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Abstract

This paper deals with the stability analysis of linear systems subject to fast-varying delays. The main result of this paper is the
derivation of a delay-dependent reciprocally convex lemma allowing a notable reduction of the conservatism of the resulting
stability conditions at the reasonable price of additional decision variables. Several examples are studied to show the potential
of the proposed method.
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1 Introduction

This paper aims at providing less conservatism and
computationally efficient stability conditions for linear
systems subject to fast-varying delays. This topic of
research has attracted many researchers over the past
decades (see for instance [2]). The main difficulties for
the study of such a class of systems rely on two tech-
nical steps that are the derivation of efficient integral
and matrix inequalities. Indeed, the differentiation of
usual candidates for being Lyapunov-Krasovskii func-
tionals leads to integral quadratic terms that cannot be
included straightforwardly in a linear matrix inequality
(LMI) setup. Including these terms requires the use of
integral inequalities such as Jensen [3], Wirtinger-based
[7], auxiliary-based [6] or Bessel inequalities [8]. Al-
through these inequalities have shown a great interest
for constant delay systems, their application to time-
or fast-varying delays leads to additional difficulties
related to the non convexity of the resulting terms.
Then matrix inequalities are employed to derive con-
vex conditions. The first method corresponds to the
application of Young’s inequality or Moon’s inequality,
which basically results from the positivity of a square
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positive definite term. It can also be noted that the
recent free-matrix inequality [12] can be interpreted as
the merge of the Wirtinger-based inequality and Moon’s
inequality. Recently, the reciprocally convex lemma was
proposed in [5]. This novelty of this method consists in
merging the non convex terms into a single expression
to derive an accurate convex inequality. It was notably
shown that the conservatism of the reciprocally convex
lemma [5] and the Moon’s inequality are similar when
considering Jensen-based stability criteria, with a lower
computational burden.
In the present paper, the objective is to refine the recip-
rocally convex lemma by introducing delay dependent
terms. The resulting lemma includes the initial recipro-
cally convex lemma as a particular case, and example
show a clear reduction of conservatism with respect to
the literature at a reasonable increase of the computa-
tional cost.

Notations: Throughout the paper Rn denotes the n-
dimensional Euclidean space and Rn×m and Sn are the
set of n×m real matrices and of n×n real symmetric ma-
trices, respectively. For any P ∈ Sn, P � 0 means that P
is symmetric positive definite. For any matrices A,B of
appropriate dimension, the matrix diag(A,B) stands for
[A 0
0 B ]. The matrices In and 0n,m represent the identity

and null matrices of appropriate dimension and, when
no confusion is possible, the subscript will be omitted.
For any h > 0 and any function x : [−h, +∞) → Rn,
the notation xt(θ) stands for x(t+θ), for all t ≥ 0 and all
θ ∈ [−h, 0]. Finally, for given positive scalars h1 ≤ h2,
we use the notation h21 = h2 − h1.

Preprint submitted to Automatica 8 January 2016



2 Problem formulation and preliminaries

Consider a linear time-delay system of the form:{
ẋ(t) = Ax(t) +Adx(t− h(t)), ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h2, 0],
(1)

where x(t) ∈ Rn is the state vector, φ is the initial con-
dition and A, Ad ∈ Rn×n are constant matrices. There
exist positive scalars h1 ≤ h2 such that

h(t) ∈ [h1, h2] , ∀t ≥ 0. (2)

No assumption on ḣ are included. When possible, the
time argument of the delay function h will be omitted.

2.1 Objectives

Providing efficient stability conditions for time-varying
or fast-varying delay systems relies on the accuracy of the
matrix or integral inequalities, which are considered. On
one hand, much attention has been paid recently to in-
tegral inequalities such as Jensen’s [3], Wirtinger-based
[7] or Bessel’s inequalities [8], auxiliary functions [6] or
on free-weighting matrix [12]. In this paper, we will only
concentrate on the Wirtinger-based inequality stated in
the next lemma, noting that the main result of this pa-
per can be adapted to the other integral inequalities.

Lemma 1 Let R � 0 be in Sn and x be a continuously
differentiable function from [−h2, −h1] to Rn. The fol-
lowing equality holds

h21
∫ −h1

−h2
ẋT (s)Rẋ(s)ds = ωT0 Rω

T
0 + 3ωT1 Rω

T
1 ,

where ω0 = x(−h1) − x(−h2), and ω0 = x(−h1) +

x(−h2)− 2/h21
∫ −h1

−h2
x(s)ds.

On a second hand, when considering time varying delays,
the problem often relies on finding lower bound Θm of
the parameter dependent matrix given by[

1
αR 0

0 1
1−αR

]
� Θm.

There are two main methods to find lower bounds Θm.
The first one is based on the Moon’s inequality (see for
instance in the survey paper [11]). The second method is
the so-called reciprocally convex combination lemma de-
veloped in [5]. The conservatism induced by these two in-
equalities are independent. While, in some cases, such as
stability conditions resulting from the application of the
Jensen inequality, the two methods lead to equivalent re-
sults on examples, the reciprocally convex combination

lemma is in general more conservative than Moon’s in-
equality (see for instance [12]). In this paper, we present
an extended version of the reciprocally convex combina-
tion lemma, which reduces notably the conservatism of
the resulting stability conditions.

3 Extended reciprocally convex inequality

This section is devoted to the derivation of a new matrix
inequality which refines the reciprocally convex combi-
nation lemma from [5]. It is presented in the next lemma.

Lemma 2 Let n be a positive integer, andR be a positive
definite matrix in Sn. If there exist X1, X2 in Sn and
Y1, Y2 in Rn×n such that[

R 0

0 R

]
− α

[
X1 Y1

Y T1 0

]
− (1−α)

[
0 Y2

Y T2 X2

]
� 0 (3)

for all α = 0, 1, then the following inequality[
1
αR 0

0 1
1−αR

]
�

[
R 0

0 R

]
+(1−α)

[
X1 Y2

Y T2 0

]
+α

[
0 Y1

Y T1 X2

]
(4)

holds for all α ∈ (0, 1).

Proof : Following [5], the proof consists in noting that

R(α) =

[
R 0

0 R

]
+

[
1−α
α R 0

0 α
1−αR

]
. (5)

The objective is to find a lower bound of the second
term of the right-hand-side of (5). Using a convexity
argument, if (3) holds for α = 0, 1, it also holds for any
α in [0, 1]. Then, pre- and post-multipying inequality

(3) by

[√
1−α
α I 0

0
√

α
1−α I

]
yields, for all α in (0, 1)

[
1−α
α R 0

∗ α
1−αR

]
� α

[
1−α
α X1 Y1

Y T1 0

]
+ (1−α)

[
0 Y2

Y T2
α

1−αX2

]

= (1− α)

[
X1 Y2

Y T2 0

]
+ α

[
0 Y1

Y T1 X2

]
.

(6)
Re-injecting (6) into (5) concludes the proof. ♦

It is worth noting that (3) is affine with respect to α,
therefore is suffices to verify the inequality at the bound-
ary of the interval [0, 1]. The second inequality of the
previous lemma provides a lower bound ofR(α) which is
also affine, and consequently convex in α. Note moreover
that, selecting X1 = X2 = 0, and Y1 = Y2 = Y ∈ Rn×n,
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g0 =
[
A 0 Ad 0 0 0 0

]
, G0 =


A 0 Ad 0 0 0 0

I −I 0 0 0 0 0

0 I 0 −I 0 0 0

 , G1(θ) =


I 0 0 0 0 0 0

0 0 0 0 h1I 0 0

0 0 0 0 0 (θ − h1)I (h2 − θ)I

 ,

G2 =

[
I −I 0 0 0 0 0

I I 0 0 −2I 0 0

]
, G3 =

[
0 I −I 0 0 0 0

0 I I 0 0 −2I 0

]
, G4 =

[
0 0 I −I 0 0 0

0 0 I I 0 0 −2I

]
, Γ =


G2

G3

G4

 .
(7)

inequalities (3) and (4) recover the reciprocally convex
combination lemma from [5]. Therefore, Lemma 2 brings
additional degree of freedom and is potentially less con-
servative then the lemma from [5].

The conditions of Lemma 2 can be straightforwardly
extended to find a lower bound of the matrix

R12(α) =

[
1
αR1 0

0 1
1−αR2

]
,

where R1 and R2 are in Sn and Sm, respectively, where
n and m in N are not necessarily equal.

Remark 1 Lemma 2 involves four matrix variables,
namely, X1, X2, Y1 and Y2. One may reduce the num-
ber of decision variables by including the constraints
X1 = X2 and/or Y1 = Y2.

4 Main result

Based on the previous developments, the following sta-
bility theorem is provided.

Theorem 1 Assume that there exist matrices P in S3n+ ,
S1, S2, R1, R2 in Sn+, X1, X2 in S2n+ ,and two matrices
Y1, Y2 in R2n×2n, such that the conditions[
R̃2 0

0 R̃2

]
−

[
X1 Y1

Y T1 0

]
� 0,

[
R̃2 0

0 R̃2

]
−

[
0 Y2

Y T2 X2

]
� 0,

(8)

Φ(h1) = Φ0(h1)− ΓTΨ(h1)Γ ≺ 0,

Φ(h2) = Φ0(h2)− ΓTΨ(h2)Γ ≺ 0,
(9)

are satisfied, where

Φ0(θ) = GT1 (θ)PG0 +GT0 PG1(θ) + Ŝ

+gT0 (h21R1 + h212R2)g0,

Ŝ = diag(S1,−S1 + S2, 0n,−S2, 03n),

R̃i = diag(Ri, 3Ri), ∀i = 1, 2,

(10)

Ψ(h1) = diag

(
R̃1,

[
R̃2 0

0 R̃2

]
+

[
X1 Y2

Y T2 0

])
,

Ψ(h2) = diag

(
R̃1,

[
R̃2 0

0 R̃2

]
+

[
0 Y1

Y T1 X2

])
,

(11)

and where the matrices g0, Γ and Gi, for i = 0, 1, . . . 4
are given in (7). Then system (1) is asymptotically stable
for all time-varying delay h satisfying (2).

Proof : Consider the same Lyapunov-Krasovskii func-
tional as in [9], given by

V (xt, ẋt) =


x(t)∫ t

t−h1
x(s)ds∫ t−h1

t−h2
x(s)ds


T

P


x(t)∫ t

t−h1
x(s)ds∫ t−h1

t−h2
x(s)ds


+
∫ t
t−h1

xT (s)S1x(s)ds+
∫ t−h1

t−h2
xT (s)S2x(s)ds,

+h1
∫ 0

−h1

∫ t
t+θ

ẋT (s)Rẋ(s)ds

+h12
∫ −h1

−h2

∫ t
t+θ

ẋT (s)Rẋ(s)ds,

(12)
where h12 = h2 − h1. Following exactly the same pro-
cedure as in [9], the differentiation of the functional V
along the trajectories of system (1) leads to

V̇ (xt, ẋt) = ζT (t)Φ0(h)ζ(t)− h1
∫ t
t−h1

ẋT (s)R1ẋ(s)ds

−h12
∫ t−h1

t−h2
ẋT (s)R2ẋ(s)ds,

(13)
with Φ0(h) given in (11) and ζ(t)= [ζT1 (t), ζT2 (t)]T with

ζ1(t)=


x(t)

x(t− h1)

x(t− h)

x(t− h2)

, ζ2(t)=


1
h1

∫ t
t−h1

xT (s)ds

1
h−h1

∫ t−h1

t−h xT (s)ds

1
h2−h

∫ t−h
t−h2

xT (s)ds

 .

Applying Lemma 1 to the two integral terms, after split-
ting the second integral into two parts, leads to

V̇ (xt, ẋt) ≤ ζT (t)
(
Φ0(h)− ΓTΨ(h)Γ

)
ζ(t), (14)
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where Γ is given in (7) and

Ψ(h) = diag

(
R̃1,

[
h12

h−h1
R̃2 0

∗ h12

h2−h R̃2

])
.

Applying Lemma 2 with α = (h − h1)/h12, it yields
that, if there exists a matrix X1, X2 in S2n and Y1, Y2 in
R2n×2n such that conditions (8) hold, then we have

Ψ(h) � h2 − h
h12

Ψ(h1) +
h− h1
h12

Ψ(h2).

Noting that the matrix Φ0(h) is affine in h, so that we
can write Φ0(h) = h2−h

h12
Φ0(h1) + h−h1

h12
Φ0(h2) and the

following inequality holds

V̇ (xt, ẋt) ≤ ζT (t)

(
h2 − h
h12

Φ(h1) +
h− h1
h12

Φ(h2)

)
ζ(t).

Therefore if the two LMIs Φ(h1) ≺ 0 and Φ(h2) ≺ 0 are
satisified, any linear combination of this two matrices is
also definite negative and we can conclude that the sys-
tem is asymptotically stable for all time-varying delay
in the interval [h1 h2]. ♦

It is worth noting that the proof of Theorem 1 is very
similar to the one provided in [9]. The only difference
relies on the use of Lemma 2. The impact in terms of
reduction of the conservatism will be exposed in the ex-
ample section. In light of Remark 1, the following corol-
lary of Theorem 1 are provided to reduce the number of
decision variables.

Corollary 1 Assume that there exist matrices P in S3n+ ,
S1, S2, R1, R2 in Sn+, X in S2n+ ,and Y in R2n×2n, such
that the conditions (8) and (9) hold with X1 = X2 = X
and Y1 = Y2 = Y . Then system (1) is asymptotically
stable for any time-varying delay h satisfying (2).

In the previous corollary, only a symmetric matrix X
and a full rank matrix Y are introduced. It has to be
noticed that the only remaining difference with respect
to the conditions from theorem provided in [9] is the
introduction of the symmetric matrix X. We will show
in the example section, only the sole introduction of this
matrix leads to a notable reduction of the conservatism.

5 Illustrative Examples

Two numerical examples from the literature will illus-
trate the efficiency of the proposed conditions in The-
orems 1 and its corollary. Before entering into the nu-
merical results, we point out in Table 1, the number of
decision variables involved in Theorem 1 and Corollary
1 compared with the ones from existing results from the

Th. No. of variables Th. No. of variables

[5] 3.5n2 + 2.5n [1] 11.5n2 + 3.5n

[6] 21n2 + 6n [9] 10.5n2 + 3.5n

[12] 54.5n2 + 9.5n

Th. 1 18.5n2 + 5.5n Cor. 1 12.5n2 + 4.5n

Table 1
Number of decision variables involved in several conditions
from the litterature and in Theorem 1 and its corollary

h1 0.0 0.4 0.7 1.0 2.0 3.0

[5] 1.86 1.88 1.95 2.06 2.61 3.31

[1] 1.86 1.89 1.98 2.12 2.72 3.45

[6] 2.14 2.19 2.24 2.31 2.80 3.50

[9] 2.11 2.17 2.23 2.31 2.79 3.49

[12] 2.18 2.21 2.25 2.32 2.79 3.49

Th. 1 2.21 2.25 2.28 2.34 2.80 3.49

Cor. 1 2.19 2.24 2.28 2.34 2.80 3.49

Table 2
Example 1: Admissible upper bound of h2 for various h1.

literature. For the two next examples, we expose in Ta-
bles 2 and 3 the maximal upper-bound, h2 of the delay
functions for various values of h1 obtained by solving
by Theorems 1, its corollary and several recent stability
conditions from literature.
There exists a large number of paper dealing with the
stability analysis of such a class of system. Because of
space limitations, we consider only few representative
conditions from the literature. On a first side, conditions
derived using Jensen’s inequality ([1] and [5]), Wirtinger-
based inequality ([9]), auxiliary-based inequality [6] and
the recent free-matrix-based inequality ([12]). On the
other hand, we also discriminate conditions that are
based on Young/Moon inequality [1,12], or on the recip-
rocally convex combination lemma [5,9,6]. A last com-
ment on the contribution presented in [6]. Indeed, the
conditions proposed in [6] is proven to be less conserva-
tive than the Wiritinger-based inequality together with
the reciprocally convex combination lemma. Therefore,
it is expected that the conditions presented in [6] are less
conservative than the one from Theorem 1.

Example 1: Consider the following much-studied lin-
ear time-delay system (1) with

A =

[
−2.0 0.0

0.0 −0.9

]
, A1 =

[
−1.0 0.0

−1.0 −1.0

]
.

The results obtained by solving Theorem 1 and it corol-
lary show a clear reduction of the conservatism. More-
over, the improvements due to the use of Lemma 2 and
its corollary can be seen when comparing the results ob-
tained with [9] and the stability conditions provided in
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h1 0.0 0.3 0.5 0.8 1.0 2.0

[4] 0.77 0.94 1.09 1.34 1.51 2.40

[10] 0.87 1.07 1.21 1.45 1.61 2.47

[5] 1.06 1.24 1.38 1.60 1.75 2.58

[6] 1.19 1.35 1.47 1.67 1.82 2.63

[9] 1.19 1.35 1.47 1.67 1.82 2.63

[12] 1.20 1.35 1.47 1.67 1.82 2.63

Th. 1 1.20 1.35 1.47 1.67 1.82 2.63

Cor. 1 1.20 1.35 1.47 1.67 1.82 2.63

Table 3
Example 2: admissible upper bound of h2 for various h1.

the present paper. Indeed the only difference between
these two papers is the use of the delay-dependent recip-
rocally convex lemma. Moreover, it is worth noting that
Theorem 1 and its corollaries provide less conservative
results, on this example, than other conditions from the
literature except for [6] with h1 = 3. This improvement
of [6] can be explained by the use of the auxiliary func-
tion integral inequality, which is less conservative the the
Wirtinger inequality. It is also worth noting that The-
orem 1 and its corollaries leads in general to the same
results except for small lower bounds h1 = 0 even if the
computational complexities of the stability conditions
are different.

Example 2: We consider now the linear time-delay sys-
tem (1), taken from [5], with

A =

[
0.0 1.0

−1.0 −2.0

]
, A1 =

[
0.0 0.0

−1.0 1.0

]
.

For this example, Theorem 1 and its corollaries deliver
the same results. Hence, we present in Table 3 the max-
imal allowable upper-bound of the delay obtained, for
different values of h1, by application of various condi-
tions from the literature and the ones presented in this
paper. Theorem 1 and Corollary 1 deliver the same re-
sult as in [12] and [6] (except when h1 = 0) but with a
lower number of decision variables as shown in Table 2.
This shows again, the potential of the improved recipro-
cally convex lemma.

6 Conclusions

In this paper, an improved version of the reciprocally
convex lemma is provided. The novelty of this technical
lemma brings a notable reduction of the conservatism of
LMI stability conditions for fast-varying delay systems
with a reasonable additional computational burden.
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