S2‖Hs0+2 + c‖B‖Hs0‖w‖Hs0+1‖A1‖Hs0+1

+ 2 Re 〈Λs0B,Λs0 (R1,A −R2,A)〉

and

∂t‖u1 − u2‖2s0 ≤ c‖u1 − u2‖2s0 (‖u1‖s0+1 + ‖u2‖s0) + 2 〈u1 − u2, R1 −R2〉s0

The result follows. �

Let us study now the stability of equation (1.11) and prove Lemma 2.3.

Proof. Let s > d/2 + 1 and ε ∈ (0, εmax]. Let us define for i = 1, 2

Ri,S = −V + ε2∆Si,

Ri,A = iε
∆Ai

2
− iεAi∆Si.

We apply Lemma 3.4 with s0 = s. We have by integrations by parts that

〈S1 − S2, R1,S −R2,S〉+
〈
Λs+1∇ (S1 − S2) ,Λs+1∇ (R1,S −R2,S)

〉
≤ 0,

and

Re 〈Λs (A1 −A2) ,Λs (R1,A −R2,A)〉 ≤ c‖A1 −A2‖2Hs‖S1‖Hs+2

+ c‖A1 −A2‖Hs‖S1 − S2‖Hs+2‖A2‖Hs .

so that

∂t‖φt(u1)− φt(u2)‖2s ≤ c‖u1 − u2‖2s (‖φt(u1)‖s+1 + ‖φt(u2)‖s)

and the result follows. �

3.3. Study of the numerical flow ϕ1234

The following lemma is inspired by the work of Holden et al. [24].

Lemma 3.5. Let s0 > d/2 + 1 and M > 0. There exists h5 = h5(M) > 0 such that for any u0 ∈ Σs0 satisfying
‖u0‖s0 ≤M and any 0 ≤ t ≤ h5, the following two points are true.

(i) We have that ‖ϕ1
t (u0)‖s0 ≤ 2M .

(ii) Let s1 ≥ s0. There is C5 = C5(M) > 0 such that if u0 ∈ Σs1 , then

‖ϕ1
t (u0)‖s1 ≤ exp (C5t) ‖u0‖s1 .

Proof. The existence of the solution S of (1.13a) follows for instance from the method of characteristics. Lemma
3.2 ensures that for s > d/2 + 1

∂t‖∇S‖2Hs+1 ≤ c‖∇S‖2Hs+1‖∇(∇S)‖L∞ ≤ C‖∇S‖2Hs+1‖S(t)‖W 2,∞ .

We also have
∂t‖S‖2L2 ≤ c‖S(t)‖L2‖∇S(t)‖2L4
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so that
∂t‖S‖2Hs+2 ≤ C‖S(t)‖2Hs+2‖S(t)‖W 2,∞ .

The remaining of the proof follows exactly the same lines as the one of Lemma 2.2. By Lemma 3.3 and an
integration by parts, we have

∂t‖A‖2Hs ≤ C
(
‖A‖2Hs‖S‖W 3,∞ + ‖A‖Hs‖S‖Hs+2‖A‖W 1,∞

)
≤ C‖ϕ1

t (u0)‖2s‖ϕ1
t (u0)‖W 3,∞×W 1,∞

and

∂t‖ϕ1
t (u0)‖2s ≤ C‖ϕ1

t (u0)‖2s‖ϕ1
t (u0)‖W 3,∞×W 1,∞

≤ C‖ϕ1
t (u0)‖3s.

Taking s = s0, we get that

‖ϕ1
t (u0)‖s0 ≤

M

1− cMt

and there is h5 = h5(M) > 0 such that for all t ∈ [0, h9]

‖ϕ1
t (u0)‖s0 ≤ 2M.

We also obtain for s = s1 ≥ s0 > d/2 + 1 and t ∈ [0, h9] that

∂t‖ϕ1
t (u0)‖2s1 ≤ C‖ϕ

1
t (u0)‖2s1‖ϕ

1
t (u0)‖s0

≤ 2CM‖ϕ1
t (u0)‖2s1 .

and the result follows from Gronwall’s Lemma. �

We immediately get the following result for the second and the third flows.

Lemma 3.6. Let s0 > 0 and M > 0. There is h6 = h6(M) such that for any u0 ∈ Σs0 satisfying ‖u0‖s0 ≤ M
any 0 ≤ t ≤ h6, the following two points holds true.

(i) ‖ϕ2
t (u0)‖s0 ≤M and ‖ϕ3

t (u0)‖s0 ≤ 2M ,
(ii) Let s1 ≥ 0. If moreover u0 ∈ Σs1 , then, we have

‖ϕ2
t (u0)‖s1 ≤ ‖u0‖s1 and ‖ϕ3

t (u0)‖s1 ≤ ‖u0‖s1 + t‖V‖Hs1+2 .

The following lemma study the fourth flow.

Lemma 3.7. Let s0 > d/2 + 1 and M > 0. There exists h7 = h7(M) > 0 such that for any u0 ∈ Σs0 satisfying
‖u0‖s0 ≤M and any 0 ≤ t ≤ h7, the following two points holds true.

(i) ‖ϕ4
t (u0)‖s0 ≤ 2M ,

(ii) Let s1 ≥ s0. There is C7 = C7(M) > 0 such that if u0 ∈ Σs1 ,

‖ϕ4
t (u0)‖s1 ≤ exp (C7t) ‖u0‖s1 .

Proof. Let s > d/2 + 1. By integration by parts, we have ∂t‖S(h)‖2Hs+2 ≤ 0 and

∂t
‖A‖2Hs

2
= Re 〈ΛsA,Λs (−iεA∆S)〉 = Re 〈ΛsA, [Λs,−iε∆S]A〉

≤ c‖A‖Hs (‖∇(∆S)‖L∞‖A‖Hs−1 + ‖∆S‖Hs‖A‖L∞)
≤ c‖A‖2Hs‖S‖W 3,∞ + c‖A‖Hs‖S‖Hs+2‖A‖L∞ .
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We obtain for s = s0 that
∂t‖ϕ4

t (u0)‖2s0 ≤ c‖ϕ
4
t (u0)‖3s0 ,

for s = s1 that
∂t‖ϕ4

t (u0)‖2s1 ≤ c‖ϕ
4
t (u0)‖2s1‖ϕ

4
t (u0)‖s0

and the result follows from the arguments of the end of the proof of Lemma 3.5. �

Taking s0 = s and s1 = s0 + 2, we immediately get Lemma 2.5 combining Lemmas 3.5–3.7.

3.4. Proof of Theorem 2.1

LetM > 0. Lemma 2.2 ensures that there is h1 = h1(M) > 0 such that for any ε ∈ (0, εmax] and any u0 ∈ Σs+2

satisfying ‖u0‖s+2 ≤ M , the solutions t 7→ φεt (u0) of equation (1.11) are well-defined in L∞([0, h1], Σs+2) and
uniformly bounded with respect to ε.

Let ε, ε′ ∈ (0, εmax], u0, u
′
0 ∈ Σs+2 such that ‖u0‖s+2 ≤M and ‖u′0‖s+2 ≤M . We define (Sε, Aε)T = φε(u0),

(Sε
′
, Aε

′
)T = φε

′
(u′0) and

R1,S = −V + ε2∆Sε, R2,S = −V + ε′2∆Sε
′
,

R1,A = iε
∆Aε

2
− iεAε∆Sε, R2,A = iε′

∆Aε
′

2
− iε′Aε

′
∆Sε

′
.

We apply Lemma 3.4 with s0 = s, u1 = φε(u0) and u2 = φε
′
(u0). We have by integrations by parts that〈

Sε − Sε
′
, R1,S −R2,S

〉
+
〈

Λs+1∇
(
Sε − Sε

′
)
,Λs+1∇ (R1,S −R2,S)

〉
≤ c|ε− ε′|‖Sε − Sε

′
‖Hs+2‖Sε‖Hs+4 ,

and

Re
〈

Λs
(
Aε −Aε

′
)
,Λs (R1,A −R2,A)

〉
≤ c|ε− ε′|‖Aε −Aε

′
‖Hs‖Aε‖Hs+2

+ c‖Aε −Aε
′
‖2Hs‖Sε

′
‖Hs+2 + c‖Aε‖Hs‖Aε

−Aε
′
‖Hs‖Sε − Sε

′
‖Hs+2

+ c|ε− ε′|‖Aε −Aε
′
‖Hs‖Aε‖Hs‖Sε‖Hs+2 .

so that

∂t‖φεt (u0)− φε
′

t (u′0)‖2s ≤ c‖φεt (u0)− φε
′

t (u′0)‖2s
(
‖φεt (u0)‖s+1 + ‖φε

′

t (u′0)‖s
)

+ c|ε− ε′|‖φεt (u0)− φε
′

t (u′0)‖s(‖φεt (u0)‖s+2 + ‖φεt (u0)‖2s).

Gronwall’s Lemma ensures that for all t ∈ [0, h1]

‖φεt (u0)− φε
′

t (u′0)‖s ≤ C (‖u0 − u′0‖s + |ε− ε′|) (3.3)

where
C = C(‖φε(u0)‖L∞([0,h1],Σs+2), ‖φε

′
(u′0)‖L∞([0,h1],Σs)) > 0.

Thus, (φεt (u0))t∈[0,h1] is a Cauchy sequence of ε of L∞([0, h1], Σs). The limit φ0(u0) is solution of (1.11)
with ε = 0. Uniqueness follows from (3.3). We get immediately that Lemma 2.2 is also true for ε = 0 and
φ0(u0) ∈ L∞([0, h1], Σs+2).

Let
Tmax = sup{t > 0 : φ0(u0) ∈ L∞([0, t];Σs+2)} > 0,
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then, for any 0 < T < Tmax, φ0(u0) ∈ L∞([0, T ];Σs+2). Let us define T̃ = h1(2M0
s ) (see Lem. 2.2 and (2.2)),

C = C(M0
s+2, 2M

0
s ) (see inequality (3.3)) and N the smallest n ∈ N such that

nT̃ ≥ T.

Let ε0 > 0 be such that ε0

∑N
j=1 C

j ≤M0
s and ε ∈ (0, ε0]. By inequality (3.3) and Lemma 2.2, we obtain by

induction on 0 ≤ k ≤ N that

‖φεt (u0)‖s ≤ ‖φ0
t (u0)‖s + ‖φ0

t (u0)− φεt (u0)‖s ≤M0
s + ε

k∑
j=1

Cj ≤M0
s ≤ 2M0

s

for all t ∈ [0, kT̃ ]. Thus, φε(u0) is well-defined on [0, T ], belongs to L∞([0, T ];Σs) and

‖φε(u0)‖L∞([0,T ];Σs) ≤ 2M0
s . (3.4)

Following the arguments of the proofs of Lemmas 3.5–3.7, we obtain that

∂t‖φε(u0)‖2s+2 ≤ c‖φε(u0)‖2s+2‖φε(u0)‖s + ‖φε(u0)‖s+2‖V‖Hs+4 .

Gronwall’s lemma ensures that there is C̃ = C̃(Ms
0 ) > 0 independent of ε such that

‖φεt (u0)‖s+2 ≤ exp(tC̃) (t‖V‖Hs+4 + ‖u0‖s+2)

for all t ∈ [0, T ]. Moreover, φε(u0) is well-defined in L∞([0, T ], Σs+2) for any ε ∈ (0, εmax]. Then, the same
arguments ensure that ε ∈ (0, εmax] 7→ φε(u0) is continuous in L∞([0, T ], Σs) so that (φε(u0))ε∈[0,εmax] is
uniformly bounded in L∞([0, T ], Σs+2) and the result follows.

3.5. The local error estimates

The proof of Lemma 2.6 given in this section is inspired by Auzinger et al. [2], where the two flows case is
treated. The local error of scheme (1.17) is defined by

R(h, u) = ϕ1234
h (u)− φh(u).

3.5.1. Main lemmas

Let us give the main ingredients that will be used in the proof of Lemma 2.6. The balls in Σs0 are denoted
by

Bs0(M) = {u ∈ Σs0 : ‖u‖s0 ≤M} (3.5)

for s0 ≥ 0 and M > 0. The strategy to get estimates on R(h, u) is to differentiate R with respect to h. Hence,
we will be in need of the following lemma whose proof is postponed to Appendix A.

Lemma 3.8. Let s > d/2 + 1 and M > 0. There exists h8 = h8(M) > 0 such that the following two points hold
true.

(i) Let s1 ≥ s. The functions

(h, u) ∈ [0, h8]× (Bs(M) ∩Σs1+3) 7→ ϕ1
h(u) ∈ Σs1 ,

(h, u) ∈ [0, h8]× (Bs(M) ∩Σs1+2) 7→ ϕ2
h(u) ∈ Σs1 ,

(h, u) ∈ [0, h8]× (Bs(M) ∩Σs1) 7→ ϕ3
h(u) ∈ Σs1 ,

are C1-applications.
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(ii) Let s2 ≥ s and M2 > 0. There exists C8 = C8(M,M2) > 0 such that for any u ∈ Bs(M) ∩ Bs2+1(M2),
h ∈ [0, h8] and any u0 ∈ Σs2 , we have

‖∂2ϕ
1
h(u) · u0‖s2 ≤ exp (C8h) ‖u0‖s2 ,

‖∂2ϕ
2
h(u) · u0‖s2 ≤ exp (C8h) ‖u0‖s2 ,

‖∂2ϕ
3
h(u) · u0‖s2 ≤ exp (C8h) ‖u0‖s2 ,

and

|
〈
u0, DN1(ϕ1

h(u)) · u0

〉
s2
| ≤ C8‖u0‖2s2 ,

|
〈
u0, DN2(ϕ2

h(u)) · u0

〉
s2
| ≤ C8‖u0‖2s2 ,

|
〈
u0, DN3(ϕ3

h(u)) · u0

〉
s2
| ≤ C8‖u0‖2s2 ,

where 〈·, ·〉s0 is defined in (3.2) and Bs0(M) in (3.5).

The following lemma ensures that the object studied in the proof of Lemma 2.6 are well-defined.

Lemma 3.9. Let s > d/2 + 1 and M > 0. There is h9 = h9(M) > 0 such that the following three points are
true. Let u ∈ Σs+7 such that ‖u‖s+2 ≤M .

(i) We have for all h ∈ [0, h9],
ϕ1234
h (u), ϕ234

h (u), ϕ34
h (u) and ϕ4

h(u)

are well-defined, belong to L∞([0, h9], Σs+7) and satisfy

max
(
‖ϕ4

h(u)‖s+2, ‖ϕ34
h (u)‖s+2, ‖ϕ234

h (u)‖s+2

)
≤ 4M.

(ii) The application h ∈ [0, h9] 7→ R(h, u) ∈ Σs is differentiable,

∂hR(h, u) =
4∑
k=1

Nk(ϕ1234
h (u))−Nk(φh(u)) +S (h, u),

R(0, u) = 0.

where

S (h, u) = (χ12 + χ13 + χ14) (h, ϕ234
h (u))

+ ∂2ϕ
1(h, ϕ234

h (u)) · (χ23 + χ24)(h, ϕ34
h (u))

+ ∂2ϕ
1(h, ϕ234

h (u)) · ∂2ϕ
2(h, ϕ34

h (u)) · χ34(h, ϕ4
h(u))

and χij(h, v) = ∂2ϕ
i
h(v) · Nj(v)−Nj(ϕih(v)) (see [2], Sect. 3).

(iii) Let v ∈ Σs+7. We have,

∂hχij(h, v) = DNi(ϕih(v)) · χij(h, v) + [Ni,Nj ](ϕih(v))
χij(0, v) = 0.

The following lemma gives bounds on the commutators.

Lemma 3.10. Let s > d/2 + 1. There is C > 0 such that for any u ∈ Σs+2 and any 1 ≤ i < j ≤ 4, we have

‖[Ni,Nj ](u)‖s ≤ C‖u‖2s+2(1 + ‖u‖s+2).

C does not depend on ε ∈ (0, εmax].
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3.5.2. Proof of Lemma 2.6

Let s > d/2 + 1 and M > 0. Let us define h4 = h4(M) = h9(M). Assume for the moment that u ∈ Σs+7 and
‖u‖s+2 ≤M . By Lemmas 3.8–3.10 and Gronwall’s Lemma, there is C = C(M) > 0 such that for any h ∈ [0, h4]

‖χ12(h, ϕ234
h (u))‖s + ‖χ13(h, ϕ234

h (u))‖s + ‖χ14(h, ϕ234
h (u))‖s ≤ Ch,

‖χ23(h, ϕ34
h (u))‖s + ‖χ24(h, ϕ34

h (u))‖s ≤ Ch
‖χ34(h, ϕ4

h(u))‖s ≤ Ch.

Using again Lemmas 3.8 and 3.9, we obtain that

‖S (h, u)‖s ≤ Ch.

Let us define

R1,S = −V + ε2∆Π1φh(u),
R2,S = −V + ε2∆Π1ϕ

1234
h (u) + Π1S (h, u),

R1,A =
iε∆Π2φh(u)

2
− iε∆Π1φh(u)

2
Π2φh(u),

R2,A =
iε∆Π2ϕ

1234
h (u)

2
− iε∆Π1ϕ

1234
h (u)
2

Π2ϕ
1234
h (u) + Π2S (h, u)

where Π1 and Π2 are defined in (3.1). Then, Lemma 3.4 ensures that

∂t‖ϕ1234
h (u)− φh(u)‖2s ≤ C‖ϕ1234

h (u)− φh(u)‖2s + C‖ϕ1234
h (u)− φh(u)‖s‖S (h, u)‖s.

Gronwall’s lemma ensures that there is K4 = K4(M) such that

‖ϕ1234
h (u)− φh(u)‖2s ≤ K4h

2.

Let us insist on the fact that K4 and h4 only depend on M . Hence, using the fact that for all h ∈ [0, h4], the
applications

u ∈ Σs+2 7→ φh(u) ∈ Σs

and
u ∈ Σs+2 7→ ϕ1234

h (u) ∈ Σs

are continuous (see Lem. 2.3 and the proof of Lem. 3.8), we get that

‖ϕ1234
h (u)− φh(u)‖2s ≤ K4h

2.

holds true for any u ∈ Σs+2 such that ‖u‖s+2 ≤M/2 and the result follows.

3.5.3. Proof of Lemma 3.9

Let u ∈ Σs+7 such that ‖u‖s+2 ≤M . Let us define

0 < h9 = h9(M) := min (h5(4M), h6(2M), h7(M), h8(4M)) , (3.6)

where h5, h6, h7 and h8 are defined by Lemmas 3.5, 3.6, 3.7 and 3.8.
Using these lemmas, we get that for all h ∈ [0, h9],

ϕ1234
h (u), ϕ234

h (u), ϕ34
h (u) and ϕ4

h(u)
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are well-defined, belong to L∞([0, h9], Σs+7) and satisfy

max
(
‖ϕ4

h(u)‖s+2, ‖ϕ34
h (u)‖s+2, ‖ϕ234

h (u)‖s+2

)
≤ 4M.

Define for i = 1, 2, 3, 4, h ≥ 0 and u0 ∈ Σs+2, the applications

ϑi(h, u0) = (h, ϕih(u0))T and Ξ(h, u0) = u0.

By Lemma 3.8, we obtain that
h ∈ [0, h9] 7→ ϕ1234

h (u) ∈ Bs(8M)

is a C1-application since ϕ1234
h (u) = Ξ ◦ ϑ1 ◦ ϑ2 ◦ ϑ3 ◦ ϑ4(h, u). We have that

∂hϕ
1234
h (u) = N1ϕ

1234
h (u) + ∂2ϕ

1
h(ϕ234

h (u)) · N2ϕ
234
h (u)

+ ∂2ϕ
1
h(ϕ234

h (u)) · ∂2ϕ
2
h(ϕ34

h (u)) · N3ϕ
34
h (u)

+ ∂2ϕ
1
h(ϕ234

h (u)) · ∂2ϕ
2
h(ϕ34

h (u)) · ∂2ϕ
3
h(ϕ4

h(u)) · N4ϕ
4
h(u),

so that

∂hϕ
1234
h (u) = N1ϕ

1234
h (u) +N2ϕ

1234
h (u) +N3ϕ

1234
h (u) +N4ϕ

1234
h (u)

+ χ12(h, ϕ234
h (u)) + χ13(h, ϕ234

h (u)) + χ14(h, ϕ234
h (u))

+ ∂2ϕ
1
h(ϕ234

h (u)) ·
(
χ23(h, ϕ34

h (u)) + χ24(h, ϕ34
h (u))

)
+ ∂2ϕ

1
h(ϕ234

h (u)) · ∂2ϕ
2
h(ϕ34

h (u)) · χ34(h, ϕ4
h(u)).

Let us show the last point. We have for u0 ∈ Σs+7 that

∂h
(
∂2ϕ

i
h(v) · u0

)
= DNi(ϕih(v)) ·

(
∂2ϕ

i
h(v) · u0

)
,

so that

∂hχij(h, v) = DNi(ϕih(v)) · ∂2ϕ
i
h(v) · Nj(v)−DNj(ϕih(v)) · ∂hϕih(v)

= DNi(ϕih(v)) · χij(h, v) + [Ni,Nj ](ϕih(v)).

3.5.4. Proof of Lemma 3.10

Let us consider

u =
(
S
A

)
and u0 =

(
S0

A0

)
.

We have

DN1(u) · u0 =
(

−∇S · ∇S0

−∇S · ∇A0 −A0
∆S
2 −∇S0 · ∇A−A∆S0

2 + i∆A0
2

)
,

DN2(u) · u0 = N2u0 =
(

0
i(ε− 1)∆A0

2

)
,

DN3(u) · u0 = 0,

DN4(u) · u0 =
(

ε2∆S0

−iε (A0∆S +A∆S0)

)
,

so that, [N1,N3](u) = 0, [N2,N3](u) = 0, [N3,N4](u) = 0 and

[N1,N2](u) = DN1(u) · N2(u)−DN2(u) · N1(u)

=
i(ε− 1)

2

(
0

∇∆S · ∇A+A∆2S
2 + 2

∑d
k=1∇∂kS · ∇∂kA+ ∂kA

∆∂kS
2

)
.
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We obtain

‖[N1,N2](u)‖s ≤ C‖u‖2s+2.

We also have

[N1,N4](u) = DN1(u) · N4(u)−DN4(u) · N1(u)

=

(
ε2
∑d
k=1∇∂kS · ∇∂kS

(ε− ε2)
(
∇∆S · ∇A+A∆2S

2

)
− iεA

∑d
k=1∇∂kS · ∇∂kS

)
,

and

‖[N1,N4](u)‖s ≤ εC‖u‖2s+2 (1 + ‖u‖s+2) .

We also get

[N2,N4](u) = DN2(u) · N4(u)−DN4(u) · N2(u)

=
ε(ε− 1)

2

(
0

A∆2S + 2∇A · ∇∆S

)
,

so that
‖[N2,N4](u)‖s ≤ εC‖u‖2s+2 ,

and the result follows.

4. Numerical experiments

In this part, we illustrate the behavior of the schemes (1.17) and (1.18) introduced in Section 1.3. We
restrict ourselves to the one-dimensional periodic setting in which the equations studied remain unchanged and
a Fourier spectral discretization can be used. Note that eikonal equation (1.13a) is solved using the method of
characteristics and an interpolation method based on a direct discrete Fourier series evaluation. Many other
methods are available to solve this equation. Let us mention in particular [11, 19] where these questions are
discussed in the context of advection equations.

We consider the following initial data:

A0(x) = sin(x), S0(x) = sin(x)/2,

Ψε(0, ·) = A0(·)eiS0(·)/ε,
(4.1)

and the potential

V(x) =
sin(x)

1 + cos(x)2

where x ∈ T = R/2πZ, for which caustics appear numerically at time Tc = 0.8. In our simulations, the
semiclassical parameter ε varies from 1 to 2−10.

The numerical solutions (Sε, Aε), resp. Ψε, are compared to corresponding reference solutions (Sεref , A
ε
ref),

resp. Ψε
ref , which, in the absence of analytical solutions, are respectively obtained thanks to our second order

splitting method (1.18) and thanks to a splitting scheme of order 4 for (1.1) (see [36]), with very small time and
space steps. More precisely, to compute (Sεref , A

ε
ref), we have taken Nx = 28 and h = 2−13Tf , and to compute

Ψε
ref , in order to fit with the constraints on the time step and on the space step

h� ε and ∆x� ε,
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Figure 1. Evolution of the density and of the phase.

the space interval [0, 2π] is discretized with Nx = 212 points and the time step is h = 2−13Tf .
The various errors that are represented in the figures below are defined as follows:

errρε(T ) =
‖ρεref(T )− ρε(T )‖L1

‖ρεref(T )‖L1
, errΨε(T ) =

‖Ψε
ref(T )−Ψε(T )‖L2

‖ψεref(T )‖L2
,

and

err(Sε,Aε)(T ) =
(
‖Sεref(T )− Sε(T )‖2L2 + ‖Aεref(T )−Aε(T )‖2L2

‖Sεref(T )‖2L2 + ‖Aεref(T )‖2L2

)1/2

,

where

‖u‖L1 = ∆x
Nx−1∑
k=0

|uk|, ‖u‖L2 =

√√√√∆x
Nx−1∑
k=0

|uk|2,

with ρεref(T ) = |Ψε
ref(T )|2 and ρε(T ) = |Aε(T )|2.

We first study qualitatively the dynamics, in order to guess what is the time of appearance of the caustics.
Figure 1(a) and (b) represent the density |Aε|2 and the phase Sε at times Tf = 0, 0.3, 0.6, 0.8, 1 for ε = 2−4.
The caustics appear around t = 0.8. At time t = 1, oscillations at other scales than those of the phase can be
observed in |Aε|2 whereas Sε ceases to be smooth. These figures are obtained by using our scheme (1.18) with
Nx = 28 and Nt = Tf/h = 29.

Let us now focus on the experiments performed with our first and second-order methods at time Tf = 0.2
before the caustics. We start with the first-order scheme (1.17). Figures 2 and 3 represent the errors on ρε and
(Sε, Aε) w.r.t. the time step h for a fixed Nx = 27. Figures 4 and 5 represent the errors w.r.t. ∆x for fixed
Nt = h/Tf = 213. All these figures illustrate the fact that our scheme is UA with respect to ε, for the quadratic
observables as well as for the whole unknown (Sε, Aε) itself. Figures 2 and 3 show that (1.17) is uniformly of
order 1 in time, whereas Figures 4 and 5 show that the convergence is uniformly spectral in space.

Figures 6–9 illustrate the behavior of our second-order scheme (1.18) at Tf = 0.2: here again, it appears that,
before the caustics, our method is UA with an order 2 in time and with spectral in space accuracy.

Finally, let us explore the behavior of the splitting methods after caustics, by observing the error on the
density ρε. Figures 10 and 11 present the same simulations as Figures 2 and 4, except that the final time is
now Tf = 1, i.e. we illustrate the behaviors of scheme (1.18) after the caustics. In that case, it appears that our
methods are not UA, neither in h, nor in ∆x, with respect to ε. Notice that, although it is not UA any longer,
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Figure 2. Error on the density ρε for the splitting scheme (1.17) of order 1 before the caustics:
dependence on ε and on h.

Figure 3. Error on (Sε, Aε) for the splitting scheme (1.17) of order 1 before the caustics:
dependence on ε and on h.

Figure 4. Error on the density ρε for the splitting scheme (1.17) of order 1 before the caustics:
dependence on ε and on ∆x.
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Figure 5. Error on (Sε, Aε) for the splitting scheme (1.17) of order 1 before the caustics:
dependence on ε and on ∆x.

Figure 6. Error on the density ρε for the splitting scheme (1.18) of order 2 before the caustics:
dependence on ε and on h.

Figure 7. Error on (Sε, Aε) for the splitting scheme (1.18) of order 2 before the caustics:
dependence on ε and on h.
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Figure 8. Error on ρε for the splitting scheme (1.18) of order 2 before the caustics: dependence
on ε and on ∆x.

Figure 9. Error on (Sε, Aε) for the splitting scheme (1.18) of order 2 before the caustics:
dependence on ε and on ∆x.

Figure 10. Error on ρε for the splitting scheme (1.18) of order 2 after the caustics, dependence
on ε and on h.
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Figure 11. Error on ρε for the splitting scheme (1.18) of order 2 after the caustics, dependence
on ε and on ∆x.

our scheme (1.18) still has second-order accuracy in time and spectral accuracy in space (with ε-dependent
constants). Recall that the same scheme written on (1.8) would not be usable in the same situation, since Sε

ceases to be regular for ε > 0, after the formation of caustics.

Appendix A. Proof of Lemma 3.8

A.1. Study of the differentiability of ϕ1.

The proof of this lemma is divided in several steps. Let us fix s > d/2 + 1 and M > 0.

A.1.1. Notations

For any Banach spaces E and F , we denote L (E,F ) the set of continuous linear maps between E and F
endowed with the norm

‖l‖L (E,F ) = sup{‖l(x)‖F , x ∈ E, ‖x‖E ≤ 1}

where ‖ · ‖E and ‖ · ‖F are the norms of E and F .
Let us define for u0 = (S0, A0)

Θ1
h · u0 =

(
S̃1
h

Ã1
h

)
the solution of

∂hΘ1
h = DN1(ϕ1

h(u)) ·Θ1
h

Θ1
0 · u0 = u0.

We denote Γ 1
h = ϕ1

h(u+ u0)− ϕ1
h(u)−Θ1

h · u0,

ϕ1
h(u) =

(
S1
h

A1
h

)
, ϕ1

h(u+ u0) =
(
S1
h

A1
h

)
,

v1
h = ∇S1

h, v1
h = ∇S1

h, ṽ1
h = ∇S̃1

h, ω1
h = S1

h − S1
h − S̃1

h and B1
h = A1

h −A1
h − Ã1

h.
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A.1.2. Definition of h8.

Lemma 3.5 ensures that for any u ∈ Bs(2M), we have for h ∈ [0, h5(2M)] that

‖ϕ1
h(u)‖s ≤ 4M. (A.1)

We denote h8(M) = h5(2M).
Let s′ ≥ s. If moreover, u ∈ Σs′ , then we have

‖ϕ1
h(u)‖s′ ≤ exp (C5(2M)h) ‖u‖s′ . (A.2)

A.1.3. Continuity of ϕ1.

Let s′ ≥ s, M ′ > 0 and u1, u2 ∈ Bs(M) ∩Bs′+1(M ′).
By (A.1) and (A.2), we obtain that ϕ1

h(u1) and ϕ1
h(u2) are well-defined on [0, h8] and satisfy

‖ϕ1
h(u1)‖s′+1 + ‖ϕ1

h(u2)‖s′+1 ≤ 2 exp (C5(2M)h8)M ′

for all h ∈ [0, h8]. By Lemma 3.4 and an integration by parts, we get that there exists C = C(M,M ′) > 0 such
that for all h ∈ [0, h8]

‖ϕ1
h(u1)− ϕ1

h(u2)‖s′ ≤ C‖u1 − u2‖s′+1. (A.3)

Moreover, for fixed u ∈ Bs(M)∩Bs′+1(M ′), Lemma 3.5 ensures that h ∈ [0, h8] 7→ ϕ1
h(u) ∈ Σs′ is continuous

so that
(h, u) ∈ [0, h8]×Σs′+1 7→ ϕ1

h(u) ∈ Σs′ (A.4)

is also continuous.

A.1.4. Well-posedness, continuity and estimates on the norm for Θ1
h.

Let s2 ≥ s, M2 > 0, u ∈ Bs(M)∩Bs2+1(M2) and u0 ∈ Σs2 . We recall that the function Θ1
h · u0 =: (S̃1

h, Ã
1
h)T

satisfies

∂hS̃
1
h +∇S1

h · ∇S̃1
h = 0

∂hÃ
1
h +∇S1

h · ∇Ã1
h +

Ã1
h

2
∆S1

h = −∇S̃1
h · ∇A1

h −
A1
h

2
∆S̃1

h +
i

2
∆Ã1

h

and Θ1
0 · u0 = u0. The existence and uniqueness of S̃1

h follows for instance from the method of characteristics.
We have

∂hṽ
1
h +

(
v1
h · ∇

)
ṽ1
h = −

(
ṽ1
h · ∇

)
v1
h

and Lemma 3.2 with R = −
(
ṽ1
h · ∇

)
v1
h gives us that

∂h‖ṽ1
h‖2Hs2+1 ≤ C‖ṽ1

h‖2Hs2+1‖S1
h‖Hs2+3 ≤ C‖ṽ1

h‖2Hs2+1‖ϕ1
h(u)‖s2+1.

We also have
∂h‖S̃1

h‖2L2 ≤ C‖S̃1
h‖L2‖S̃1

h‖H1‖S1
h‖W 1,∞

so that
∂h‖S̃1

h‖2Hs2+2 ≤ C‖S̃1
h‖2Hs2+2‖ϕ1

h(u)‖s2+1.

The existence and uniqueness of Ã1
h follows from the fact that w̃1

h = Ã1
h exp

(
iS1
h

)
satisfies

i∂hw̃
1
h = −∆

2
w̃1
h −

(
∇S̃1

h · ∇A1
h +

A1
h

2
∆S̃1

h

)
exp

(
iS1
h

)
.
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Lemma 3.3 with R = −∇S̃1
h · ∇A1

h −
A1

h

2 ∆S̃1
h + i

2∆Ã1
h ensures that

∂t‖Ã1
h‖2Hs2 ≤ C‖Θ1

h · u0‖2s2‖ϕ
1
h(u)‖s2+1

so that
∂t‖Θ1

h · u0‖2s2 ≤ C‖Θ
1
h · u0‖2s2‖ϕ

1
h(u)‖s2+1.

By (A.2) and Gronwall’s Lemma, there is C8 = C8(M,M2) > 0 such that for any h ∈ [0, h8],

‖Θ1
h · u0‖s2 ≤ exp (C8h) ‖u0‖s2 . (A.5)

Using directly the integrations by parts of the proof of Lemmas 3.2 and 3.3, we obtain actually that

|
〈
u0, DN1(ϕ1

h(u)) · u0

〉
s2
| ≤ C8‖u0‖2s2 ,

for all u0 ∈ Σs2 .

A.1.5. Differentiability of ϕ1.

By Lemma 3.5 and equations (1.13), the application

h ∈ [0, h8] 7→ ϕ1
h(u) ∈ Σs1

is differentiable in h for any u ∈ Bs(M) ∩Σs1+2.
Let us prove that ϕ1

h is differentiable in u and that Θ1
h is its derivative.

Let M1 > 0 and u, u0 ∈ Bs(M)∩Bs1+2(M1). We have that u, u+ u0 ∈ Bs(2M)∩Bs1+2(2M1). By (A.1) and
(A.2), we obtain that for all h ∈ [0, h8],

‖ϕ1
h(u)‖s1+2 + ‖ϕ1

h(u+ u0)‖s1+2 ≤ 4 exp (C5(2M)h)M1.

We have

∂h∇ω1
h = −(v1

h + ṽ1
h) · ∇(∇ω1

h)−
(
∇ω1

h · ∇
)
v1
h −

(
ṽ1
h · ∇

)
ṽ1
h.

By Lemma 3.2, we obtain taking v1 = v1
h + ṽ1

h and

R = −
(
∇ω1

h · ∇
)
v1
h −

(
ṽ1
h · ∇

)
ṽ1
h

that

∂t‖∇ω1
h‖2Hs1+1 ≤ C‖∇ω1

h‖2Hs1+1

(
‖v1
h‖Hs1+1 + ‖ṽ1

h‖Hs1+1 + ‖v1
h‖Hs1+2

)
+ C‖∇ω1

h‖Hs1+1‖ṽ1
h‖2Hs1+2 .

Moreover, we have

∂hω
1
h = −1

2
(
∇ω1

h · (ṽ1
h + v1

h) + v1
h · ∇ω1

h + |ṽ1
h|2
)

so that

∂h‖ω1
h‖2Hs1+2 ≤ ‖Θ1

h · u0‖4s1+1

+ C‖ω1
h‖2Hs1+2

(
1 + ‖ϕ1

h(u)‖s1 + ‖ϕ1
h(u+ u0)‖s1+1 + ‖Θ1

h · u0‖s1
)
.
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We also have

∂hB
1
h = −∇S1

h · ∇B1
h −B1

h

∆S1
h

2
−∇ω1

h · ∇(A1
h + Ã1

h)− (A1
h + Ã1

h)
∆ω1

h

2

+ i
∆B1

h

2
−∇S̃1

h · ∇Ã1
h − Ã1

h

∆S̃1
h

2

and Lemma 3.3 ensures taking

R = −∇ω1
h · ∇(A1

h + Ã1
h)− (A1

h + Ã1
h)

∆ω1
h

2
+ i

∆B1
h

2
−∇S̃1

h · ∇Ã1
h − Ã1

h

∆S̃1
h

2

that,

∂t‖B1
h‖2Hs1 ≤ ‖Θ1

h · u0‖4s1+1

+ C‖Γ 1
h‖2s1

(
1 + ‖ϕ1

h(u+ u0)‖s1 + ‖ϕ1
h(u)‖s1+1 + ‖Θ1

h · u0‖s1+1

)
and

∂h‖Γ 1
h‖2s1 ≤ ‖Θ

1
h · u0‖4s1+1

+ C‖Γ 1
h‖2s1

(
1 + ‖ϕ1

h(u+ u0)‖s1+1 + ‖ϕ1
h(u)‖s1+1 + ‖Θ1

h · u0‖s1+1

)
.

By (A.5) with s2 = s1 + 1 and Gronwall’s Lemma, we get that there exists C = C(M,M1) > 0 such that for
all h ∈ [h, h8],

‖Γ 1
h‖s1 ≤ C‖u0‖2s1+1 ≤ C‖u0‖2s1+2

We proved that for any h ∈ [0, h8]
ϕ1
h : Bs(M) ∩Σs1+2 → Σs1

is differentiable in Bs(M) ∩Σs1+2.

A.1.6. Proof of point (3.8).

Let us prove that the application

(h, u) ∈ [0, h8]× (Bs(M) ∩Σs1+4) 7→ ϕ1
h(u) ∈ Σs1

is a C1-function.
Using equations (1.13) and (A.4), we get that

(h, u) ∈ [0, h8]× (Bs(M) ∩Σs1+3) 7→ ϕ1
h(u) ∈ Σs1+2

is continuous so that the partial derivative

(h, u) ∈ [0, h8]× (Bs(M) ∩Σs1+3) 7→ ∂hϕ
1
h(u) = N1ϕ

1
h(u) ∈ Σs1

is also continuous. Let us study the continuity of

(h, u) 7→ ∂2ϕ
1
h(u).

Let u1, u2 ∈ Bs(M)∩Bs1+2(M1). We denote ϕ1
h(ui) = (S1,i

h , A1,i
h ) and ∂2ϕ

1
h(ui) ·u0 = (S̃1,i

h , Ã1,i
h ) for i = 1, 2.

We have

∂h

(
S̃1,1
h − S̃

1,2
h

)
+∇S1,1

h · ∇
(
S̃1,1
h − S̃

1,2
h

)
= −∇

(
S1,1
h − S

1,2
h

)
· ∇S̃1,2

h
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so that

∂h

(
∇S̃1,1

h −∇S̃
1,2
h

)
+
(
∇S1,1

h · ∇
)(
∇S̃1,1

h −∇S̃
1,2
h

)
= −

((
∇S̃1,1

h −∇S̃
1,2
h

)
· ∇
)(
∇S1,1

h + S̃1,2
h

)
−
(
∇S̃1,2

h · ∇
)(
∇S1,1

h −∇S
1,2
h

)
.

By Lemma 3.2 with v1 = ∇S1,1
h and

R = −
((
∇S̃1,1

h −∇S̃
1,2
h

)
· ∇
)(
∇S1,1

h + S̃1,2
h

)
−
(
∇S̃1,2

h · ∇
)(
∇S1,1

h −∇S
1,2
h

)
,

which satisfies

‖R‖Hs1+1 ≤ C‖S̃1,1
h − S̃

1,2
h ‖Hs1+2

(
‖S1,1

h ‖Hs1+3 + ‖S̃1,2
h ‖Hs1+3

)
+ C‖S1,1

h − S
1,2
h ‖Hs1+3‖S̃1,2

h ‖Hs1+2

we obtain that

∂t‖∇S̃1,1
h −∇S̃

1,2
h ‖

2
Hs1+1 ≤ C‖∇S̃1,1

h −∇S̃
1,2
h ‖

2
Hs1+1

(
‖S1,1

h ‖Hs1+3 + ‖S̃1,2
h ‖Hs1+3

)
+ C‖∇S̃1,1

h −∇S̃
1,2
h ‖Hs1+1‖S1,1

h − S
1,2
h ‖Hs1+3‖S̃1,2

h ‖Hs1+2 .

Moreover, we have

∂t‖S̃1,1
h − S̃

1,2
h ‖

2
L2

≤ C‖S̃1,1
h − S̃

1,2
h ‖L2

(
‖S̃1,1

h − S̃
1,2
h ‖H1‖S1,1

h ‖W 1,∞ + ‖S1,1
h − S

1,2
h ‖H1‖S̃1,2

h ‖W 1,∞

)
so that

∂t‖S̃1,1
h − S̃

1,2
h ‖

2
Hs1+2 ≤ C‖S̃1,1

h − S̃
1,2
h ‖

2
Hs1+2

(
‖S1,1

h ‖Hs1+3 + ‖S̃1,2
h ‖Hs1+3

)
+ C‖S̃1,1

h − S̃
1,2
h ‖Hs1+2‖S1,1

h − S
1,2
h ‖Hs1+3‖S̃1,2

h ‖Hs1+2 .

We also have

∂h

(
Ã1,1
h − Ã

1,2
h

)
+∇S1,1

h · ∇
(
Ã1,1
h − Ã

1,2
h

)
+
(
Ã1,1
h − Ã

1,2
h

) ∆S1,1
h

2

= −∇
(
S1,1
h − S

1,2
h

)
· ∇Ã1,2

h −
Ã1,2
h

2
∆
(
S1,1
h − S

1,2
h

)
−∇

(
S̃1,1
h − S̃

1,2
h

)
· ∇A1,1

h −
A1,1
h

2
∆
(
S̃1,1
h − S̃

1,2
h

)
−∇S̃1,2

h · ∇
(
A1,1
h −A

1,2
h

)
−

(
A1,1
h −A

1,2
h

)
2

∆S̃1,2
h +

i

2
∆
(
Ã1,1
h − Ã

1,2
h

)
.
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Using Lemma 3.3 with v1 = ∇S1,1
h and

R = −∇
(
S1,1
h − S

1,2
h

)
· ∇Ã1,2

h −
Ã1,2
h

2
∆
(
S1,1
h − S

1,2
h

)
−∇

(
S̃1,1
h − S̃

1,2
h

)
· ∇A1,1

h −
A1,1
h

2
∆
(
S̃1,1
h − S̃

1,2
h

)
−∇S̃1,2

h · ∇
(
A1,1
h −A

1,2
h

)
−

(
A1,1
h −A

1,2
h

)
2

∆S̃1,2
h +

i

2
∆
(
Ã1,1
h − Ã

1,2
h

)
.

which satisfies

Re
〈

Λs1
(
Ã1,1
h − Ã

1,2
h

)
,Λs1R

〉
≤ C‖Ã1,1

h − Ã
1,2
h ‖Hs1‖S1,1

h − S
1,2
h ‖Hs1+2‖Ã1,2

h ‖Hs1+1

+ C‖Ã1,1
h − Ã

1,2
h ‖Hs1 ‖S̃1,1

h − S̃
1,2
h ‖Hs1+2‖A1,1

h ‖Hs1+1

+ C‖Ã1,1
h − Ã

1,2
h ‖Hs1 ‖A1,1

h −A
1,2
h ‖Hs1+1‖S̃1,2

h ‖Hs1+2

we obtain that

∂h‖
(
∂2ϕ

1
h(u1)− ∂2ϕ

1
h(u2)

)
· u0‖2s1

≤ C‖
(
∂2ϕ

1
h(u1)− ∂2ϕ

1
h(u2)

)
· u0‖2s1

(
‖ϕ1

h(u1)‖s1+1 + ‖∂2ϕ
1
h(u2) · u0‖s1+1

)
+ C‖

(
∂2ϕ

1
h(u1)− ∂2ϕ

1
h(u2)

)
· u0‖s1‖ϕ1

h(u1)− ϕ1
h(u2)‖s1+1‖∂2ϕ

1
h(u2) · u0‖s1+1.

Let us recall that u1, u2 ∈ Bs(M) ∩ Bs1+2(M1). By (A.2), (A.3) and (A.5) with s2 = s1 and Gronwall’s
Lemma, we get that for all h ∈ [0, h8],

u ∈ Bs(M) ∩Σs1+2 7→ ∂2ϕ
1
h(u) ∈ L (Σs1+2, Σs1)

is continuous. Hence, we obtain that

(h, u) ∈ [0, h8]× (Bs(M) ∩Σs1+3) 7→ (∂2ϕ
1
h(u), ∂hϕ1

h(u)) ∈ L (Σs1+3, Σs1)×Σs1

is continuous and the result follows.

A.2. Study of the differentiability of ϕ2 and ϕ3.

Let u, u0 ∈ Σs. Since N2 is linear, we have that

Θ2
h · u0 = ϕ2

h(u0),

ϕ2
h is differentiable on Σs and for any h ≥ 0,

‖∂2ϕ
2
h(u) · u0‖s = ‖ϕ2

h(u0)‖s = ‖u0‖s,
|
〈
u0, DN2(ϕ2

h(u)) · u0

〉
s
| ≤ C‖u0‖2s.

and the result follows. We easily prove that ϕ3
i is differentiable, that for any h ≥ 0, Θ3

h · u0 = u0, that

‖Θ3
h · u0‖s = ‖Θ3

0 · u0‖s = ‖u0‖s.

and
|
〈
χ,
(
DN3(ϕ3

h(u)) · χ
)〉
s
| ≤ C‖χ‖2s,

for all χ ∈ Σs.
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