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Constrained control of uncertain, time-varying linear discrete-time systems subject to bounded disturbances

The aim of this paper is twofold. In the first part, robust invariance for ellipsoidal sets with respect to uncertain and/or time-varying linear discrete-time systems with bounded additive disturbances is revisited. We provide an extension of an existing invariance condition. In the second part a novel robust interpolation based control design involving several local unconstrained robust optimal controls is proposed. At each time instant a quadratic programming problem is solved on-line. Proofs of recursive feasibility and input-to-state stability are given.

I. INTRODUCTION

In this paper we consider robust control of uncertain and/or time-varying linear discrete-time systems affected by bounded additive disturbances. Input, state and disturbance constraints are taken into account in the control design. This control problem has been tackled with e.g. invariant set methods [START_REF] Blanchini | Set-theoretic methods in control[END_REF], or model predictive control (MPC) [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF].

In the MPC context, one approach is to formulate a minmax optimization problem [START_REF] Löfberg | Minimax approaches to robust model predictive control[END_REF] which is NP-hard. In [START_REF] Rakovic | Parameterized tube model predictive control[END_REF] tube-MPC is proposed for nominal systems with bounded disturbances. The design is complicated and it is non-trivial to extend it to uncertain and/or time-varying plants.

Here interpolating robust constrained control is considered. On-line interpolation is not a new concept, see e.g [START_REF] Bacic | General interpolation in mpc and its advantages[END_REF] where interpolation between several asymptotically stabilizing feedback controllers is performed by minimizing an upper bound on the infinite horizon objective function. However, these results do not allow for priority among the interpolating control laws.

We provide, firstly, a necessary and sufficient condition for the positive invariance of an ellipsoid with respect to uncertain and/or time-varying systems with bounded additive disturbances. This invariance is an extension of a result in [START_REF] Nazin | Rejection of bounded exogenous disturbances by the method of invariant ellipsoids[END_REF]. Secondly, a robust control method for constrained uncertain and/or time-varying systems subject to bounded disturbances is introduced, based on interpolation between r local unconstrained robust optimal controllers. It has three main features: a) Recursive feasibility and input to state stability (ISS) are guaranteed for all feasible initial conditions. b) At each time instant, the solution of a quadratic programming (QP) problem of dimension (r -1)(n + 1) is required, where n is the state dimension. c) With a block diagonal choice of the † Faculty of Civil and Environmental Engineering, Technion -Israel Institute of Technology, Haifa 32000, Israel {nam, peo}@technion.ac.il ‡ SUPELEC Systems Sciences (E3S) -Automatic Control Department, Gif sur Yvette, France sorin.olaru@supelec.fr † ‡ Department of Engineering Cybernetics, Norwegian University of Science and Technology morten.hovd@itk.ntnu.no cost function matrix, the minimal robust positively invariant set for the performance controller is shown to be an attractor.

The paper is partially based on the conference contribution [START_REF] Nguyen | Robust optimization-based control of constrained linear discrete time systems with bounded disturbances[END_REF] where some further examples are found.

Notation: I and 0 denote the identity and zeros matrices, respectively, of appropriate dimensions. Whenever time is omitted, a variable x stands for x(k) for some k ∈ N.

II. PROBLEM FORMULATION

Consider the following uncertain and/or time-varying linear discrete-time system,

x(k + 1) = A(k)x(k) + B(k)u(k) + Ed(k) (1) 
where

x(k) ∈ R n , u(k) ∈ R m and d(k) ∈ R d are,
respectively, the measured state vector, the control input and the unknown additive disturbance. The matrices

A(k) ∈ R n×n , B(k) ∈ R n×m and E ∈ R n×d . A(k) and B(k) satisfy A(k) = s i=1 α i (k)A i , B(k) = s i=1 α i (k)B i (2) 
where

s i=1 α i (k) = 1, α i (k) ≥ 0 and A i , B i are given.
x(k), u(k) and d(k) are subject to the following polytopic constraints

   x(k) ∈ X, X = {x ∈ R n : |F jx x| ≤ 1}, j = 1, . . . , n x u(k) ∈ U, U = {u ∈ R m : |u j | ≤ u jmax }, j = 1, . . . , m d(k) ∈ D, D = {d ∈ R d : |F jd d| ≤ 1}, j = 1, . . . , n d (3) 
where F jx and F jd are respectively, the j -th row vector of the matrices F x ∈ R nx×n and F d ∈ R n d ×d , u jmax is the j -th component of the vector u max . F x , F d and u max are assumed to be constant with u max > 0 such that the origin is contained in the interior of X, U and D.

A control law u(k) = u(x(k)) for (1) is to be designed such that the closed loop system is ISS w.r.t. d(k) with the constraints (3) satisfied.

III. PRELIMINARIES: ISS STABILITY AND SET

INVARIANCE

Use will be made of K-functions, K ∞ -functions, KL-functions, ISS stability and ISS gain, and ISS Lyapunov functions as defined in [START_REF] Jiang | Input-to-state stability for discrete-time nonlinear systems[END_REF].

Consider [START_REF] Blanchini | Set-theoretic methods in control[END_REF] with controller u(k) = Kx(k),

x(k + 1) = A c (k)x(k) + Ed(k) (4) 
where,

A c (k) = A(k) + B(k)K = s i=1 α i (k)(A i + B i K). ( 5 
)
Theorem 1 [START_REF] Jiang | Input-to-state stability for discrete-time nonlinear systems[END_REF]: The system (4) is input-to-state stable if it admits an ISS-Lyapunov function. Definition 1: (RPI) [START_REF] Blanchini | Set-theoretic methods in control[END_REF] A polyhedral set Ω ⊆ X is a robustly constraint-admissible positively invariant (RPI) set w.r.t. ( 4), (3) iff, ∀x(k) ∈ Ω and ∀d(k) ∈ D, it holds that A c (k)x(k) + Ed(k) ∈ Ω and Kx(k) ∈ U .

Ω ⊆ X is the maximal RPI (MRPI) set for (4) and constraints (3) iff Ω is a RPI set and contains every RPI set. A non-empty MRPI set is unique, see [START_REF] Blanchini | Set-theoretic methods in control[END_REF], where a constructive procedure is given to compute it in polyhedral form,

Ω = {x ∈ R n : F o x ≤ g o }.
Definition 2: (Invariant ellipsoid) An ellipsoid E(P ) = {x ∈ R n : x T P -1 x ≤ 1} is robustly positively invariant for (4) if x(0) ∈ E(P ) implies x(k) ∈ E(P ), ∀k ≥ 1.

IV. ROBUSTNESS ANALYSIS AND CONTROLLER DESIGN FOR INVARIANT ELLIPSOIDS

A. Robustness analysis

Consider (1) with u(k) = Kx(k) yielding the closed loop (4). How to compute K ∈ R m×n will be shown below. Using the vertex representation of D, whereby d(k) ∈ D, one can find the smallest outer ellipsoid

E(P d ) = {d ∈ R d : d T P d d ≤ 1}, that contains D [9]
. Theorem 2 gives a necessary and sufficient condition for invariance of ellipsoids for system (4).

Theorem 2: E(P ) is invariant for (4) iff the P ∈ R n×n satisfies the following LMI condition, for some scalar 0

< τ < 1, ∀i = 1, 2, . . . , s,   (1 -τ )P 0 P (A i + B i K) T * τ P d E T * * P   0, (6) 
In order to prove the result we revisit the technique proposed in [START_REF] Nazin | Rejection of bounded exogenous disturbances by the method of invariant ellipsoids[END_REF].

Proof: Denote V (x) = x T P -1 x. For the invariance property of

E(P ) = {x(k) ∈ R n : V (x(k)) ≤ 1}, it is required that V (x(k + 1)) ≤ 1, ∀x(k) ∈ E(P ), and ∀d(k) ∈ E(P d ), i.e. (A c x + Ed) T P -1 (A c x + Ed) ≤ 1, ∀x, d such that x T P -1 x ≤ 1 and d T P d d ≤ 1, or x d T A T c P -1 A c A T c P -1 E E T P -1 A c E T P -1 E x d ≤ 1 (7) such that x d T P -1 0 0 0 x d ≤ 1, x d T 0 0 0 P d x d ≤ 1 (8) 
Using the S-procedure [START_REF] Polyak | Convexity of quadratic transformations and its use in control and optimization[END_REF] with two quadratic constraints, ( 7), ( 8) is equivalent to,

A T c P -1 A c A T c P -1 E E T P -1 A c E T P -1 E τ 1 P -1 0 0 τ 2 P d (9) 
for some value of

τ 1 > 0, τ 2 > 0, such that τ 1 + τ 2 < 1. It holds that A T c P -1 A c 0 and E T P -1 E 0, since P -1 0.
Clearly, the least restrictive right hand side of ( 9) is obtained by setting τ = τ 2 = 1 -τ 1 . Hence ( 9) is equivalent to the LMI

(1 -τ )P -1 0 0 τ P d - A T c E T P -1 A c E 0 Using the Schur complement, one obtains   (1 -τ )P -1 0 A T c 0 τ P d E T A c E P   0
or equivalently, for some scalar 0 < τ < 1,

  (1 -τ )P 0 P A T c 0 τ P d E T A c P E P   0 (10) 
It follows from ( 5) that the left hand side of ( 10) is linear with respect to α i (k). Hence one should verify (10) at the vertices of α i (k), i.e. when α i (k) = 0 or α i (k) = 1. Therefore the LMI conditions to be satisfied are [START_REF] Nazin | Rejection of bounded exogenous disturbances by the method of invariant ellipsoids[END_REF].

Remark: Theorem 2 extends the LMI condition in [START_REF] Nazin | Rejection of bounded exogenous disturbances by the method of invariant ellipsoids[END_REF], where a similar condition was used to identify the minimal invariant ellipsoids for linear systems. The LMI ( 6) is a necessary and sufficient condition for ellipsoids to be invariant for uncertain and/or time-varying systems. In addition, ( 6) is applicable for generic ellipsoidal invariance, e.g. minimal, maximal, etc.

B. Robust optimal design

There are several conflicting objectives for designing a controller for system (1) with constraints (3). Usually, one would like to have an invariant ellipsoid with a large domain of attraction. It is well known [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] that by using the LMI technique, one can determine the largest invariant ellipsoid E(P ) with respect to the inclusion of some reference direction defined by x p , meaning that the set E(P ) will include the point θx p , where θ is a scaling factor. Indeed, θx p ∈ E(P ) implies that θ 2 x T p P -1 x p ≤ 1 or by using the Schur complement,

1 θx T p θx p P 0 (11) 
Therefore, by using a linear feedback controller u = Kx, an invariant ellipsoid E(P ), that contains the largest extension in a certain direction defined by the reference point x p , can be obtained by solving the following LMI problem,

max P,Y,θ {θ(τ )} (12) 
subject to

• Invariance condition [START_REF] Nazin | Rejection of bounded exogenous disturbances by the method of invariant ellipsoids[END_REF], which can be reformulated to be linear in P and Y . • Reference point inclusion [START_REF] Grant | Cvx: Matlab software for disciplined convex programming[END_REF].

• Constraint satisfaction [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF].

On state:

1

F jx P P F T jx P 0, ∀j = 1, 2, . . . , n x On input: u 2 jmax Y j Y T j P 0, ∀j = 1, 2, . . . , m
where Y = KP ∈ R m×n , K j is the j -th row of K and Y j = K j P is the j -th row of Y . Note that when τ is fixed, the optimization problem ( 12) is an LMI problem, for which there nowadays exist several effective parsers and solvers, e.g. [START_REF] Grant | Cvx: Matlab software for disciplined convex programming[END_REF].

Remark: The reference points x p can be chosen according to the available information on the initial conditions. For example, if some possible initial conditions are known, we can choose a set of reference points, that contains all these initial conditions.

V. INTERPOLATION BASED CONTROL

Using the results in the previous section, a set of robust asymptotically stabilizing controllers u = K t x, t = 1, 2, . . . , r is obtained such that A ct (k) = A(k)+B(k)K t are robustly asymptotically stable and the corresponding MRPI sets Ω t ⊆ X

Ω t = {x ∈ R n : F ot x ≤ g ot }, t = 1, 2, . . . , r
are non-empty. Define Ω as the convex hull of Ω t , t = 1, 2, . . . , r. It follows that Ω ⊆ X, since X is convex and Ω t ⊆ X, ∀t = 1, 2, . . . , r. The first controller in this enumeration will play the role of a performance controller, while the remaining controllers will be used for enlarging the domain of attraction.

A. Cost function determination

We use a similar decomposition of the state vector as the one in [START_REF] Rossiter | Interpolation based computationally efficient predictive control[END_REF]. Any x(k) ∈ Ω can be decomposed as,

x(k) = λ 1 (k) x 1 (k) + r t=2 λ t (k) x t (k) (13) 
where x t (k) ∈ Ω t , ∀t = 1, 2, . . . , r are decomposition variables and will be treated as decision variables, λ t (k) are interpolating coefficients that satisfy r t=1 λ t (k) = 1, λ t (k) ≥ 0, ∀t = 1, 2, . . . , r. Equation (13) can be rewritten as,

x(k) = v 1 (k) + r t=2 v t (k) (14) with v t (k) = λ t (k) x t (k). Hence, v 1 (k) = x(k) - r t=2 v t (k) (15) 
Since x t ∈ Ω t , it follows that v t ∈ λ t Ω t , or in other words,

F ot v t ≤ λ t g ot , t = 1, 2, . . . , r (16) 
Consider the following control law,

u(k) = λ 1 (k)K 1 x 1 (k) + r t=2 λ t (k)K t x t (k) = K 1 v 1 (k) + r t=2 K t v t (k) (17) 
where K t x t (k) is the control law in Ω t , ∀t = 1, 2, . . . , r.

Substituting (15) into (17), one gets

u(k) = K 1 x(k) - r t=2 v t (k) + r t=2 K t v t (k) = K 1 x(k) + r t=2 (K t -K 1 )v t (k) (18) 
Using (18), one obtains,

x(k + 1) = A c1 (k)x(k) + B(k) r t=2 (K t -K 1 )v t (k) + Ed(k) (19) where A c1 (k) = A(k) + B(k)K 1 .
Define v t (k + 1), t = 2, 3, . . . , r as

v t (k + 1) = A ct (k)v t (k) + Ed t (k) (20) 
with

A ct (k) = A(k) + B(k)K t , d t (k) = λ t (k)d(k), ∀t = 2, 3, . . . , r.
Define also the vectors z and w as 19), (20) in a compact matrix form, one obtains

z = x T v T 2 . . . v T r T , w = d T d T 2 . . . d T r T (21) Writing (
z(k + 1) = Φ(k)z(k) + Γw(k) (22) 
where

Φ(k) =      A c1 (k) B(k)(K 2 -K 1 ) . . . B(k)(K r -K 1 ) 0 A c2 (k) . . . 0 . . . . . . . . . . . . 0 0 . . . A cr (k)      , Γ =      E 0 . . . 0 0 E . . . 0 . . . . . . . . . . . . 0 0 . . . E      From (2), it is clear that Φ(k) can be expressed as a convex combination of Φ i , Φ(k) = s i=1 α i (k)Φ i ( 23 
)
where

s i=1 α i (k) = 1, α i (k) ≥ 0 and Φ i is obtained from the vertices A i , B i .
Consider the following quadratic function,

V (z) = z T Pz ( 24 
)
where the matrix P ∈ R rn×rn , P 0 is chosen to satisfy

V (z(k + 1)) -V (z(k)) ≤ ≤ -x(k) T Qx(k) -u(k) T Ru(k) + σw(k) T w(k) (25) with the weighting matrices Q ∈ R n×n , R ∈ R m×m and Q 0, R 0, σ ≥ 0.
Using ( 22), the left hand side of (25) can be written as,

V (z(k + 1)) -V (z(k)) = = (Φ(k)z + Γw) T P(Φ(k)z + Γw) -z T Pz = z T w T Φ T (k) Γ T P Φ(k) Γ z w - -z T w T P 0 0 0 z w ( 
26) and using ( 18), ( 21), the right hand side of (25) becomes,

-x(k) T Qx(k) -u(k) T Ru(k) + σw(k) T w(k) = = z(k) T (-Q 1 -R 1 )z(k) + σw(k) T w(k) = z T w T -Q 1 -R 1 0 0 σI z w (27) 
where

Q1 =      I 0 . . . 0      Q I 0 . . . 0 , R1 =       K T 1 (K2 -K1) T . . . (Kr -K1) T       R K1 (K2 -K1) . . . (Kr -K1)
One obtains, from ( 25), ( 26), ( 27),

Φ T (k) Γ T P Φ(k) Γ - P 0 0 0 -Q 1 -R 1 0 0 σI or equivalently P -Q 1 -R 1 0 0 σI - Φ T (k) Γ T P Φ(k) Γ 0
(28) Using the Schur complement, (28) can be brought to

  P -Q 1 -R 1 0 Φ T (k)P * σI Γ T P * * P   0 (29) 
Using (28), it is clear that (29) is feasible for σ sufficiently large if Φ(k) is asymptotically stable. The left hand side of ( 29) is linear with respect to α i (k) in (23). Hence one should verify (29) at the vertices of α i (k). Therefore the set of LMI conditions to be checked is as,

  P -Q 1 -R 1 0 Φ T i P * σI Γ T P * * P   0 (30) 
It is well known [START_REF] Jiang | Input-to-state stability for discrete-time nonlinear systems[END_REF] that in the sense of the ISS gain having a smaller σ is a desirable property. The smallest value of σ can be found by solving the following LMI optimization problem,

min P,σ {σ} subject to (30) (31) 

B. Interpolation via quadratic programming

Once the matrix P is computed as the solution of (31), it can be used in practice for real time control based on the resolution of a low complexity optimization problem. The resulting control law can be seen as a predictive control type of construction if the function ( 24) is interpreted as an upper bound for a receding horizon cost function.

At each time instant, for a given state x, minimize on-line the quadratic cost function,

V 1 (z, λ t ) = min z,λt {z T Pz + r t=2 λ 2 t } (32) 
subject to

         F ot v t ≤ λ t g ot , ∀t = 1, 2, . . . , r r t=1 v t = x, r t=1 λ t = 1, λ t ≥ 0
and implement as input the control action (18). Denote the optimal solution of the QP problem (32) as v o t (k) and λ o t (k) and define

x o t such that v o t (k) = λ o t x o t , t = 1, 2, . . . , r.
Then the following theorem holds.

Theorem 3: The control law (18), (32) guarantees recursive feasibility and the closed loop system is ISS for all initial states x(0) ∈ Ω.

Recursive feasibility proof: It has to be proved that u(k) ∈ U and x(k + 1) ∈ Ω, ∀x(k) ∈ Ω. Using (13), ( 17), (18) it follows that x(k) and u(k) can be expressed as,

     x(k) = r t=1 λ o t (k) x o t (k), u(k) = K 1 x(k) + r t=2 (K t -K 1 )v o t (k) = r t=1 λ o t (k)K i x o t (k) (33) It thus holds that, u(k) = r t=1 λ o t (k)K i x o t (k) = r t=1 λ o t (k)K t x o t (k) ≤ r t=1 λ o t (k)u max = u max ∈ U and, x(k + 1) = A(k)x(k) + B(k)u(k) + Ed(k) = r t=1 λ t (k){(A(k) + B(k)K t ) x o t (k) + Ed(k)} Since (A(k) + B(k)K t ) x o t (k) + Ed(k) ∈ Ω t ⊆ Ω, it follows that x(k + 1) ∈ Ω.
ISS stability proof: From the feasibility proof, it is clear that if v o t (k) and λ o t (k) is the solution of (32) at time k, then

v t (k + 1) = A ct (k)v o t (k) + Ed t (k)
and λ t (k + 1) = λ o t (k) is a feasible solution of (32) at time k + 1. Solving (32) at time k + 1, one gets

V 1 (z o (k + 1), λ o t (k + 1)) ≤ V 1 (z(k + 1), λ t (k))
and by using inequality (25), it follows that

V 1 (z o (k + 1), λ o t (k + 1)) -V 1 (z o 1 (k), λ o t (k)) ≤ ≤ V 1 (z(k + 1), λ t (k + 1)) -V 1 (z o (k), λ o t (k)) ≤ -x(k) T Qx(k) -u(k) T Ru(k) + σw(k) T w(k)
Hence V 1 (z, λ t ) is an ISS Lyapunov function of (22). It follows that the closed loop system with the control law (18), (32) is ISS.

Remark: Matrix P can be chosen as,

P = S 0 0 S r (34) 
where S ∈ R n×n , S r ∈ R (r-1)n×(r-1)n . In this case, the cost function (32) can be written by 

V 1 (z, λ t ) = x T Sx + s T r S r s r +

VI. EXAMPLE

Consider the following uncertain linear discrete-time system,

x(k + 1) = A(k)x(k) + B(k)u(k) + d(k) (35) 
where

A(k) = α(k)A 1 + (1 -α(k))A 2 , B(k) = α(k)B 1 + (1 -α(k))B 2 A 1 = 1 0.1 0 1 , B 1 = 0 1 , A 2 = 1 0.2 0 1 , B 2 = 0 2 α(k) ∈ [0, 1] is a uncertain parameter. The constraints are: |x| ∞ ≤ 10, |u| ∞ ≤ 1, |d| ∞ ≤ 0.1
Three controllers are chosen as Figures 1(c-d) show the state and input trajectories by our approach (solid blue) and by u(k) = K 3 x(k) (dashed red). Figure 2(a) presents the ISS Lyapunov function. It is worth noticing than, when the state is near to the origin, V 1 (z 1 ) might be increasing at some instants as shown also in Figure 2(a). 

K 1 = [-1.8112 -0.8092], K 2 = [-0.0878 -0.1176], K 3 = [-0.0979 -0.0499] For Q = I and R = 1,

VII. CONCLUSION

The present paper proposes two contributions: first we provide an extension of the robust invariance condition for ellipsoids with respect to uncertain and/or time-varying systems with bounded additive disturbances. Thereafter a novel interpolation scheme is introduced. The interpolation is done between several unconstrained robust controllers. Among them, one controller is used for the performance, while the others are used for enlarging the domain of attraction. The resulting control law guarantees recursive feasibility and ISS stability in the presence of constraints. A numerical example is presented to support the algorithms with illustrative simulations.

  , for any x(k) ∈ Ω 1 , the QP problem (32) has the trivial solution as v o t = 0 and λ o t = 0, ∀t = 2, 3, . . . , r, and thus v o 1 = x and λ o 1 = 1. This choice of P is advantageous if controller K 1 is designed for performance, while the other controllers are used to enlarge the domain of attraction.
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 1 Figure 1(a) shows the sets Ω 1 , Ω 2 and Ω 3 for the gains K 1 , K 2 and K 3 , respectively. Figure 1(b) presents state trajectories for different initial conditions and realizations of α(k) and d(k). For the initial condition x 0 = [9.6145 1.1772] T ,
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 1 Fig. 1. (a-b) Feasible invariant sets and state trajectories. (c-d) State and input trajectories by our approach (solid blue) and by u(k) = K 3 x(k) (dashed red).

  (a) ISS Lyapunov function (b) Accumulated cost (c) α(k) and d(k) (d) λ 2 and λ 3
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 2 Fig. 2. (a-b) ISS Lyapunov function and its non-decreasing effect and the accumulated cost for our approach (solid blue) and for u = K 3 x (dashed red), (c-d) α(k) and d(k) and λ 2 and λ 3 .

  Figures1(c-d) show the state and input trajectories by our approach (solid blue) and by u(k) = K 3 x(k) (dashed red).Figure2(a) presents the ISS Lyapunov function. It is worth noticing than, when the state is near to the origin, V 1 (z 1 ) might be increasing at some instants as shown also in Figure2(a). Figure2(b) shows the accumulated cost J(k), which is calculated as J(0) = 0 andJ(k + 1) = J(k) + x(k) T Qx(k) + u(k) T Ru(k)The realizations of α(k) and d(k) = [d 1 (k) d 2 (k)] T and the interpolating coefficients λ 2 and λ 3 are depicted in 2(c) and 2(d), respectively.