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Abstract

The analysis of time-varying delay systems has attracted many researchers over the last two decades. One of the major
contribution within this field is the recent reciprocally convex combination lemma. The relevance of this lemma arises from
the derivation of stability conditions using Jensen’s inequality. The main interest of this lemma is the reduction of the number
of decision variables while keeping the same level of conservatism. In this paper, we provide an alternative vision of this
inequality through a new proof issued from the recent development on integral inequalities. The benefit of this proof relies on
the derivation of an exact expression of the conservatism. A discussion is finally proposed at the end of the paper to point out

the possible extensions of this approach.
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1 Introduction

Time-delay systems have attracted many researchers
over the past two decades. This interest arised notably
from the perpectives of networked control systems
where controllers and plants are connected through a
network. This network eventually induces additional
dynamics such as communications delays. Among the
possible methods to tackle the problem of stability
analysis, contributions in the time-domain framework
using the Lyapunov-Krasovskii theorem have been suc-
cessfully studied. Indeed this framework allows deriving
stability conditions expressed in terms of linear matrix
inequalities (LMI), that can be easily computed using
semi-definite programming algorithms. Even if this di-
rection of research is about 20 years-old, it still attracts
many researchers, whose objectives are to reduce the
conservatism and the number of decision variables of
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the stability conditions.

On the one hand, a possible way to reduce the conser-
vatism relies on the consideration of more and more in-
volved functionals including multiple integral quadratic
terms at the price of an increase of the number of de-
cision variables. On the other hand, more attention
has been paid to the complexity of stability conditions,
which depends on both the number of decision variables
and the size of the LMI to resolve. Indeed [1,4] have
provided discussions on the efficiency of introducing
slack variables (or free weighting matrices). Following
this discussion, the trend became the design of efficient
inequalities able to reduce the conservatism and/or
the computational complexity. One of the most popu-
lar inequalities is the reciprocally convex combination
lemma, whose goal is to provide an efficient lower bound
of reciprocally convex terms generally issued from the
application of the Jensen’s inequality. Its benefit is a re-
duction of the computational complexity with the same
level of conservatism as the classical bounding methods.
In this paper, we present an alternative proof of this
inequality, which aims at delivering a different inter-
pretation of this already well-known inequality. This
new proof reveals that the reciprocally convex combi-
nation lemma can be seen as a discretized version of
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the celebrated Jensen’s inequality, in the sense that an
intermediate value is included. The benefits of the pro-
pose result are first to derive an exact expression of the
resulting inequality and, second, potential directions for
future researches.

Notations: Throughout the paper R™ denotes the n-
dimensional Euclidean space and R™*™ is the set of all
n X m real matrices. The notation P > 0, for P €
R™*" means that P is symmetric positive definite. For
any matrlx A, B,C of a;})roprlate dimension, the ma-
trix [4 Z] stands for [ g C]The matrix I represents
the identity matrix of approprlate dimension. The no-
tation 0, ., stands for the matrix in R™*™ whose en-
tries are zero and, when no confusion is possible, the
subscript will be omitted. For any h > 0 and any func-
tion z : [—h, +00) — R™, the notation z;(6) stands for
xz(t+6), for all t > 0 and all § € [—h, 0]. Throughout
the paper, h; < hs denotes two positive scalars and we
use the notation hoy = hy — hy.

2 Problem formulation

Providing efficient stability conditions for time-varying
or fast-varying delay systems is related to the accuracy
of the matrix or integral inequalities, which are consid-
ered. Among then let us recall one of the most recent
and popular inequality dedicated to the analysis of time-
varying or fast-varying delay systems, given by

V(i) = has / /w i(s)dsdd. (1)

Differentiating this functional leads to

—hy
&7 (s)Ri(s)ds.

(2)
The notable aspects of such a class of functionals rely
on the negative integral quadratic term. The objective is
to transform this integral into a quadratic term so that
stability conditions expressed in terms of LMI can be
derived. In the context of time-varying or fast-varying
delay systems, the objective is also to introduce an in-
termediate value x(t — h), where h is any value within
the interval [—hg, —hq]. One of most popular method is
based on the application of the Jensen inequality [2] and
the reciprocally convex combination lemma from [6]. In
this note, we aim at giving an alternative interpretation
of the combination of these two lemmas.

V(i) = h3,aT (R (t) — hon /

—ho

3 Integral and matrix inequalities
3.1 Jensen’s inequality

In this paragraph, we recall the Jensen’s inequality. In
addition, a measure of the conservatism is considered

based on the proof of the Bessel-Legendre inequality
given in [10].

Lemma 1l Let R=RT ¢ R"*" and x : [~hy, —hi] —
R™ be a continuously differentiable function. The follow-
ing equality holds

h21f l )Rl’( )dS = Wy Rwo +h2190,

where wo = x(—h1) — x(—ha), 0o = :1 €l (s)Reo(s)ds
and €y(s) = x(s) — h%lwo. Moreover, if R > 0, then

0o > 0 and the Jensen inequality is retrieved.

Proof : The proof of this lemma is obtained by devel-
oping the expression of 6. &

In this lemma, 6y represents the conservatism of Jensen’s
inequality and depends on the vector €y. In light of [10],
this vector can be seen as the approximation of the func-

tion & by a constant term wy = hl z(s)ds. The frame-

work developed in [10] guarantees that wo is the best con-
stant vector function that approximates T in the sense

of the inner product (f,g) f_ g(s)ds, where

f and g are in La([—ha, —h 1] — R")‘
3.2 Ezxtension to deal with time-varying delays systems

In the situation of time-varying or fast-varying delay
systems, the problem is often to derive a lower bound
of (2), which depends on an intermediate value z(—h)
where h is in [h1, ho]. Therefore, the previous lemma
cannot be applied directly. A preliminary step consists
in splitting the integral into two parts and in applying
the inequality to each integral to get:

J2L R0
hoy [T &7 (s)Ri(s)ds > QF ; g Qo,
ha—h

3)
where Qg = [iE:Z;)—;Q(E(—_hB ] . In the previous inequality,
the lower bound of the integral, depends on h in a re-
ciprocally convex manner as defined in [6]. In order to
derive a delay-independant lower bound, an interesting
result was provided in [6]. A corollary of the more gen-

eral result presented in Theorem 1 of [6] is stated below.

Corollary 1 Let R = RT € R™ ™ be positive definite
matrix. If there exists a matrix X € R"*"™ such that
[ X] =0, then the following inequality holds

R 0 R X

* R

1
3 «
mlnae (0, 1)

l—a



Proof : Following [6], the proof consists in noting that

R O
x ——R

11—«

R X
* R

Q=

eg x
* R

l—o

(4)

loap _x
To conclude, we need to show [ °, o p
1—a

are two methods to prove this inequality.

} > 0. There

i) The first one presented in [6] consists in introducing

B =+/(1 —«)/al and noting that, if [# X] > 0, then

:lﬂ 0 5 0 ]}0'
0 —p~1 -

0 —p~!
The last term of the previous equation is positive and
the result holds.

e x
x R

e’

R X
* R

ii) The positivity of the last matrix of (4) is equivalent,
by Schur Complement, to %(R - XTR1X) = 0,
whose positivity is ensured by the constraints « € (0,1)
and R — XTR™'X which is equivalent, again by the
Schur Complement to [ £ £] > 0.

Thanks to Corollary 1 and defining o = (h — hy)/ho1,
provided that there exists a matrix X € R™*" such that
[ X] = 0, the following inequality, so-called Jensen-
Park’s inequality, is derived from (3):

R X

hoy [~ &7 (s)Ri(s)ds > OF
2 * R

Q. (5)

4 Discretized Jensen’s inequality
4.1 Alternative proof of Jensen-Park’s inequality (5)

In this section, we aim at providing an extension of
Lemma 1, which includes an intermediate value, namely
x(—h), where h € [h1, ha]. The main idea relies on a
slight modification of the reminder 6y of Jensen’s in-
equality and more particularly on the approximation er-
ror vector 3. We propose to replace & by the following
augmented and discontinuous vector Z defined by

H}S)] if sel—h,—hi],
I(s) = 0 (6)
1 S —hz, —h).
Lc(s)] foeelhe

This leads to the following lemma.

Lemma 2 LetR=RT X e R"™" andx : [~hg, —h1] —
R™ be a piecewise differentiable function. The equality

—h R X
h21/ x'T(s)R:'c(s)ds = Qg; l s Qo + h2100,

—ha *

holds, where Q is defined in (3) and

_hl
/ W (s)
—hQ

(f(S) — %2190,

O

* R

no(s)

and where h is any scalar in [hy, hs] and T is given in
(6). Moreover, if [® £] = 0, then inequality (5) holds for
any h € [hy, ha).

Proof : Noting that f::; Z(s) = Q, Lemma 1 yields
e RX]|. 1 R X

Oy = / 7 (s) z(s)ds — —QF Q.
—ha * R ha1 *

Spliting the first integral over the two intervals [—h, —h;]
and [—hg, —h] yields

T
—h1 | g(s R X z(s
o [ [ 6],
—h 0 * R 0
T
10 R X 0
+/ ds
—hy | Z(8) x R| | x(s)
R X
1 o7
__1 o
hai 7701 R

or, equivalently

R X

*

—h1
Q) = / 7 (s)Ri(s)ds — LQOT Qo,

—ha ha1

which concludes the proof on the first statement of the
lemma. Moreover, the inequalty [Z %] > 0 implies that
Oy is positive and the second statement holds. &

The inequality derived through Lemma 2 is not a new
inequality since it is exactly the same inequality as in (5).
The novelty of Lemma 2 relies on an exact expression of
its conservatism, Q.

4.2 Analysis of the conservatism

In this section, we want to take advantages of the expres-
sion of the conservatism of the Jensen-Park’s inequality,



O given in (8) to potentially derive a more accurate
inequality. A first attempt would be to apply Jensen’s
inequality over the whole interval to O, i.e.

—h1 —hy
h21©¢ > (/_h n{(s)ds) (/_} no(s)ds> .

However the computation of the integral terms leads to

—ha —ha . QO
/ no(s)ds = / (a:(s) — ) ds=0,
—ha —ho ho1

which implies ©y > 0, which is already captured by the
matrix inequality [ ] > 0. Then this first attempt
does not bring valuable information. A second attempt
consists in splitting the integral into two parts, corre-
sponding to the intervals [—ho, —h] and [—h, —h4], be-
fore applying Jensen’s inequality. Following this proce-
dure the following lower bound of © is obtained.

| (5 m9as)

R X
* R

h21©¢ > hh_ith( ::1 15 (s)ds )

R X
* R

gt (S0 i (s)ds)

Simple computations show that
i M (s) Qo
s)ds = —— | ds
/—h 7o(#) /_h <l 0 ha1

% ]
— 21 QO
0 h=hi 7

ha1

and, similarly, we have

-h bamhp 0
s)ds = — | I= Qo.
/_h2 ols) l 0o -n 2’1’1[1 ’

h

Reinjecting these expressions into the lower bound of ¢
leads to

(ha—h)? _ (ha—h)(h— hl)X
hot1© Z QT (ha—h)(h—h1) (hea—h)(h—h1) Q )
210 0 N (h— h1)2 R 0

(h2—h)(h—h1)

or, equivalently

hR o —X

Q. 9
iy gy | 0 9)

h21©9 > Q l

The resulting expression of the lower bound of O coin-
cides with the one obtained in the original proof of Park’s

(f::z 770(3)015) :

inequality in (4). Indeed it represents the conservatism
of the application of Jensen’s inequality and the recipro-
cally convex lemma [6]. This lemma 2 provides another
intepretation Jensen-Park’s inequality, corresponding to
a discretized Jensen’s inequality.

4.8 A particular inequality

Based on inequalities (5) or (7), a particular case can be
derived by selecting X = —R. This leads to the following
corollary

Corollary 2 Let R = R” be a positive definite matriz

inR™™ and x : [—ha, —h1] = R™ be a piecewise differ-
entiable function. The inequality

—hy
hgl/ @’
—ho
holds for h in [hy, ha] where Qy = x(—h1) — 22(—=h) +
Jf(—hg).

(s)Ri(s)ds > QT RO,y (10)

Proof : Selecting X = —R in Lemma 2 implies
[f’RR] = [_II] R [_II]T > 0. The proof is concluded
by noting that QF [f *RR] Qo = QT RO;. &

The benefits of this particular inequality are first that
the number of decision variables is reduced by n? since
no matrix X is required and, second, the size of the LMI
is also reduced by 2n x 2n since the contraint [ }f ’RR] >0
is already captured by the condition R > 0. Moreover it
was shown in [8], that the same level of conservatism as
in [6] was obtained for fast-varying delay systems.

5 Conclusion and perspectives

In this paper, we have provided an alternative proof of
an integral inequality that is usually derived from the ap-
plication of the Jensen’s inequality and the reciprocally
convex combination lemma. This proof shows that this
integral inequality can be seen as a discretized Jensen’s
inequality. The benefits of this approach are the deriva-
tion of an exact expression of the conservatism of this
inequality and, potentially, a method to extend this class
of integral inequalities. Therefore, it seems relevant to
look for discretized version of these recent inequalities
to obtain less conservative inequalities.
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