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Introduction

In [START_REF] Brezis | Large solutions for harmonic maps in two dimensions[END_REF], J.-M. Coron and the first author (H. B.) have investigated the existence of multiple S 2 -valued harmonic maps. In the process they were led to introduce a concept of topological degree for maps f ∈ H 1 (S 2 ; S 2 ). Note that such maps need not be continuous and thus the standard degree (defined for continuous maps) is not well-defined. Instead they used Kronecker's formula

deg f = S 2 det (∇ f ) (1.1)
valid for f ∈ C 1 (S 2 ; S 2 ), and a density argument (C 1 (S 2 ; S 2 ) is dense in H 1 (S 2 ; S 2 )) due to R. Schoen and K. Uhlenbeck [START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF], to assert that deg f , defined by (1.1), belongs to Z for every f ∈ H 1 (S 2 ; S 2 ). They also used the technique of "bubble insertion" which allows to modify the degree d 1 of a given (smooth) map f : S 2 → S 2 by changing its values in a small disc B ε (x 0 ). More precisely (see [START_REF] Brezis | Large solutions for harmonic maps in two dimensions[END_REF] and [START_REF] Brezis | Metastable harmonic maps[END_REF]), for any ε > 0 and d 2 ∈ Z one can construct some g ∈ H 1 (S 2 ; S 2 ) such that g = f outside B ε (x 0 ), deg g = d 2 , and

ˆS2 |∇g -∇ f | 2 ≤ 8π |d 2 -d 1 | + o(1) as ε → 0 (1.2)
(in fact [START_REF] Brezis | Large solutions for harmonic maps in two dimensions[END_REF] contains a more refined estimate in the spirit of Lemma 3.4 below). This kind of argument serves as a major source of inspiration for several proofs in this paper. As we are going to see, estimate (1.2) provides a useful upper bound for the Hausdorff distance between homotopy classes in H 1 (S 2 ; S 2 ). Subsequently the first author and L. Nirenberg [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF] (following a suggestion of L. Boutet de Monvel and O. Gabber [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF]Appendix]) developed a concept of topological degree for map in VMO (S N ; S N ) which applies in particular to the (integer or fractional) Sobolev spaces W s,p (S N ; S N ) with s > 0, 1 ≤ p < ∞ and sp ≥ N. (1.3) This degree is stable with respect to strong convergence in BMO and coincides with the usual degree when maps are smooth.

In the remaining cases, i.e., when sp < N, there is no natural notion of degree. Indeed, one may construct a sequence of smooth maps f n : S N → S N such that f n → P (with P ∈ S N a fixed point) in W s,p and deg f n → ∞ [4, Lemma 1.1]. Therefore, in what follows we make the assumption (1.3).

Given any d ∈ Z, consider the classes

E d := { f ∈ W s,p (S N ; S N ); deg f = d}; (1.4)
these classes depend not only on d, but also on s and p, but in order to keep notation simple we do not mention the dependence on s and p. These classes are precisely the connected or path-connected components of W s,p (S N ; S N ). [This was proved in [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF] in the VMO context, but the proof can be adapted to W s,p .] Moreover if N = 1 we have (see Section 2)

E d = f ; f (z) =
e ıϕ(z) z d , with ϕ ∈ W s,p (S 1 ; R) .

(1.5)

Our purpose is to investigate the usual distance and the Hausdorff distance (in W s,p ) between the classes E d . For that matter we introduce the W s,p -distance between two maps f , g ∈ W s,p (S N ; S N ) by

d W s,p ( f , g) := | f -g| W s,p , (1.6) 
where for h ∈ W s,p (S N ; R N+1 ) we let

|h| W s,p := h - S N h W s,p
, and W s,p is any one of the standard norms on W s,p . Let d 1 = d 2 and define the following two quantities:

dist W s,p (E d 1 , E d 2 ) := inf f ∈E d 1 inf g∈E d 2 d W s,p ( f , g) , (1.7) 
and

Dist W s,p (E d 1 , E d 2 ) := sup f ∈E d 1 inf g∈E d 2 d W s,p ( f , g) . (1.8)
It is conceivable that

Dist W s,p (E d 1 , E d 2 ) = Dist W s,p (E d 2 , E d 1 ), ∀ d 1 , d 2 ∈ Z, (1.9) 
but we have not been able to prove this equality (see Open Problem 1 below). Therefore we consider also the symmetric version of (1.8), which is nothing but the Hausdorff distance between the two classes:

H -dist W s,p (E d 1 , E d 2 ) = max Dist W s,p (E d 1 , E d 2 ), Dist W s,p (E d 2 , E d 1 )
. (1.10) We should mention that even in cases where we know that (1.9) holds true, the qualitative properties of the two quantities in (1.9) might be quite different. Consider It turns out that in general the analysis of the usual distance dist W s,p is simpler than that of Dist W s,p , so we start with it. Note that we clearly have

dist C 0 (E d 1 , E d 2 ) = 2, ∀ d 1 = d 2 .
(1.11)

Indeed, on the one hand we have f -g C 0 ≤ 2, ∀ f , g, and on the other hand if f -g C 0 < 2 then deg f = deg g. [This is obtained by considering the homotopy

H t = t f + (1 -t)g |t f + (1 -t)g| , t ∈ [0, 1].
] By contrast, it was established in [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF] that surprisingly, when s = 1/2, p = 2 and N = 1 one has dist H 1/2 (E 1 , E 0 ) = 0, and thus dist VMO (E 1 , E 0 ) = 0. The usual distance dist W s,p (E d 1 , E d 2 ) in certain (non-fractional) Sobolev spaces was investigated in works by J. Rubinstein and I. Shafrir [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF], when s = 1, p ≥ N = 1, and S. Levi and I. Shafrir [START_REF] Levi | On the distance between homotopy classes of maps between spheres[END_REF], when s = 1, p ≥ N ≥ 2. In particular, they obtained exact formulas for the distance (see [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF]Remark 2.1], [START_REF] Levi | On the distance between homotopy classes of maps between spheres[END_REF]Theorem 3.4]) and tackled the question whether this distance is achieved (see [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF]Theorem 1], [START_REF] Levi | On the distance between homotopy classes of maps between spheres[END_REF]Theorem 3.4]). Another motivation comes from the forthcoming paper [START_REF] Brezis | Distances between classes in W 1[END_REF], where we consider a natural notion of class in W 1,1 (Ω; S 1 ) (with Ω ⊂ R N ) and determine the distance between these classes. In particular, Theorem 4 is used in [START_REF] Brezis | Distances between classes in W 1[END_REF]. Throughout most of the paper we assume that N = 1. It is only in the last two sections that we consider N ≥ 2.

We pay special attention to the case where s = 1. In this case, we have several sharp results when we take

d W 1,p ( f , g) = | f -g| W 1,p := ˆS1 | ḟ -ġ| p 1/p .
(1.12)

The following result was obtained in [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF].

Theorem 0. Let 1 ≤ p < ∞. We have dist W 1,p (E d 1 , E d 2 ) = 2 (1/p)+1 π (1/p)-1 |d 1 -d 2 |, ∀ d 1 , d 2 ∈ Z.
(1.13)

In particular

dist W 1,1 (E d 1 , E d 2 ) = 4 |d 1 -d 2 |, ∀ d 1 , d 2 ∈ Z. (1.14)
For the convenience of the reader, and also because it is used in the proof of Theorem 1, the proof of Theorem 0 is presented in Sections 3 and 4.

In view of (1.13), it is natural to ask whether, given

d 1 = d 2 , the infimum inf f ∈E d 1 inf g∈E d 2 d W 1,p ( f , g) = 2 (1/p)+1 π (1/p)-1 |d 1 -d 2 | (1.15)
is achieved. The answer is given by the following result, proved in [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF] when p = 2.

Theorem 1. Let d 1 , d 2 ∈ Z, d 1 = d 2 .
1. When p = 1, the infimum in (1.15) is always achieved.

2. When 1 < p < 2, the infimum in (1.15) is achieved if and only if d 2 = -d 1 .

3. When p ≥ 2, the infimum in (1.15) is not achieved.

We now turn to the case s = 1. Here, we will only obtain the order of magnitude of the distances dist W s,p , and thus our results are not sensitive to the choice of a specific distance among various equivalent ones. [However, we will occasionally obtain sharp results for H 1/2 (S 1 ; S 1 ) equipped with the Gagliardo distance defined below.] When 0 < s < 1 a standard distance is associated with the Gagliardo W s,p semi-norm

d W s,p ( f , g) := ˆS1 ˆS1 |[ f (x) -g(x)] -[ f (y) -g(y)]| p |x -y| 1+sp dxd y 1/p . (1.16)
Theorem 2. We have

1. Let 1 < p < ∞. Then dist W 1/p,p (E d 1 , E d 2 ) = 0, ∀ d 1 , d 2 ∈ Z.
(1.17)

2. Let s > 0 and 1 ≤ p < ∞ be such that sp > 1. Then C s,p |d 1 -d 2 | s ≤ dist W s,p (E d 1 , E d 2 ) ≤ C s,p |d 1 -d 2 | s (1.18)
for some constants C s,p , C s,p > 0.

We next investigate the Hausdorff distance Hdist W s,p (still with N = 1).

Theorem 3. We have

1. In W 1,1 , Dist W 1,1 (E d 1 , E d 2 ) = 2π|d 1 -d 2 |, ∀ d 1 , d 2 ∈ Z. (1.19) 2. If 1 < p < ∞, then H -dist W 1/p,p (E d 1 , E d 2 ) ≤ C p |d 1 -d 2 | 1/p , ∀ d 1 , d 2 ∈ Z.
(1.20)

3. If s > 0 and 1 ≤ p < ∞ are such that sp > 1, then Dist W s,p (E d 1 , E d 2 ) = ∞, ∀ d 1 , d 2 ∈ Z such that d 1 = d 2 .
(1.21)

We do not know whether (1.20) is optimal in the sense that for every 1 < p < ∞ we have

Dist W 1/p,p (E d 1 , E d 2 ) ≥ C p |d 1 -d 2 | 1/p , ∀ d 1 , d 2 ∈ Z, (1.22) 
for some positive constant C p . See Open Problem 2 below for a more general question. See also Section 7 for some partial positive answers.

We now discuss similar questions when N ≥ 2. We define dist W s,p and Hdist W s,p using one of the usual W s,p (semi-)norms.

For s = 1, N ≥ 2, p ≥ N, and for the semi-norm | f -g| W 1,p = ∇ f -∇g L p , the exact value of the W 1,p distance dist W 1,p between the classes E d 1 and E d 2 , d 1 = d 2 , has been computed by S. Levi and I. Shafrir [START_REF] Levi | On the distance between homotopy classes of maps between spheres[END_REF]. A striking fact is that this distance does not depend on d 1 and d 2 , but only on p (and N).

We start with dist W s,p .

Theorem 4. We have

1. If N ≥ 1 and 1 < p < ∞, then dist W N/p,p (E d 1 , E d 2 ) = 0, ∀ d 1 , d 2 ∈ Z. (1.23) 2. If [1 < p < ∞ and s > N/p] or [p = 1 and s ≥ N], there exist constants C s,p,N , C s,p,N > 0 such that C s,p,N ≤ dist W s,p (E d 1 , E d 2 ) ≤ C s,p,N , ∀ d 1 , d 2 ∈ Z such that d 1 = d 2 , (1.24) 
(here N ≥ 2 is essential).

Remark 1.1. We do not know whether, under the assumptions of Theorem 4, item

2, it is true that dist W s,p (E d 1 , E d 2 ) = C s,p,N , ∀ d 1 , d 2 ∈ Z such that d 1 = d 2 ,
for some appropriate choice of the W s,p semi-norm. [Recall that the answer is positive when s = 1 [START_REF] Levi | On the distance between homotopy classes of maps between spheres[END_REF].]

We now turn to the Hausdorff distance.

Theorem 5. Let N ≥ 1. We have

1. For every 1 ≤ p < ∞ H -dist W N/p,p (E d 1 , E d 2 ) ≤ C p,N |d 1 -d 2 | 1/p , ∀ d 1 , d 2 ∈ Z. (1.25) 2. If s > 0 and 1 ≤ p < ∞ are such that sp > N, then Dist W s,p (E d 1 , E d 2 ) = ∞, ∀ d 1 , d 2 ∈ Z such that d 1 = d 2 .
(1.26)

We conclude with three questions.

Open Problem 1. Is it true that for every d 1 , d 2 , N, s, p 

Dist W s,p (E d 1 , E d 2 ) = Dist W s,p
(E d 1 , E d 2 )
and in all such cases (1.28) holds. See e.g. the proofs of Theorem 3, items 1 and 3, and Theorem 5, item 2. We may also ask questions similar to (1.28) 

for dist W s,p (E d 1 , E d 2 ) and for H - dist W s,p (E d 1 , E d 2 )
(assuming the answer to (1.28) is negative); again, the answer is positive in many cases. A striking special case still open when

N = 1 is: does dist W 2,1 (E d 1 , E d 2 ) depend only on |d 1 -d 2 |?
Open Problem 2. Is it true that for every N ≥ 1 and every 1 ≤ p < ∞, there exists some C p,N > 0 such that

Dist W N/p,p (E d 1 , E d 2 ) ≥ C p,N |d 1 -d 2 | 1/p , ∀ d 1 , d 2 ∈ Z?
(1.29)

A weaker version of Open Problem 2 is obtained when we replace Dist W N/p,p by H -distW N/p,p (there will be no difference of course in case the answer to Open Problem 1 is positive):

Open Problem 2 . With the same assumptions as in Open Problem 2, is it true that

H -dist W N/p,p (E d 1 , E d 2 ) ≥ C p,N |d 1 -d 2 | 1/p , ∀ d 1 , d 2 ∈ Z?
(1.30)

The only case for which Open Problem 2 is settled is [N = 1, p = 1] (see Theorem 3, item 1). We emphasize three cases of special interest: 1. [N = 1, p = 2], 2. [N = 2, p = 2] and 3.

[N = 2, p = 1]. In case 1, the answer to Open Problem 2 is positive (see Corollary 7.6). See also Section 7 where further partial answers are presented.

Here is another natural open problem. Recall that for any f ∈ W N/p,p (S N ; S N ) and any sequence ( f n ) ⊂ W N/p,p (S N ; S N ) such that | f n -f | W N/p,p → 0, we have deg f n → deg f . We also know (Theorem 4, item 1) that there exist sequences (

f n ), (g n ) in W N/p,p (S N ; S N ) such that | f n -g n | W N/p,p → 0 but | deg f n -deg g n | = 1, ∀ n. Open Problem 3. Is it true that | deg f n -deg g n | → 0 for any sequences ( f n ), (g n ) in W N/p,p (S N ; S N ) such that | f n -g n | W N/p,p → 0 as n → ∞ and | f n | W N/p,p + |g n | W N/p,p remains bounded as n → ∞?
Our paper is organized as follows. In Section 2 we recall some known properties of W s,p (S N ; S N ). Sections 3-5 concern only the case N = 1, while Sections 6-7 deal with N ≥ 1. The proofs of Theorems 0 and 1 are presented in Sections 3 and 4. Theorem 2, item 1 and Theorem 3, items 2-3, are special cases of, respectively, Theorem 4, item 1 and Theorem 5, items 1-2; their proofs are presented in Section 6. Theorem 2, item 2 is established in Section 5. The proof of Theorem 3, item 1 appears in Section 3. Theorems 4 and 5 belong to Section 6. Partial solutions to the open problems are given in Section 7. A final Appendix gathers various auxiliary results. 2 Some standard properties of maps f :

Contents

S N → S N
In this section, we alway assume that (1.3) holds.

Lemma 2.1. C ∞ (S N ; S N ) is dense in W s,p (S N ; S N ).

When s = 1, p = 2, N = 2, the above was proved in [START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF]. The argument there extends to the general case.

When

[0 ≤ s -N/p < 1] or [s -N/p = 1 and p > 1], (2.1) 
we can complement Lemma 2.1 as follows.

Lemma 2.2. Assume that (2.1) holds. Then every map f ∈ W s,p (S N ; S N ) can be approximated by a sequence ( f n ) ⊂ C ∞ (S N ; S N ) such that every f n is constant near some point.

We note that condition (2.1) is equivalent to (1.3) + the non embedding W s,p → C 1 . The non embedding is also necessary for the validity of the conclusion of Lemma 2.2. Indeed, a C 1 function f , say on the real line, whose derivative does not vanish, cannot be approximated in C 1 by a sequence ( f n ) such that each f n is constant near some point.

The proof of Lemma 2.2 is postponed to the Appendix.

Theorem 2.3 ([13]

). For 1 ≤ p < ∞, the degree of smooth maps f : S N → S N is continuous with respect to the W N/p,p convergence. As a consequence, under assumption (1.3) the degree extends to maps in W N/p,p (S N ; S N ). Moreover, if ( f n ) and f are in W N/p,p and | f n -f | W N/p,p → 0, then deg f n → deg f . This follows from the corresponding assertion for the BMO convergence [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF] and the fact that W N/p,p → BMO.

When N = 1, an alternative equivalent definition of the degree can be obtained via lifting [START_REF] Brezis | W 1,1 -maps with values into S 1 , in Geometric analysis of PDE and several complex variables[END_REF][START_REF] Brezis | Sobolev maps with values into the circle[END_REF]. In this case, given f ∈ W s,p (S 1 ; S 1 ), it is always possible to write

f (e ıθ ) = e ıϕ(θ) , ∀ θ ∈ R, for some ϕ ∈ W s,p loc (R; R) (2.2) 
(no condition on s and p [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]).

If, in addition, (1.3) holds, then the function ϕ(• + 2π) -ϕ(•) is constant a.e. [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], and we have

deg f = 1 2π (ϕ(• + 2π) -ϕ(•)). (2.3) If instead of (1.3) we assume that either [sp > 1] or [s = 1 and p = 1], then ϕ is continuous and (2.3) becomes deg f = 1 2π (ϕ(2π) -ϕ(0)) = 1 2π (ϕ(π) -ϕ(-π)).
(2.4)

Finally, we mention the formula

deg f = 1 2π ˆS1 f ∧ ḟ , ∀ f ∈ W 1,1 (S 1 ; S 1 ). (2.5) 3 W 1,1 maps
Proof of Theorem 0 for p = 1, and Theorem 1, item 1.

Step 1. Proof of "≤" in (1.14) With no loss of generality we may assume that

d 1 > d 2 and d 1 > 0. Set d := d 1 -d 2 and L := d + 1. We define f (e ıθ ) := e ıϕ(θ) ∈ E d 1 , g(e ıθ ) := e ıψ(θ) ∈ E d 2 ,
where ϕ, ψ ∈ W 1,1 ((0, 2π)) are defined as follows:

ϕ(θ) := Lθ, if θ ∈ [0, 2d π/L) Ld 2 θ + 2(d 1 -Ld 2 ) π, if θ ∈ [2d π/L, 2 π) ,
and

ψ(θ) := L dist(θ, 2 π Z/L), if θ ∈ [0, 2d π/L) ϕ(θ) -2d π, if θ ∈ [2d π/L, 2 π) (and thus on [0, 2d π/L] the graph of ψ is a zigzag consisting of d triangles). For k ∈ Z, 0 ≤ k ≤ d -1, set I k = 2k π L , (2k + 1) π L and J k = (2k + 1) π L , (2k + 2) π L .
Note that

ψ(θ) = Lθ -2k π, if θ ∈ I k 2(k + 1) π -Lθ, if θ ∈ J k , so that g = f on I k and g = f on J k . Hence ḟ -ġ = 0, on I k -2 (sin ϕ) ϕ , on J k . Therefore ˆS1 ḟ -ġ = 2 d-1 k=0 ˆJk (cos ϕ) (θ) dθ = 4 d = 4 (d 1 -d 2 ).
Step 2. Proof of "≥" in (1.14) We may assume that d := d 1 -d 2 > 0. We prove that when f ∈ E d 1 and g ∈ E d 2 we have

´S1 | ḟ -ġ| ≥ 4d
. The map f /g is onto (since its degree is d = 0), and thus with no loss of generality we may assume that f (1) = g(1). Write f (e ıθ ) = e ıϕ(θ) g(e ıθ ), with ϕ ∈ W 1,1 ((0, 2π)).

We have ϕ(2π) -ϕ(0) = 2d π, and we may assume that ϕ(0

) = 0. Consider 0 = t 0 < τ 0 < t 1 < • • • < τ d-1 < t d = 2π
such that ϕ(t j ) = 2π j, j = 0, . . . , d, and ϕ(τ j ) = 2π j +π, j = 0, . . . , d -1. Thus the function w := | f -g| satisfies w(e ıt j ) = 0 and w(e ıτ j ) = 2. Therefore, we have ´S1 | ẇ| ≥ 4d.

In order to conclude, it suffices to note the inequality | ẇ| ≤ | ḟ -ġ| a.e.

We now turn to the properties of the Hausdorff distance in W 1,1 .

Proof of Theorem 3, item 1. Step 1. Proof of "≤" in (1.19)
By symmetry, it suffices to prove that for every f ∈ E d 1 and every ε > 0 there exists some

g ∈ E d 2 satisfying ˆS1 | ḟ -ġ| ≤ 2π|d 1 -d 2 | + ε. (3.1)
By density of C ∞ (S 1 ; S 1 ) in W 1,1 (S 1 ; S 1 ) it suffices to prove (3.1) for smooth f . Moreover, we may assume that f is constant near some point, say 1 (see Lemma 2.2). We may thus write f (e ıθ ) = e ıϕ(θ) , θ ∈ [0, 2π], for some smooth ϕ satisfying ϕ(2π)-ϕ(0) = 2π d 1 and constant near 0. For a small λ > 0 define ψ = ψ (λ) on [0, 2π] by

ψ(θ) :=    ϕ(θ) - 2d π λ θ, if θ ∈ [0, λ] ϕ(θ) -2d π, if θ ∈ (λ, 2π] (3.2) 
(where

d := d 1 -d 2 )
, and then set g(e ıθ ) := e ıψ(θ) ∈ E d 2 . Clearly,

ˆS1 | ḟ -ġ| = ˆλ 0 (e ıψ -e ıϕ ) = 2|d| π = 2π|d 1 -d 2 |.
Step 2. Proof of

Dist W 1,1 (E d 1 , E d 2 ) ≥ 2π |d 1 -d 2 |, ∀ d 1 , d 2 with 0 ≤ d 1 < d 2 . (3.3) Let f (z) := z d 1 ∈ E d 1 . It suffices to prove that | f -g| W 1,1 ≥ 2π (d 2 -d 1 ), ∀ g ∈ E d 2 .
By the triangle inequality, for any such g, we have

ˆS1 | ḟ -ġ| ≥ ˆS1 [| ġ| -| ḟ |] ≥ ˆS1 g ∧ ġ -2πd 1 = 2π (|d 2 | -d 1 ) = 2π (d 2 -d 1 ), (3.4) since | ḟ | = d 1 on S 1 .
Step 3. Proof of

Dist W 1,1 (E d 1 , E d 2 ) ≥ 2π |d 1 -d 2 |, ∀ d 1 ≥ 0, ∀ d 2 ∈ Z with d 2 < d 1 . (3.5)
The case d 1 = 0 is trivial since we may take as above f (z) := z 0 = 1 and apply (3.4). We now turn to the case d 1 > 0 and d 2 < d 1 which is quite involved. Inequality (3.5) is a direct consequence of the following Lemma 3.1. Assume that d 1 > 0 and d 2 < d 1 . Then for each δ > 0 there exists f

∈ E d 1 such that ˆS1 | ḟ -ġ| ≥ (2π -δ) (d 1 -d 2 ), ∀ g ∈ E d 2 .
(3.6)

Proof. For large n (to be chosen later) let f n (e ıθ ) = e ıϕ n (θ) ∈ E d 1 , with ϕ n ∈ W 1,1 ((0, 2π)) defined by setting ϕ n (0) = 0 and

ϕ n (θ) = d 1 n, θ ∈ [2 j π/n 2 ), (2 j + 1) π/n 2 ] -d 1 (n -2), θ ∈ ((2 j + 1) π/n 2 ), (2 j + 2) π/n 2 ] , j = 0, 1, . . . , n 2 -1. (3.7)
Therefore, the graph of ϕ n is a zigzag of n 2 triangles. Note that the average gradient of

ϕ n is d 1 , since ˆ(2j+2)π/n 2 2 j π/n 2 ϕ n = 2π d 1 n 2 , j = 0, 1, . . . , n 2 -1. (3.8) Hence ´2π 0 ϕ n = 2π d 1 (so indeed f n ∈ E d 1 )
. On the other hand, note that

ˆ(2j+2)π/n 2 ) 2 j π/n 2 |ϕ n | = 2(n -1) π d 1 n 2 , j = 0, 1, . . . , n 2 -1 =⇒ ˆ2π 0 |ϕ n | = 2(n -1) π d 1 , i.e., lim n→∞ ḟn L 1 (S 1 ) = ∞.
Consider now any g ∈ E d 2 and write g(e ıθ ) = e ıψ(θ) with ψ ∈ W 1,1 ((0, 2π)) satisfying ψ(2π)ψ(0) = 2π d 2 . For convenience we extend both ϕ n and ψ to all of R in such a way that the extensions are continuous functions whose derivatives are 2π-periodic. Set h = f n g ∈ E d with d := d 1 -d 2 > 0. Hence, h(e ıθ ) = e ıη(θ) with η := ϕ n -ψ. We can find d (closed) arcs on S 1 , I 1 , . . . , I d , with disjoint interiors such that:

I j = {e ıθ ; θ ∈ [s j , t j ]}, h(e ıs j ) = h(e ıt j ) = 1 and ˆtj s j η = 2π, for j = 1, . . . , d.
For small ε > 0 define, for each j = 1, . . . , d:

α - j = max θ ∈ [s j , t j ]; h(e ıθ ) = e ıε , β - j = min θ ∈ [α - j , t j ] ; h(e ıθ ) = e ı(π-ε) , α + j = max θ ∈ [β - j , t j ]; h(e ıθ ) = e ı(π+ε) , β + j = min θ ∈ [α + j , t j ]; h(e ıθ ) = e ı(2π-ε) .
(3.9)

Then, set

I ± j := {e ıθ ; θ ∈ [α ± j , β ± j ]}. Using the equality f n -g = e ıϕ n -e ıψ = 2ı sin ϕ n -ψ 2 e ı (ϕ n +ψ)/2 ,
we obtain

| ḟn -ġ| 2 = cos 2 ϕ n -ψ 2 (ϕ n -ψ ) 2 + sin 2 ϕ n -ψ 2 (ϕ n + ψ ) 2 . (3.10)
Note that by the definition of I ± j we have 

z = e ıθ ∈ I ± j =⇒ sin ϕ n (θ) -ψ(θ) 2 , cos ϕ n (θ) -ψ(θ) 2 ≥ sin(ε/2). ( 3 
ˆβ± j α ± j (ϕ n -ψ ) 2 + (ϕ n + ψ ) 2 ≥ 2 sin(ε/2) ˆβ± j α ± j |ϕ n | ≥ 2 sin(ε/2) d 1 (n -2) |I ± j |, (3.12) 
where

|I ± j | := β ± j -α ± j .
If for one of the arcs I ± j there holds

2 sin(ε/2) d 1 (n -2) |I ± j | > 2πd,
then we clearly have ´S1 | ḟ -ġ| > 2πd by (3.12), and (3.6) follows. Therefore, we are left with the case where

|I - j |, |I + j | ≤ c 0 n , j = 1, . . . , d, (3.13) 
where

c 0 = c 0 (d 1 , d 2 , ε).
While in the previous case the lower bound followed from the fact that |ϕ n | is large (i.e., of the order of n), the argument under assumption (3.13) uses another property of ϕ n . Namely, thanks to (3.8), the change of ϕ n on an interval of length O(1/n) (like is the case for I ± j ) is only of the order O(1/n). It follows that f n is "almost" a constant on the corresponding arc and an important contribution to the BV norm of f n -g comes from the change of the phase ψ on the corresponding interval. The latter equals approximately π -2ε, and summing the contributions from all the arcs yields the desired lower bound. The details are given below.

In the sequel we will denote by c different constants depending on d 1 , d 2 and ε alone. A direct consequence of (3.8) that will play a key role in the sequel is the following:

ˆJ ϕ n ≤ c n , for every interval J ⊂ R with |J| ≤ c 0 n . (3.14)
This implies that

| f n (z 1 ) -f n (z 2 )| ≤ c n , ∀ z 1 , z 2 ∈ I ± j , j = 1, . . . , d.
Therefore, for each I ± j there exists ν ± j ∈ S 1 such that

| f n (z) -ν ± j | ≤ c n , ∀ z ∈ I ± j , j = 1, . . . , d. (3.15) 
By (3.15) we have

1 -|g(z) -( f n (z) -ν ± j )| ≤ c n , ∀ z ∈ I ± j , j = 1, . . . , d. (3.16) 
Fix an arc I ± j . By (3.16), we can define on [α ± j , β ± j ] a W 1,1 -function ψ n = ψ n, j,± , determined uniquely up to addition of an integer multiple of 2π, by

g(e ıθ ) -( f n (e ıθ ) -ν ± j ) = |g(e ıθ ) -( f n (e ıθ ) -ν ± j )| e ıψ n (θ) .
(3.17) From (3.15)-(3.17) we have

|e ıψ(θ) -e ıψ n (θ) | ≤ c n , ∀ θ ∈ [α ± j , β ± j ], (3.18) 
and Step 4. Proof of (1.19) completed Combining Steps 1, 2 and 3 we find that

| ġ(e ıθ ) -ḟn (e ıθ )| ≥ |g(e ıθ ) -( f n (e ıθ ) -ν ± j )| |ψ n (θ)| ≥ 1 - c n |ψ n (θ)|. (3.19) By (3.19), we have ˆI± j | ġ -ḟn | ≥ 1 - c n ˆβ± j α ± j |ψ n | ≥ 1 - c n |ψ n (β ± j ) -ψ n (α ± j )|. ( 3 
ˆI± j | ġ-ḟn | ≥ 1 - c n |ψ(β ± j )-ψ(α ± j )|- c n ≥ 1- c n |η(β ± j )-η(α ± j )|- c n ≥ 1 - c n (π-2ε
Dist W 1,1 (E d 1 , E d 2 ) = 2π |d 1 -d 2 |, ∀ d 1 ≥ 0, ∀ d 2 ∈ Z,
which yields directly

Dist W 1,1 (E d 1 , E d 2 ) = 2π |d 1 -d 2 |, ∀ d 1 ∈ Z, ∀ d 2 ∈ Z.
We close this section with some results concerning the attainability of Dist W 1,1 (E d 1 , E d 2 ). For any d 1 = d 2 we may ask (question 1) whether there exists

f ∈ E d 1 such that d W 1,1 ( f , E d 2 ) := inf g∈E d 2 | f -g| W 1,1 = Dist W 1,1 (E d 1 , E d 2 ) , (3.23) 
and in case the answer to question 1 is positive for some f ∈ E d 1 , we may ask (question 2) whether the infimum inf

g∈E d 2 | f -g| W 1,1 is actually a minimum, i.e., for some g ∈ E d 2 , | f -g| W 1,1 = d W 1,1 ( f , E d 2 ) = Dist W 1,1 (E d 1 , E d 2 ) . (3.24)
There is a trivial case where the answer to both questions is affirmative, namely, when 0 = d 1 = d 2 . Indeed, for f = 1 and g(z) = z d 2 we clearly have,

| f -g| W 1,1 = ˆS1 | ġ| = 2π|d 2 | = Dist W 1,1 (E 0 , E d 2 ) .
The next proposition provides answers to these attainability questions, demonstrating different behaviors according to the sign of d 1 (d 2 -d 1 ).

Proposition 3.2. We have

1. If d 1 (d 2 -d 1 ) > 0 then f ∈ E d 1 satisfies (3.23) if and only if d 1 ( f ∧ ḟ ) ≥ 0 a.e. in S 1 . (3.25)
Among all maps satisfying (3.23), some satisfy (3.24) and others do not.

2. If d 1 (d 2 -d 1 ) < 0 then for every f ∈ E d 1 we have d W 1,1 ( f , E d 2 ) < Dist W 1,1 (E d 1 , E d 2 ), so (3.23) is never satisfied.
The proof relies on several lemmas.

Lemma 3.3. Let d 1 , d 2 ∈ Z be such that d 1 (d 2 -d 1 ) > 0. If f ∈ E d 1 satisfies (3.25) then ˆS1 | ḟ -ġ| ≥ 2π|d 1 -d 2 |, ∀ g ∈ E d 2 .
(3.26)

If the stronger condition

d 1 ( f ∧ ḟ ) > 0 a.e. in S 1 , (3.27) 
holds, then (3.29)

ˆS1 | ḟ -ġ| > 2π|d 1 -d 2 |, ∀ g ∈ E d 2 . ( 3 
Writing g(e ıθ ) = e ıψ(θ) , with ψ ∈ W 1,1 ((0, 2π)), the same computation as in (3.10), gives

(e ıψ -e ıϕ ) 2 = cos 2 ϕ -ψ 2 (ϕ -ψ ) 2 + sin 2 ϕ -ψ 2 (ϕ + ψ ) 2 . (3.30) Combining (3.29) with (3.30) leads to sin 2 ψ -ϕ 2 (ψ -ϕ ) 2 = sin 2 ψ -ϕ 2 (ψ + ϕ ) 2 . (3.31)
The equality (3.31) clearly implies that ϕ = 0 a.e. on the set { f = g}. Since this set has positive measure, we reached a contradiction to (3.27).

Lemma 3.4. If d 1 (d 2 -d 1 ) < 0 then for every f ∈ E d 1 there exists g ∈ E d 2 such that ˆS1 | ḟ -ġ| < 2π|d 1 -d 2 |. (3.32)
The proof of Lemma 3.4 is quite involved. It is inspired by the work of H. Brezis and J.-M. Coron (see [START_REF] Brezis | Large solutions for harmonic maps in two dimensions[END_REF][START_REF] Brezis | Metastable harmonic maps[END_REF]) in a two-dimensional setting, where the importance of a strict inequality like (3.32) was emphasized. The heart of the estimate is the following lemma. For each small ε > 0 set g = e ıψ , where ψ = ψ ε is defined by

ψ(θ) =    ϕ(θ) - 2d π ε θ, if θ ∈ [0, ε] ϕ(θ) -2d π, if θ ∈ [ε, 2 π]
.

By (3.30), we have

ˆS1 | ġ -ḟ | = 2|d| π ε ˆε 0 h(θ) dθ, (3.35) 
where

h(θ) = h ε (θ) := 1 + 4 sin 2 d π θ ε - εϕ (θ) 2d π + εϕ (θ) 2d π 2 1/2 . ( 3 

.36)

Set F := ϕα and write

(h ε (θ)) 2 = X ε + Y ε + Z ε , (3.37) 
where

X ε = X ε (θ) := 1 - 2εα d π 1 - εα 2d π sin 2 d π θ ε = 1 - 2εα d π sin 2 d π θ ε + O(ε 2 ), (3.38) 
Y ε = Y ε (θ) := 2εF d π -1 + εα d π sin 2 d π θ ε = O(εF), (3.39) 
and

Z ε = Z ε (θ) := ε 2 F 2 (d π) 2 sin 2 d π θ ε = O(ε 2 F 2 ). (3.40)
Since X ε ≥ 1/4 for small ε, for such ε we deduce from (3.37) that 

h ε (θ) ≤ (X ε ) 1/2 + |Y ε | + (Z ε ) 1/2 . ( 3 
ˆε 0 h ε (θ) dθ ≤ ˆε 0 (X ε (θ))
ˆS1 | ġ -ḟ | ≤ 2|d| π ε ε - εα d π ˆε 0 sin 2 d π θ ε + o(ε 2 ) = 2|d| π -ε|α| + o(ε),
so that (3.32) holds for sufficiently small ε.

Proof of Lemma 3.4. It suffices to consider the case where d 1 > 0, so by assumption

d 2 -d 1 < 0. Since ´S1 ( f ∧ ḟ ) = 2πd 1 > 0, the set A := {ζ ∈ S 1 ; ζ is a Lebesgue point of ḟ with ( f ∧ ḟ )(ζ) > 0},
has positive measure. Applying Lemma 3.5 to any point ζ ∈ A we conclude that there exists g ∈ E d 2 for which (3.32) holds.

Proof of Proposition 3.2.

Step 1. Proof of item 1 Assume without loss of generality that 0

< d 1 < d 2 . Let f ∈ E d 1 satisfy (3.25). By (3.26), d W 1,1 ( f , E d 2 ) ≥ 2π(d 2 -d 1 ). Since Dist W 1,1 (E d 1 , E d 2 ) = 2π(d 2 -d 1 ) (by (1. 19 
)) we obtain that f satisfies (3.23). On the other hand, for f ∈ E d 1 for which (3.25) does not hold we conclude from Lemma 3.5 that

d W 1,1 ( f , E d 2 ) < Dist W 1,1 (E d 1 , E d 2 ) = 2π(d 2 -d 1 )
, so (3.23) does not hold for f . For f ∈ E d 1 satisfying condition (3.27) (we may take for example f (ζ) = ζ d 1 ) we get from (3.28) that (3.24) is violated (although (3.23) holds). Finally to show that (3.24) occurs for some f , choose ϕ ∈ W 1,1 ((0, 2π)) such that for some a ∈ (0, 2π) we have:

(i) ϕ ≥ 0 on [0, a]. (ii) ϕ(0) = 0, ϕ(a) = 2πd 1 . (iii) ϕ = 2πd 1 on [a, 2π].
Next define ψ on [0, 2π] by:

ψ(θ) =    ϕ(θ), for θ ∈ [0, a] 2π d 1 + 2π (d 2 -d 1 ) θ -a 2π -a , for θ ∈ (a, 2π] .
Setting f (e ıθ ) = e ıϕ(θ) and g(e ıθ ) = e ıψ(θ) we clearly have

f ∈ E d 1 and g ∈ E d 2 . Since f satisfies (3.25) we know that d W 1,1 ( f , E d 2 ) = 2π(d 2 -d 1 ). But clearly also | f -g| W 1,1 = 2π (d 2 -d 1 ).
Step 2. Proof of item 2

The result follows directly from Lemma 3.4 and (1.19).

Remark 3.6. If d 1 = 0 and d 2 = 0 then for every non constant f ∈ E 0 we have

d W 1,1 ( f , E d 2 ) < Dist W 1,1 (E 0 , E d 2 ) = 2π|d 2 |.
This implies that a constant map is the only map for which (3.23) holds. Indeed, since ´S1 ( f ∧ ḟ ) = 0, there are Lebesgue points of f ∧ ḟ of both positive and negative sign. Hence, for every d 2 = 0 we can find a Lebesgue point for which (3.33) is satisfied, and the result follows from Lemma 3.5.

4 W 1,p maps, with 1 < p < ∞ Proof of Theorem 0 when 1 < p < ∞. We first sketch the proof of the inequality "≥" in (1.15). Given any

f ∈ E d 1 and g ∈ E d 2 , set w := f g ∈ E d , with d := d 1 -d 2 . Let w := T • w ∈ E d where,
as in [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF][START_REF] Brezis | Distances between classes in W 1[END_REF], T : S 1 → S 1 is defined by

T(e ıθ ) = e ıϕ with ϕ = ϕ(θ) = π sin(θ/2), ∀ θ ∈ (-π, π]. (4.1)
Noting that |e ıθ -1| = 2 π |ϕ|, we obtain as in [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF][START_REF] Brezis | Distances between classes in W 1[END_REF] (with ∂ τ standing for the tangential derivative)

ˆS1 |∂ τ ( f -g)| p ≥ ˆS1 |∂ τ | f -g|| p = ˆS1 ∂ τ | f g -1| p = ˆS1 |∂ τ |w -1|| p = 2 π p ˆS1 |∂ τ w| p ≥ 2 π p inf v∈E d ˆS1 | v| p . (4.
2)

The inequality "≥" in (1.15) clearly follows from (4.2) and the next claim:

min v∈E d ˆS1 | v| p = 2|d| p π. ( 4.3) 
To verify (4.3) we first associate to each v ∈ E d a function ψ ∈ W 1,p ((-π, π); R) such that v(e ıθ ) = e ıψ(θ) , θ ∈ [-π, π], with ψ(π)-ψ(-π) = 2d π. We then have, invoking Hölder inequality,

ˆS1 | v| p = ˆπ -π |ψ | p ≥ (2|d| π) p (2π) p-1 ,
whence the inequality "≥" in (4.3). On the other hand, the function w(e ıθ ) = e ıdθ clearly gives equality in (4.3), completing the proof of (4.3). Note that w is the unique minimizer in (4.3), up to rotations. The proof of the inequality "≤" in (1.15) can be carried out using an explicit construction, like the proof in [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF] for p = 2.

Next we turn to the question of attainment of the infimum in (1.15).

Proof of Theorem 1, items 2 and 3. The proof of the case p ≥ 2 is identical to the one given in [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF] for p = 2, so we consider here only item 3 (i.e., we let 1 < p < 2).

Step 1. The infimum in (1.15) is achieved when

d 2 = -d 1 Assume that d 2 = -d 1 . Let d := d 1 -d 2 = 2d 1 .
We saw above that w(e ıθ ) = e ıdθ realizes the minimum in (4.3). Consider S := T -1 : S 1 → S 1 (see (4.1)), given explicitly by

S(e ıθ ) = e ıψ , with ψ(θ) = 2 arcsin(θ/π), ∀θ ∈ [-π, π].
Although S is not Lipschitz, we do have w := S • w ∈ W 1,p (S 1 ; S 1 ) (i.e., w ∈ E d ). Indeed, this amounts to 1

1 -t 2 ∈ L p ((1-δ, 1
)), which holds since p < 2. Since d is even and w has degree d, there exists f ∈ E d 1 satisfying w = f 2 . We let g := f ∈ E d 2 , so that w = f g. Note that fg takes only purely imaginary values, and therefore

|∂ τ ( f -g)| = |∂ τ | f -g|| a.e. on S 1 . (4.4)
For these particular f , g, w and w, we get, using (4.4) that all the inequalities in (4.2) are actually equalities, and we see that the infimum in (1.15) is attained.

Step From (i) it follows that w(e ıθ ) = e ı(dθ+C) for some constant C, and we may assume that C = 0. Therefore,

w -1 (1) = w -1 (1) = {1, ω, ω 2 , . . . , ω d-1 }, with ω = e ı2π/d .
On the small arc I j between ω j and ω j+1 we may write fg = ρ e ıψ with ρ = | f -g| and ψ ∈ W 1,p loc , and we have

|∂ τ ( f -g)| 2 = ρ 2 [ ψ] 2 + [ ρ] 2 .
By (ii), ψ = 0 on I j , so that ψ is constant on I j , say ψ = α j on I j . The equality fg = ρ e ıα j on I j implies that g = e ı(2α j -π) f on I j , and therefore g ∧ ġ = -f ∧ ḟ on each I j . Since this is true on each I j , we finally conclude that d 2 = -d 1 .

5 W s,p maps, with sp > 1

Proof of Theorem 2, item 2.

Step 1. Proof of " " in (1.18) Fix a smooth map h ∈ E 1 such that h(z) ≡ 1 when Re z ≤ 0. Given d 2 , consider a smooth map g ∈ E d 2 such that g(z) ≡ 1 when Re z ≥ 0. Set f :=

h d 1 -d 2 g ∈ E d 1 . Then | f -g| W s,p |d 1 -d 2 | s .
(5.1) Indeed, estimate (5.1) is clear when s is an integer, since fg = h d 1 -d 2 -1. The general case follows via Gagliardo-Nirenberg.

Step 2. Proof of " " in (1.18) when 0 < s ≤ 1 We rely on an argument similar to the one in Step 2 in the proof of Theorem 0 in Section 3. Assume that d := d 1 -d 2 > 0, and that f (1) = g(1). Write f (e ıθ ) = e ıϕ(θ) g(e ıθ ), with ϕ ∈ W s,p ((0, 2π)) and ϕ(0

) = 0. Let 0 = t 0 < τ 0 < • • • < τ d-1 < t d = 2π be such that ( f -g)(e ıt j ) = 0 and |( f -g)(e ıτ j )| = 2
. By scaling and the hypotheses 0 < s ≤ 1 and sp > 1, we have

|h(b) -h(a)| (b -a) s-1/p |h| W s,p ((a,b)) , ∀ a < b, ∀ h ∈ W s,p ((a, b)).
(5.2) Applying (5.2) to h := ( f -g)(e ıθ ) on (a, b) := (t j , τ j ), j = 0, . . . , d-1, we obtain that |h| W s,p ((t j ,τ j )) 1/(τ j -t j ) s-1/p , and thus

| f -g| p W s,p d-1 j=0 |h| p W s,p ((t j ,τ j ))
d-1 j=0 1 (τ j -t j ) sp-1 d sp , the latter inequality following from Jensen's inequality applied to the function x → 1/x sp-1 , x > 0.

Step 3. Proof of " " in (1.18) when s > 1 The key ingredient in Step 4 is the Gagliardo-Nirenberg type inequality

| f | W θs,p/θ ≤ C θ,s,p | f | θ W s,p f 1-θ L ∞ , ∀ s > 0, 1 ≤ p < ∞ such that (s, p) = (1, 1), ∀ θ ∈ (0, 1). (5.3)
Let us note that, if f , g : S 1 → S 1 and deg f = deg g, then (by the argument leading to (1.11))

f -g L ∞ = 2.
(5.4) By (5.3) and (5.4), we find that for every s, p, θ as in (5.3) we have

dist W s,p (E d 1 , E d 2 ) ≥ C θ,s,p [dist W θs,p/θ (E d 1 , E d 2 )] 1/θ , ∀ d 1 , d 2 ∈ Z.
(5.5)

If we take, in (5.5), θ such that θs < 1, we obtain Step 4 from Step 3.

6 Maps f : S N → S N

A useful construction

Throughout Section 6 we will make an extensive use of special smooth maps f : S N → S N , N ≥ 1. Such maps "live" on a small spherical cap, say B R (σ), where B R (σ) is the geodesic ball of radius R < 1 centered at some point σ of S N , and are constant on S N \ B R (σ). Since the construction is localized we may as well work first on a flat ball B R (0) centered at 0 in R N and then we will transplant f to B R (σ), thereby producing a map f : S N → S N . On B R (0), the map f is determined by a smooth function F : [0, R] → R and a smooth map h :

S N-1 → S N-1 .
For simplicity we start with the case N ≥ 2 since the case N = 1 is somewhat "degenerate" and will be discussed later.

Fix a smooth function F : [0, R] → R satisfying F(r) = 0 for r near 0. (6.1)

F(r) = k π for r near R, where k ∈ Z. (6.2)
We may now define f : B R (0) → S N by

f (x) = (sin F(|x|) h(x/|x|), (-1) N cos F(|x|)). (6.3)
Note that f is well defined and smooth on B R (0) (by (6.1)) and that f is constant near ∂B R (0) (by (6.2)). More precisely

f (0) = (0, 0, . . . , 0, (-1) N ) = N, if N is even S, if N is odd and for x near ∂B R (0), f (x) = (0, 0, . . . , 0, (-1) N cos kπ) = C := N, if N + k is even S, if N + k is odd ;
here N = (0, 0, . . . , 0, 1) and S = (0, 0, . . . 0, -1) are the north pole and the south pole of S N . We transport f into B R (σ) ⊂ S N via a fixed orientation preserving diffeomorphism and extend it by the value C on S N \ B R (σ). In this way we have defined a smooth map f : S N → S N . For the purpose of Lemmas 6.1 and 6.2 below it suffices to assume that F : [0, R] → R is merely continuous and satisfies F(0) = 0, F(R) = kπ, so that f : S N → S N is a well-defined continuous map. Lemma 6.1. Let k ∈ {0, 1}. We have

deg f = k deg h. (6.4)
Proof. We emphasize the fact that here we assume N ≥ 2, although the conclusion still holds when N = 1 (see below).

It will be convenient to assume that F satisfies (6.1) and (6.2); the general case follows by density.

The cases where k = 0 (respectively d = 0) are trivial via homotopy to F ≡ 0 (respectively h ≡ C). With no loss of generality, we assume that d := deg h > 0 and k = 1.

Since f is constant outside B R (σ), it suffices to determine the degree of f |B R (σ) , and then we may as well work on the flat ball B R (0) ⊂ R N . We will work in the class of maps

C 0 C (B R (0); S N ) := {g : B R (0) → S N ; g = C on ∂B R (0)},
which have a well-defined degree (since they can be identified with maps in C 0 (S N ; S N )).

Step 1. Proof of (6.4) when d = 1 and k = 1 This case can be reduced by homotopy to the case h = Id and F : [0, R] → [0, π] is non decreasing. In this case, for almost every s ∈ S N the equation f (t) = s has exactly one solution t, and f is orientation preserving at t. Thus deg f = 1.

Step 2. Proof of (6.4) when d > 1 and k = 1 Consider smooth maps h 1 , h 2 , . . . , h d : S N-1 → S N-1 of degree 1 which "live" in different regions ω 1 , . . . , ω d of S N-1 , in the sense that ω j ∩ ω k = when j = k and h j = (0, 0, . . . , 0, 1) in S N-1 \ ω j , ∀ j. We glue these maps together and obtain a smooth map h : S N-1 → S N-1 of degree d. Since h and h are homotopic within C ∞ (S N-1 ; S N-1 ), the map f and the map f corresponding to h (via (6.3)) are homotopic within C ∞ (B R (0); S N ). Thus deg f = deg f . On the other hand, let f j be the map associated to h j via (6.3). Set Ω j := {r y; y ∈ ω j , 0 < r < R}.

Note that the Ω j 's are mutually disjoint. If x ∈ B R (0) \ Ω j , then f j (x) ∈ C , where C := {(0, 0, . . . , 0, sin θ, cos θ); θ ∈ R} ⊂ S N (since for such x we have h(x/|x|) = (0, 0, . . . , 0, 1)). Similarly, if x ∈ B R (0)\∪ j Ω j , then f (x) ∈ C . Since C has null measure in S N (here we use N ≥ 2), we may find some value z ∈ S N \ C regular for f (and thus for each f j ). For such z, we have

deg f = x∈ f -1 (z) sgn Jac f (x) = j x∈ f -1 (z)∩Ω j sgn Jac f (x) = j deg f j = d,
the latter equality following from Step 1.

The conclusion of Lemma 6.1 also holds for N = 1 and arbitrary k, but this requires a separate argument. When N = 1, we have S N-1 = S 0 = {-1, 1} and we have (modulo symmetry) only two maps h : S 0 → S 0 , namely

h 1 (-1) = -1, h 1 (1) = 1, h 2 (-1) = 1, h 2 (1) = 1. Then deg h 1 = 1 and deg h 2 = 0. The associated maps f 1 , f 2 defined on B R (0) = (-R, R) with values in S 1 are f 1 (x) = (sin F(x), -cos F(x)), if x > 0 (-sin F(-x), -cos F(-x)), if x < 0 , f 2 (x) = (sin F(x), -cos F(x)), if x > 0 (sin F(-x), -cos F(-x)), if x < 0 .
Clearly f 1 = e ıϕ 1 and f 2 = e ıϕ 2 , where

ϕ 1 (x) = -π/2 + F(x), if x > 0 -π/2 -F(-x), if x < 0 , ϕ 2 (x) = -π/2 + F(x), if x > 0 -π/2 + F(-x), if x < 0 . Thus deg f 1 = 1 2π (ϕ 1 (R) -ϕ 1 (-R)) = 2F(R) 2π = k and deg f 2 = 1 2π (ϕ 2 (R) -ϕ 2 (-R)) = 0.
For the record, we call the attention of the reader to the following generalization of Lemma 6.1 Lemma 6.2. For every k ∈ Z,

deg f =        k deg h, if N is odd deg h, if N is even and k is odd 0, if N is even and k is even . ( 6.5) 
Proof. Assume e.g. that k ≥ 2. [The case k < 0 is handled similarly and is left to the reader.] As explained in the proof of Lemma 6.1, we may work in the class C 0 C (B R (0); S N ). We may assume via homotopy that F(r) = k π r/R. Set r j = j R/k, j = 0, . . . , k. Consider the functions

F j (r) :=        0, if r < r j-1 F(r) -( j -1) π, if r j-1 ≤ r < r j π, if r ≥ r j , j = 1, . . . , k.
Consider also the maps f j corresponding to F j via (6.3). Then f is obtained by gluing the maps (-1) j-1 f j . By Lemma 6.1, we have

deg f j = deg h, j = 1, . . . , k. (6.6) 
We next note that for every

g ∈ C 0 C (B R (0); S N ), deg(-g) = deg g, if N is odd -deg g, if N is even . ( 6.7) 
By (6.6) and (6.7), we have

deg f = j deg (-1) j-1 f j =        k deg h, if N is odd deg h, if N is even and k is odd 0, if N 
is even and k is even .

Proof of Theorem 4, item 2

Step 1. Proof of the lower bound in (1.24) Since we assume that [s > 0 and sp > N] or [s = N and p = 1], (

the space W s,p is embedded continuously in the space of continuous functions, and there exists a constant C N,s,p such that

f - S N f L ∞ ≤ C N,s,p | f | W s,p , ∀ f ∈ W s,p . (6.9) 
Step 1 is a direct consequence of the next lemma.

Lemma 6.3. In all spaces W s,p satisfying (6.8) we have, for all f

∈ E d 1 , g ∈ E d 2 , d 1 = d 2 , d W s,p ( f , g) ≥ 1 C N,s,p , (6.10) 
where C N,s,p is the constant in (6.9).

Proof of Lemma 6.3. Recall (see (1.11)) that

f -g L ∞ = 2. ( 6.11) 
From (6.9) we have

( f -g) - S N ( f -g) L ∞ ≤ C N,s,p | f -g| W s,p , (6.12) 
so that

2 = f -g L ∞ ≤ |A| + r, (6.13) 
where A := ffl S N ( fg) and r := C N,s,p | f -g| W s,p . We may assume that A = 0, otherwise (6.10) is clear. From (6.12) we have

f (S N ) ⊂ S N + A + B(0, r). (6.14) 
Clearly,

- A |A| ∈ S N + A + B(0, r) if |A| > r,
and then f cannot be surjective -so that deg f = 0. Similarly, we have deg g = 0. This is impossible since d 1 = d 2 , and therefore

|A| ≤ r = C N,s,p | f -g| W s,p . (6.15) 
Combining (6.13) and (6.15) yields 1 ≤ C N,s,p | f -g| W s,p .

Step 2. Proof of the upper bound in (1.24) We will construct maps f ∈ E d 1 , g ∈ E d 2 , constant outside some small neighborhood B R (N) of the north pole N = (0, 0, . . . , 0, 1) of S N , satisfying (1.24). We will use the setting described in Section 6.1.

We start with the case d 1 = d, d 2 = 0. Let h : S N-1 → S N-1 be any smooth map of degree d. [Here we use the assumption N ≥ 2. If N = 1, such an h does not exist when |d| ≥ 2; see the discussion in Section 6.1 concerning the case

N = 1.] Let G : [0, R] → R be a smooth function such that G(r) =        0, if r ≤ R/4 π/2, if R/3 ≤ r ≤ 2R/3 0, if 3R/4 ≤ r ≤ R . Let F : [0, R] → R be defined by F(r) := G(r), if 0 ≤ r < R/2 π -G(r), if R/2 ≤ r ≤ R .
Clearly, F and G satisfy assumptions (6.1) and (6.2). We now define as in Section 6.1

f (x) = (sin F(|x|) h(x/|x|), (-) N cos F(|x|)), g(x) = (sinG(|x|) h(x/|x|), (-1) N cosG(|x|)).
From Lemma 6.1 we have deg

f = d and deg g = 0. Clearly sin F(r) = sinG(r), ∀ r ∈ [0, R],
and thus

f (x) -g(x) = 0, if |x| < R/2
(0, 0, . . . , 0, 2 (-1)

N cos F(|x|)), if R/2 ≤ |x| < R .
In the case where d 1 = d and d 2 = 0, the upper bound (1.24) follows from the fact that fg does not depend on d.

We next turn to the general case. Consider a map m ∈ C ∞ (R N ; S N ) such that m(x) = N when |x| > R/4 and deg m = d 2 . Then, with d := d 1 -d 2 and with f and g as above, consider

f (x) = m(x), if |x| < R/4 f (x), if R/4 ≤ |x| < R , g(x) = m(x), if |x| < R/4 g(x), if R/4 ≤ |x| < R . Then f ∈ E d 1 , g ∈ E d 2 ,
and fg = fg, whence (1.24).

Proof of Theorem 4, item 1

Here N ≥ 1. A key ingredient is the following Lemma 6.4. There are two families of smooth maps f ε , g ε : S N → S N , defined for ε small, such that

f ε (s) = g ε (s) = N, ∀ s ∈ B ε/4 (S), (6.16 
)

f ε (s) = S, ∀ s ∈ S N \ B ε 1/2 (S), (6.17) 
g ε (s) = N, ∀ s ∈ S N \ B ε 1/2 (S), (6.18) 
deg f ε = 1, (6.19) 
deg g ε = 0, (6.20) 

| f ε -g ε | W N/p,p (S N ) → 0 as ε → 0, ∀ 1 < p < ∞. ( 6 
deg f ε = d + d 2 = d 1 , (6.25) so that f ε ∈ E d 1 .
We proceed similarly with g ε using the same points σ 1 , . . . , σ d ∈ S N . We first obtain g ε such that, by (6.20), deg g ε = 0. (6.26)

We then glue h ε to g ε as above and obtain some g ε such that, by (6.23) and (6.26),

deg g ε = 0 + d 2 = d 2 , (6.27) so that g ε ∈ E d 2 .
Clearly f ε -g ε consists of d glued copies of f ε -g ε . Therefore

f ε -g ε W N/p,p ≤ d | f ε -g ε | W N/p,p and thus dist W N/p,p (E d 1 , E d 2 ) ≤ f ε -g ε W N/p,p → 0 as ε → 0.
We now turn to the Proof of Lemma 6.4. Since the construction is localized on a small geodesic ball, we may as well work on the flat ball B R (0) centered at 0 in R N , with R > ε 1/2 . Fix a smooth nonincreasing function K : R → [0, 1] such that 

K(t) = 1, if t ≤ 1/4 0, if t ≥ 3/4 . ( 6 
H ε (x) = H ε (|x|) :=    K 1 4 - 1 2 ln 2 ln ln 1/|x| ln 1/ε , if |x| < 1 0, if |x| ≥ 1 . (6.29)
Here, ε is a parameter such that 0 < ε < 1/e 2 . (6.30)

We also consider the radial functions F ε (r) and G ε (r) defined by

F ε (r) := π (1 -K(r/ε))/2, if r < ε π (1 -H ε (r)/2), if ε ≤ r < R (6.31)
and

G ε (r) := F ε (r), if r < ε π -F ε (r) = π H ε (r)/2, if ε ≤ r < R . (6.32)
Note that F ε and G ε are smooth (this is clear in the regions {r < ε} and {r > 3ε/4}).

1/2 ε/4 3ε/4 π π/2 ε F ε R ε ε ε/4 3ε/4 π π/2 ε ε R G 1/2
Figure 1: Plots of F ε and G ε given by (6.31) and (6.32)

As in Section 6.1 set

f ε (x) = sin F ε (|x|) x |x| , (-1) N cos F ε (|x|) , ∀ x ∈ B R (0), g ε (x) = sinG ε (|x|) x |x| , (-1) N cosG ε (|x|) , ∀ x ∈ B R (0).
It is clear (using Lemma 6.1) that (6.16)-(6.20) hold. Moreover,

f ε (x) -g ε (x) = 0, 0, . . . , 0, 2 (-1) N+1 cos π 2 H ε (|x|) , ∀ x ∈ B R (0),
(since H ε (r) = 1 when r < ε by (6.29)). Therefore

| f ε -g ε | W N/p,p = 2 cos π 2 H ε W N/p,p .
Consider the function

K(r) = 1 -cos π 2 K(r) , ∀ r ∈ R.
Clearly K satisfies (6.28). Consider the function H ε derived from K via (6.29), so that

H ε (x) = 1 -cos π 2 H ε (x) , ∀ x ∈ R N ,
and therefore

| f ε -g ε | W N/p,p (R N ) = 2 H ε W N/p,p (R N ) → 0 as ε → 0
by (A.5) in Lemma A.1 (applied to K).

6.4 Proof of Theorem 5, item 1 (and of Theorem 3, item 2)

We rely on the following result, whose proof is postponed to the Appendix. Lemma 6.5. Let N ≥ 1 and 1 ≤ p < ∞. Fix a geodesic ball B ⊂ S N (of small radius). Then there exists a map h : S N → S N (depending on d) such that 1. deg h = d.

2. h = (0, 0, . . . , 0, 1) outside B.

3. |h| W N/p,p ≤ C N,p |d| 1/p . Granted Lemma 6.5, we proceed as follows. Let g ∈ E d 2 be a smooth map such that g is constant in a neighborhood of some closed ball B. Such maps are dense in E d 2 , and with no loss of generality we assume that g = (0, 0, . . . , 0, 1) near B. Let h be as in the above lemma,

with d := d 1 -d 2 , and set f = g, in S N \ B h, in B . Then clearly f ∈ E d 1 and dist W N/p,p (g, E d 1 ) ≤ | f -g| W N/p,p ≤ C N,p |d 1 -d 2 | 1/p . (6.33)
The validity of (6.33) for arbitrary g ∈ E d 2 follows by density.

Proof of Theorem 5, item 2 (and of Theorem 3, item 3)

This time the key construction is provided by the following Lemma 6.6. Let N ≥ 1. Fix d 1 ∈ Z. Then there exists a sequence of smooth maps f n : S N → S N (with sufficiently large n) such that:

1. deg f n = d 1 .
2. For every geodesic ball B ⊂ S N of radius 1/n, f n (B) = S N .

Granted Lemma 6.6, we claim that the sequence ( f n ) satisfies dist W s,p ( f n , E d 2 ) ≥ C s,p,N,α n α , with C s,p,N,α > 0, (6.34) for any 0 < α ≤ 1 such that W s,p → C α . Clearly, the desired result follows from (6.34).

In order to prove (6.34), we argue by contradiction. Then, possibly along a subsequence still denoted f n , there exist maps

g n ∈ E d 2 such that | f n -g n | C α = o(n α ) as n → ∞; (6.35)
here, we consider the C α semi-norm

| f | C α := sup | f (x) -f (y)| |x -y| α ; x, y ∈ S N , x = y .
By (6.11), for each n there exists a point s = s n such that g n (s) = -f n (s). With no loss of generality, we may assume that f n (s) = (0, . . . , 0, 1) and therefore g n (s) = (0, . . . , 0, -1). Let h n denote the last component of f n -g n and let B n denote the ball of radius 1/n centered at s. By (6.35), we have h n ≥ 2 -o(1) in B n . On the other hand, Lemma 6.6, item 2, implies that there exists some t ∈ B n such that f n (t) = (0, . . . , 0, -1). It follows that h n (t) ≤ 0. This leads to a contradiction for large n, and thus (6.34) is proved. 

2 > d 1 ≥ 0. Let f (z) = z d 1 , z ∈ S 1 . Then | f -g| 2 H 1/2 ≥ 4π 2 (d 2 -d 1 ), ∀ g ∈ E d 2 . ( 7.1) 
Proof. We will use the Fourier decomposition of g ∈ H 1/2 (S 1 ; S 1 ), given by g(e ıθ ) = ∞ n=-∞ a n e ı nθ . Recall (see e.g. [START_REF] Brezis | New questions related to the topological degree[END_REF]) that the Gagliardo semi-norm (1.16) has a simple form

|g| 2 H 1/2 = 4π 2 ∞ n=-∞ |n| |a n | 2 (7.2)
and that for every g ∈ H 1/2 (S 1 ; S 1 ),

deg g = ∞ n=-∞ n |a n | 2 , (7.3) 
∞ n=-∞ |a n | 2 = 1. (7.4) By (7.2) we have 1 4π 2 | f -g| 2 H 1/2 = n∈Z n =d 1 |n| |a n | 2 + d 1 |a d 1 -1| 2 = n∈Z |n| |a n | 2 + d 1 (|a d 1 -1| 2 -|a d 1 | 2 ) = n∈Z |n| |a n | 2 + d 1 (1 -2 Re a d 1 ) ≥ d 2 -d 1 , by (7. 
3) and (7.4).

Proposition 7.2. Assume that N

= 2 and d 2 > d 1 ≥ 0. Let f ∈ E d 1 be defined by f (s) = T -1 T (s) d 1 where T : S 2 → C is the stereographic projection. Then | f -g| 2 H 1 ≥ 8π (d 2 -d 1 ), ∀ g ∈ E d 2 . ( 7.5) 
Proof. Recall that f is a harmonic map and that

ˆS2 |∇ f | 2 = 8π d 1 ; (7.6)
see e.g. [START_REF] Brezis | Large harmonic maps in two dimensions[END_REF] and the references therein. For any

g ∈ E d 2 , write | f -g| 2 H 1 = ˆS2 |∇( f -g)| 2 = ˆS2 |∇ f | 2 -2 ˆS2 |∇g| 2 (g • f ) + ˆS2 |∇g| 2 ≥ ˆS2 |∇g| 2 - ˆS2 |∇ f | 2 = ˆS2 |∇g| 2 -8π d 1 ≥ 8π (d 2 -d 1 )
, by (7.6) and Kronecker's formula (1.1).

Proposition 7.3. Let d 1 , d 2 ∈ Z be such that d 2 > d 1 ≥ 0. 1. When N = 1 we have Dist H 1/2 (E d 1 , E d 2 ) = (4π 2 |d 1 -d 2 |) 1/2 . (7.7) 2. When N = 2 we have Dist H 1 (E d 1 , E d 2 ) = (8π |d 1 -d 2 |) 1/2 . ( 7.8) 
Proof. Formula (7.8) follows from (1.2) and (7.5).

On the other hand, (7.7) is a consequence of (7.1) and of the following one dimensional version of (1.2):

Given ε > 0 and f ∈ E d 1 there exists some g ∈ E d 2 such that | f -g| 2 H 1/2 ≤ 4π 2 |d 1 -d 2 |+ε. (7.9) Indeed, let 0 < δ < 1 and set h δ (z) := z -(1 -δ) (1 -δ) z -1 -d , with d := d 1 -d 2 . Then h δ ∈ E -d ,
and thus

g δ := f h δ ∈ E d 2 .
On the other hand, we clearly have h δ → 1 a.e. as δ → 0. We claim that

|g δ -f | 2 H 1/2 = |h δ | 2 H 1/2 + o(1) as δ → 0. (7.10)
Indeed, we start from the identity

(g δ -f )(x) -(g δ -f )(y) = (h δ (x) -1) ( f (x) -f (y)) + (h δ (x) -h δ (y)) f (y),
which leads to the inequalities

|(g δ -f )(x) -(g δ -f )(y)| ≥ |h δ (x) -h δ (y)| -|h δ (x) -1| | f (x) -f (y)| (7.11) 
and

|(g δ -f )(x) -(g δ -f )(y)| ≤ |h δ (x) -h δ (y)| + |h δ (x) -1| | f (x) -f (y)|. (7.12)
By dominated convergence, we have

ˆS1 ˆS1 |h δ (x) -1| 2 | f (x) -f (y)| 2 |x -y| 2 = o(1) as δ → 0. ( 7.13) 
Formula (7.10) is a consequence of (7.11)-(7.13). Finally, (7.9) follows from (7.10) and the fact that

|h δ | 2 H 1/2 = 4π 2 |d| [1, Corollary 3.2]. Corollary 7.4. Assume that N = 1 or 2, 1 ≤ p ≤ 2 and d 1 d 2 ≥ 0. Then H -dist W N/p,p (E d 1 , E d 2 ) ≥ C p,N |d 1 -d 2 | 1/p (7.14)
for some constant C p,N > 0.

Proof. We may assume that d 2 > d 1 ≥ 0, and under this assumption we will prove that

Dist W N/p,p (E d 1 , E d 2 ) ≥ C p,N |d 1 -d 2 | 1/p . ( 7 

.15)

The case N = 1, p = 1 follows from Theorem 3, item 1.

The case where N = 1, 1 < p < 2 follows from (7.1) and the trivial inequality

| f | 2 H 1/2 ≤ | f | p W 1/p,p (2 f L ∞ ) 2-p , ∀ 1 < p < 2, ∀ f
. The case where N = 2 and 1 ≤ p < 2 follows from (7.5) and the Gagliardo-Nirenberg inequality In this section we prove that the answer to Open Problem 2 is positive when N ≥ 1, 1 ≤ p ≤ N + 1 and d 1 d 2 ≤ 0 (Proposition 7.5). This implies that the answer to Open Problem 2 is positive when N = 1 or 2 and 1 ≤ p ≤ 2 (Corollary 7.6). We end with a review of some simple cases of special interest which are still open (see Remark 7.7).

| f | 2 H 1 ≤ C p,N | f | p W 2/p,p f 2-p L ∞ , ∀ f .
Proposition 7.5. Let N ≥ 1 and

1 ≤ p ≤ N + 1. Let d 1 , d 2 ∈ Z be such that d 1 d 2 ≤ 0. We have Dist W N/p,p (E d 1 , E d 2 ) ≥ C p,N |d 1 -d 2 | 1/p . ( 7.16) 
Proof. We rely on the following estimate, valid when 1 ≤ p ≤ N + 1 :

| deg f -deg g| ≤ C p,N | f -g| p/(N+1) W N/p,p | f | N p/(N+1) W N/p,p + |g| N p/(N+1) W N/p,p
, ∀ f , g ∈ W N/p,p (S N ; S N ), (7.17) (see Proposition 7.9 below). Fix a canonical f 1 ∈ E d 1 (for example f 1 (z) = z d 1 when N = 1 or the map given by Lemma 6.5 for N ≥ 1).

This 

C N |d 2 | 1/N ≤ |g| W 1,N , ∀ g ∈ E d 2 .
(7.24)

The case 1 ≤ p < N is a consequence of (7.24) and of the Gagliardo-Nirenberg inequality For the verification of (A.22) and (A.23) note that

|∂ γ H ε (x)| ≤ C k ln 1/ε 1 |x| k 1 M ε (x), ∀ x ∈ R N , (A.24)
for every multi-index γ of length k := |γ| ≥ 1, where

M ε := {x ∈ R N ; ε < |x| < ε 1/2 }.
Assertion (A.21) is proved in a similar manner using the fact that

x j ∇H ε (x) L ∞ (R N ) ≤ C ln 1/ε .

  .20) By (3.18), (3.20),(3.14) and (3.9), we obtain

. 28 )

 28 Proof of Lemma 3.3. It suffices to consider the case 0< d 1 < d 2 . Note that (3.25) is equivalent to ´S1 | ḟ | = ´2π 0 f ∧ ḟ = 2πd 1 , i.e., to f being a minimizer for ´S1 |v | over E d 1 ((4.3) for p = 1). Therefore the same computation as in (3.4) yields (3.26).Next assume the stronger condition (3.27). Writing f (e ıθ ) = e ıϕ(θ) , with ϕ ∈ W 1,1 ((0, 2π)), we then have ϕ > 0 a.e. in (0, 2π). Suppose by contradiction that for some g ∈ E d 2 equality holds in (3.26). Then (3.4) yields | ġḟ | = | ġ| -| ḟ | , a.e. in S 1 .

Lemma 3 . 5 . 1 δ

 351 Consider any f ∈ E d 1 and a point ζ ∈ S 1 , which is a Lebesgue point of ḟ with ( f ∧ ḟ )(ζ) = 0. Then for every d 2 such that(d 2 -d 1 ) • ( f ∧ ḟ )(ζ) < 0 (3.33) there exists g ∈ E d 2 satisfying (3.32).Proof of Lemma 3.5. We may assume that condition (3.33) is satisfied by ζ = 1. Write f (e ıθ ) = e ıϕ(θ) with ϕ ∈ W 1,1 ((0, 2π)) satisfying ϕ(2π)-ϕ(0) = 2πd 1 . By assumption, θ 0 = 0 is a Lebesgue point of ϕ = f ∧ ḟ with ϕ (0) := α = 0 and we have lim δ→0 ˆδ 0 |ϕ -α| = 0. (3.34) Denote d = d 1 -d 2 and note that, by (3.33), we have αd > 0.

  .41) Integrating (3.41) over (0, ε) and using (3.34), (3.39) and (3.40) yields

  .28) Consider the family of radial functions H ε (x) = H ε (|x|) : R N → [0, 1] defined by

7. 2

 2 Full answer to Open Problem 2 when 1 ≤ p ≤ N + 1 and d 1 d 2 ≤ 0

7 . 6 .Remark 7 . 7 .

 7677 f 1 satisfies | f 1 | W N/p,p ≤ C p,N |d 1 | 1/p . (7.18)Therefore, with different constants C p,N depending on p and N, but not on d 1 or d 2 , we have|d 1 -d 2 | ≤C p,N | f 1 -g| p/(N+1) W N/p,p |d 1 | N/(N+1) + |g| N p/(N+1) W N/p,p ≤C p,N | f 1 -g| p/(N+1) W N/p,p |d 1 | N/(N+1) + | f 1 | N p/(N+1) W N/p,p + | f 1 -g| N p/(N+1) W N/p,p ≤C p,N | f 1 -g| p/(N+1) W N/p,p |d 1 | N/(N+1) + | f 1 -g| N p/(N+1) W N/p,p , ∀ g ∈ E d 2 .(7.19) Using(7.19) and the fact that|d 1 | ≤ |d 1 -d 2 | (since d 1 d 2 ≤ 0), we find that | f 1 -g| W N/p,p ≥ C p,N |d 1 -d 2 | 1/p , ∀ g ∈ E d 2 ,whence(7.16).Corollary 7.4 and Proposition 7.5 lead to the followingCorollary Assume that N = 1 or 2 and 1 ≤ p ≤ 2. Then Hdist W 1/p,p (E d 1 , E d 2 ) ≥ C p |d 1 -d 2 | 1/p , ∀ d 1 , d 2 ∈ Z,for some constant C p > 0. We mention here a few cases of special interest not covered by the results in Section 7.1 and 7.2.1. In view of Propositions 7.3, item 1, and Proposition 7.5, we know that when N = 1 and p = 2 we have Dist H 1/2

H

  ε (x) W N/p,p (R N ) → 0 as ε → 0 (A.20) andx j ∇H ε (x) W N/p,p (R N ) → 0 as ε → 0. (A.21)We claim thatH ε W 1,N (R N ) ≤ C (ln 1/ε) (N-1)/N → 0 as ε → 0 (A.22)andH ε W N,1 (R N ) ≤ C as ε → 0. (A.23)Assertion (A.20) with p > N (respectively p < N) follows from Gagliardo-Nirenberg, (A.22) and H ε L ∞ = 1 (respectively Gagliardo-Nirenberg, (A.22) and (A.23)).
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Appendix. Proofs of some auxiliary results

  

  2. If the infimum in (1.15) is achieved, then d 2 = -d 1 Assume that the infimum in (1.15) is achieved by two functions f ∈ E d 1 and g ∈ E d 2 . Set d := d 1 -d 2 , w := f g and w := T • w. We then have w, w ∈ E d . We may assume that d > 0. From the fact that both inequalities in (4.2) must be equalities we deduce that

	(i) w is a minimizer in (4.3)
	and
	(ii) (4.4) holds.

  .21) Granted Lemma 6.4 we proceed with the Proof of Theorem 4, item 1. Assume e.g. that d := d 1 -d 2 > 0. We fix d distinct points σ 1 , . . . , σ d ∈ S N . Note that f ε -S has support in B ε 1/2 (S). Therefore, for sufficiently small ε, we may glue d copies of f ε centered at σ 1 , . . . , σ d ∈ S N . We denote by f ε the resulting map. By construction f ε -S is supported in the union of mutually disjoint balls B ε 1/2 (σ i ), The construction of h ε is totally standard.]We glue h ε to f ε by inserting it in B ε/8 (σ 1 ) (here we use (6.16)). The resulting map is denoted by f ε . From (6.22) and (6.23) we have

	i = 1, . . . , d. From (6.19) we have	
	deg f ε = d.	(6.22)
	Next we consider a family of smooth maps h ε : S N → S N such that	
	deg h ε = d 2	(6.23)
	and	
	h ε (s) = N, ∀ s ∈ S N \ B ε/8 (σ 1 ).	(6.24)
	[	

7 Some partial results towards Open Problems 2, 2 and 3 7.1 Full answer to Open Problem 2 when

  N = 1 or 2, 1 ≤ p ≤ 2, and d 1 d 2 ≥ 0 We start with the special cases [N = 1, p = 2] and [N = 2, p = 2]. In this cases, we are able to determine the exact value of Dist W s,p (E d 1 , E d 2 ) provided d 2 > d 1 ≥ 0 (Propositions 7.1, 7.2 and their consequences in Proposition 7.3). This allows us to give a positive answer to Open Problem 2 when N = 2 and 1 ≤ p ≤ 2 under the extra assumption that d 1 d 2 ≥ 0 (Corollary 7.4). Assume that N = 1 and d

	Proposition 7.1.

3 A very partial answer in the general case Proposition 7.8.

  (E d 1 , E d 2 ) ≥ C |d 1 -d 2 | 1/2 , if either 0 ≤ d 1 < d 2 or d 1 d 2 < 0. (7.20)We do not know whether (7.20) holds in the case where 0 < d 2 < d 1 .2. Let N = 2 and p = 2. We do not know whether the inequalityDist H 1 (E d 1 , E d 2 ) ≥ C |d 1 -d 2 | 1/2 (7.21) (valid when 0 ≤ d 1 < d 2 or d 2 d 1 < 0 by Proposition 7.3, item 2, and Proposition 7.5), still holds in the remaining cases. A more precise question is whether (7.21) holds with C = (8π) 1/2 . Let N ≥ 1 and 1 ≤ p < ∞. Then for every d 1 ∈ Z there exists some C p,d 1 such thatDist W N/p,p (E d 1 , E d 2 ) ≥ C p,d 1 |d 1 -d 2 | 1/p , ∀ d 2 ∈ Z.(7.22) Proof of (7.22) when d 1 = 0 Since any constant map belongs to E 0 it suffices to show that infg∈E d 2 |g| W N/p,p ≥ C p |d 2 | 1/p , ∀ d 2 ∈ Z. (7.23) When p > N we rely on [3, Theorem 0.6]. The case p = N follows from Kronecker's formula (1.1), which leads to

	Proof.
	Step 1.

7.

  |g| W 1,N ≤ C |g| , ∀ g ∈ W N/p,p (S N ; S N ).Step 2. Proof of(7.22) when d 1 = 0 As in the proof of Proposition 7.5, we fix a canonical f 1 ∈ E d 1 satisfying(7.18).Next we claim that for everyd 2 ∈ Z, d 2 = d 1 , f 1 -g| W N/p,p = α( f 1 , d 2 ) > 0. (7.26) But since f 1 is a canonical map in E d 1 we obtain (7.25). Write, with g ∈ E d 2 , | f 1 -g| W N/p,p ≥ |g| W N/p,p -| f 1 | W N/p,p ≥ C p |d 2 | 1/p -C p |d 1 | 1/p ,(7.27)by(7.23) and (7.18). ClearlyC p |d 2 | 1/p -C p |d 1 | 1/p ≥ 1 2 C p |d 2 -d 1 | 1/p (7.28) provided |d 2 | is sufficiently large, say |d 2 | ≥ C(p, d 1 ). Finally we apply (7.25) for all values of d 2 , |d 2 | < C(p, d 1 ), d 2 = d 1 , and we obtain inf g∈E d 2 | f 1 -g| W N/p,p ≥ D p,d 1 |d 2 -d 1 | 1/p (7.29) with D p,d 1 > 0, for every d 2 ∈ Z, |d 2 | < C(p, d 1 ). Combining (7.27)-(7.29) yields Dominated convergence, (A.14) and (A.3) imply that|H ε | W 1/p,p (R) = ˆR ˆR |H ε (x) -H ε (y)| p |x -y| 2 dxd y → 0 as ε → 0.In view of (A.9), property (A.10) amounts to|x H ε (x)| W 1/p,p (R) → 0 as ε → 0.(note that x H ε (x) = 0 in the region |x| ≥ 1/e, while f (x) = ln(ln 1/|x|) in the region |x| < 1/e). Hence we may writex H ε (x) = Q ε (α f (x) + β ε ), ∀ x ∈ R, , ∀ t ∈ R, (A.19)and C is a universal constant. Clearly K (t) e -t/α belongs to C ∞ c (R) and thus is Lipschitz. We deduce from (A.11),(A.18) and (A.19) that|x H ε (x)| W 1/p,p (R) ≤ C ln 1/ε | f | W 1/p,p (R) → 0 as ε → 0.Case 2: N ≥ 2. We must show that for every 1 < p < ∞,

				(A.15)
	Clearly			
	x H ε (x) = |α|	K (α f (x) + β ε ) ln 1/|x|	, ∀ x ∈ R,	(A.16)
	and thus			
	x H ε (x) = |α|	K (α f (x) + β ε ) e f (x)	, ∀ x ∈ R	(A.17)
				(A.18)
	where			
	p/N W N/p,p g W N/p,p inf 1-p/N L ∞ = C |g| p/N g∈E d 2 Q ε (t) = |α| K (t) C K (t) e (t-β ε )/α = ln 1/ε e t/α	(7.25)
	Indeed, we know from Theorem 2.3 that	
	inf g∈E d 2			
	inf g∈E d 2			

| f 1 -g| W N/p,p = α(d 1 , d 2 ) > 0. | | f 1 -g| W N/p,p ≥ C p,d 1 |d 1 -d 2 | 1/p , ∀ d 2 ∈ Z, with C p,d 1 := min{(1/2) C p , D p,d 1 } > 0.
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, ∀ f , g ∈ W N/p,p (S N ; S N ). (7.30) Note that Proposition 7.9 provides a positive answer to Open Problem 3 when N ≥ 1 and 1 ≤ p ≤ N + 1.

Proof. Assuming the case p = N + 1 proved, the other cases follow via Gagliardo-Nirenberg, with the exception of the case N = 1, p = 1. However, in that special case estimate (7.30) follows from Theorem 0. We may thus assume that p = N + 1.

Let F, G denote respectively the harmonic extension of f , g to the unit ball B of R N+1 . Then F,G ∈ W 1,N+1 (B; R N+1 ) and (see e.g. [START_REF] Bourgain | Lifting, degree, and the distributional Jacobian revisited[END_REF])

Since for any square matrices A, B of size N + 1 we have

we find from (7.31) and (7.32) that

Finally, we obtain (7.30) from (7.33) and the estimates

Appendix. Proofs of some auxiliary results

Let K : R → [0, 1] be a smooth non increasing function such that

Consider the family of radial functions

The following lemma collects some useful properties of H ε .

Lemma A.1. The functions H ε satisfy

for every 1 < p < ∞ and every

Lemma A.1 implies in particular that the W s,p -capacity of a point in R N is zero when sp ≤ N and 1 < p < ∞. The above construction is inspired by some standard techniques related to capacity estimates.

Proof. Properties (A.2)-(A.4) are obvious. The smoothness of H ε is clear (from its definition) in the region {|x| < 1}. It is even clearer from (A.3) in the region {|x| > ε 1/2 } and thus

Consider the function f : R N → [0, ∞] defined by

We claim that

where

and

Indeed, (A.8) is clear when |x| < 1/e. In the region |x| ≥ 1/e we have H ε (x) = 0 by (A.3) (since 1/e ≥ ε 1/2 ); on the other hand for such x we have K(α f (x) + β ε ) = 0 since β ε ≥ 3/4 (again thanks to the property 1/e ≥ ε 1/2 ).

For the proofs of (A.5) and (A.6) it is convenient to distinguish the cases N = 1 and N ≥ 2.

Case 1: N = 1. We must show that

and

We claim that

Clearly, it suffices to establish that

With the change of variables x = e -s , y = e -s-t , s > 1, t > 0, inequality (A.12) amounts to 

Proof of Lemma 6.5. We may as well work in a ball B in R N . We may assume d > 0. Fix d points P 1 , . . . , P d in B. Consider a smooth map T : R N → S N such that T(x) = (1, 0, . . . , 0) when |x| ≥ 1 and deg T = 1. For large n, let h(x) = T(n(x -P j )), if |x -P j | < 1/n for some j

(1, 0, . . . , 0), otherwise .

Clearly, h satisfies properties 1 and 2. We claim that h also satisfies 3. Indeed, this is clear for p = 1 (by scaling). When N ≥ 2, the general case follows from Gagliardo-Nirenberg.

When N = 1, item 3 still holds, but not the above argument, since we do not have W 1,1 → W 1/p,p when 1 < p < ∞. In order to establish item 3 in W 1/p,p with 1 < p < ∞, we fix a small δ > 0. Consider the intervals I 1 , . . . , I d of length δ centered at P 1 , . . . , P d and set

. By straightforward calculations, we have, as n → ∞: 1) and completes the proof of the lemma when N = 1. Proof of Lemma 6.6. We may assume that d 1 ≥ 0. Consider a maximal family (B j ) 1≤ j≤J of disjoint balls in S N of radius 1/(3n). For large n we have J ≥ d 1 . Consider a smooth map f n : S N → S N such that:

3. deg f n = 0 and f n is onto on each B d 1 +1 , . . . , B J .

Then clearly f n has all the required properties.

Finally, we present the Proof of Lemma 2.2. We work on a ball B containing the origin, instead of S N , and when the given point is the origin. It suffices to establish the conclusion of the lemma when f ∈ W s,p (B; R) is smooth in B and satisfies f (0) = 0. By the Sobolev embeddings, we may assume that 1 < p < ∞ and s = 1 + N/p.

Write f = N j=1 x j g j , with g j smooth. This is possible since f (0) = 0. Then

x j ∂ k H ε g j → 0 in W N/p,p as δ → 0; (A.26) this follows from properties (A.5) and (A.6) of H ε and from the fact that the multiplication with a fixed smooth function is continuous in W N/p,p . Using (A.26), we immediately obtain that (1 -H ε ) f → f in W 1+N/p,p as ε → 0. On the other hand, (1 -H ε ) f vanishes near the origin.