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The Second-Order Coding Rate of the MIMO
Quasi-Static Rayleigh Fading Channel

Jakob Hoydis,Member, IEEE, Romain Couillet,Member, IEEE, and Pablo Piantanida,Member, IEEE

Abstract—The second-order coding rate of the multiple-input
multiple-output (MIMO) quasi-static Rayleigh fading channel is
studied. We tackle this problem via an information-spectrum
approach and statistical bounds based on recent random matrix
theory techniques. We derive a central limit theorem (CLT) to
analyze the information density in the regime where the block-
length n and the number of transmit and receive antennasK
and N , respectively, grow simultaneously large. This result leads
to the characterization of closed-form upper and lower bounds
on the optimal average error probability when the coding rate
is within O(1/

√
nK) of the asymptotic capacity.

Index Terms—Finite block-length, second-order coding rate,
error probability, quasi-static fading channel, block-fading chan-
nel, MIMO, information spectrum, random matrix theory.

I. I NTRODUCTION

In real-world wireless communications, the codeword (or
block) length of the transmission is naturally limited due to de-
lay and complexity constraints. It is thus unfortunate thatonly
few tractable performance limits of wireless communication
scenarios under the finite block-length regime are available.
In general, only bounds on the optimal error probability for
a given coding rate and block-length are derivable, e.g., [1],
[2], which are for most relevant cases difficult to analyze and
evaluate. This is in particular the case for non-ergodic chan-
nels (e.g., quasi-static or block-fading channels), for which
the error probability is fundamentally limited by the outage
probability [3]. The evaluation of these non-asymptotic bounds
becomes even more challenging in presence of multiple-input
multiple-output (MIMO) channels.

Feinstein [1] and Shannon [4] were among the first to
explore the tradeoff between coding rate, error probability, and
block-length and developed bounds on the optimal error prob-
ability in the finite block-length regime. Bounds on the limit
of the scaled logarithm of the error probability—known as the
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exponential rate of decrease—were derived in [2]. A simpler
formula for the latter was then provided by Gallager [5], which
is still difficult to evaluate for wireless channel models. In [6],
an explicit expression of Gallager’s error exponent was found
for the block-fading MIMO channel, but the computation of
this result remains quite involved.

Since the aforementioned bounds are in general not
amenable to simple evaluation, asymptotic considerationswere
made, in particular by Strassen [7] who derived a general
expression of the error probability for the discrete memoryless
channel with unconstrained inputs of code lengthn in the
regime where the coding rate is withinO(1/

√
n) of the capac-

ity, which is referred to as thesecond-order coding rate. In his
work, the variance of the “mutual information density” appears
to be the fundamental quantity when focusing on Gaussian ap-
proximations of the error probability. Nevertheless, Strassen’s
approach could not be generalized to channels with input
constraints, such as the additive white Gaussian noise (AWGN)
channel. Hayashi [8] focused on the second-order coding rate
and provided an exact characterization of the optimal error
probability for different channel models and input constraints.
Further considerations were made by Polyanskiy-Poor-Verdú
in [9] where several novel results are provided for memoryless
channels, among which new upper and lower bounds on the
maximal achievable rate for a fixed error probability and
block-length. Along the same lines, the scalar AWGN block-
fading channel was addressed in the coherent and non-coherent
settings in [10] and [11], respectively.

Additional work on the asymptotic block-length regime via
information-spectrum methods comprises the general capacity
formula by Verdú-Han [12] proving the converse via a novel
lower bound on the error probability from [13], [14]. A
very comprehensive literature survey on related aspects can
also be found in [9]. During the revision of this article,
we became aware of the related works [15] and [16] which
study respectively the quasi-static fading single-input multiple-
output (SIMO) and MIMO channel at finite block-length in
great detail.

In this paper, we investigateclosed-formbounds on the
average error probability of theN × K MIMO quasi-static
Rayleigh fading channel where the transmission takes place
over n channel uses during which the channel realization is
randomly drawn but remains constant, and whereN , K, and
n are of similar order of magnitude.

A. Contribution and outline

We focus on the asymptotic behavior of the error probability
when the coding rate is a small perturbation of the ergodic

http://arxiv.org/abs/1303.3400v3
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capacity, and hence follow the line of work of [8] on the
second-order coding rate (see also [9, Section IV]). We take
the approach of inducing ergodicity in the inherently non-
ergodic quasi-static fading channel by growing the channel
matrix dimensions. Indeed, assuming anN × K channel
matrix with independent standard Gaussian entries, letting
K,N → ∞ at the same speed, the channel becomes ergodic
in the limit (even for a single channel use). This ensures that
communications at rates arbitrarily close to the asymptotic
capacity are possible in this regime and it becomes natural
to investigate the optimal average error probability for the
second-order coding rate whenK, N , and the block-lengthn
grow simultaneously, i.e., the asymptotically achievableerror
probability for rates withinO(1/

√
nK) of the ergodic capacity

(nK being the total number of symbols in each codeword).
Our approach closely follows the information spectrum

methodology of [8]. We first start from some basic variations
of Feinstein’s and Verdú–Han’s lemma that provide, respec-
tively, lower and upper bounds on the optimal error probability.
These bounds are exploited to study the second-order statistics
of the information density, seen as a real functional of three
large-dimensional random matrices, i.e., theN ×K channel,
theK × n input, and theN × n noise matrices. The analysis
of such statistics naturally requires the use of random matrix
tools, and in particular here of Gaussian methods such as
developed by Pastur [17].

The main contribution of this paper is to derive a central
limit theorem (CLT) uniformly over the set of admissible chan-
nel inputs. From this result it entails that the optimal average
error probabilityPe(r|β, c) for the second order coding rate
r < 0 (defined in (14) below) can be bounded as

Φ

(
r

θ−

)
≤ Pe(r|β, c) ≤ Φ

(
r

θ+

)
(1)

whereβ = n/K, c = N/K, Φ(·) is theGaussian distribution
function, andθ+ > θ− are closed-form functions ofβ, c, and
the signal-to-noise ratio (SNR). Unlike [8], [9], we do not
obtain matching lower and upper bounds due to the presence
of the non-ergodic random channel matrix. Nonetheless, it ap-
pears that the gap between both bounds is quite tight for SNR
values of practical interest. Besides, numerical comparisons to
LDPC codes reveal good similarities with theory in the slope
of the error probability.

Notation and definitions

The set of nonnegative integers is denoted byN, the real
and complex fields byR andC, respectively. Boldface letters
x and upper-case lettersX are used to denote vectors and
matrices, respectively. The transpose, complex conjugate, and
complex conjugate (Hermitian) transpose are denoted by(·)T,
(·)∗, and (·)H, respectively. The trace and determinant of a
square matrixX are written trX and det(X), respectively.
The spectral norm of a square matrixX, i.e., the absolute
largest eigenvalue, is denoted by‖X‖. The Frobenius norm of
a matrixX is denoted by‖X‖F . The (i, j)-element ofX is
denoted byXij or [X]ij . Random vectors and matrix variables
are denoted by lowercase lettersx and uppercase lettersX ,

respectively. The symbolPr[·] denotes the probability of the
bracketed random argument. For a setS, we define byP(S)
the set of probability measures with support a subset ofS. We
also denote bysupp(P) the support ofP.

For random matricesX,Y in CK×n andCN×n, let PX ∈
P(CK×n) and letX 7→ PY |X( · |X) be any Borel measur-
able mapping. We define the probability measurePXY by
PXY (A×B) =

∫
A PY |X(B|X)PX(dX) whereA,B are Borel

sets ofCK×n andCN×n, respectively. Similarly, we define the
distribution PY as PY (B) =

∫
PY |X(B|X)PX(dX) for any

Borel subsetB ⊂ CN×n, where the integral is understood to
be taken overCK×n. We also define, for aPX -measurable
functional f , its mean E[f(X)] =

∫
f(X)PX(dX) and

varianceVar[f(X)] = E[|f(X)− E[f(X)]|2].
Let P and Q be two measures on (the Borelσ-field of)

C
K×n. ThenP is said to beabsolutely continuouswith respect

to Q if P(A) = 0 for every Borel setA for which Q(A) = 0.
This is written asP ≪ Q. For such measuresP andQ, we
denote dP

dQ (X) = P(dX)
Q(dX) the Radon–Nykodym derivative [18,

Theorem 32.2] ofP with respect toQ at positionX, i.e.,
for any Borel setA, P(A) =

∫
A

dP
dQdQ =

∫
A

P(dX)
Q(dX)Q(dX).

The notationP(dX) ≤ Q(dX) will then be understood as
dP
dQ(X) = P(dX)

Q(dX) ≤ 1. If P is not absolutely continuous with

respect toQ, we setdP/dQ
△

= ∞ and P(dX) ≤ Q(dX) is
understood as an always false statement.

We denoteCN (0, σ2) the complex circularly symmetric
normal distribution with zero mean and varianceσ2. We
call Φ the distribution function of the real standard normal
distribution, given byΦ(x)

△

= 1√
2π

∫ x

−∞ exp
(
− t2

2

)
dt. The

weak convergence of the sequence of probability measures
{µn}∞n=1 to µ is denoted byµn ⇒ µ; “

a.s.−−→” stands for almost
sure convergence.

The notationfn(t) = O(tαn−β) means that there exists
C > 0 independent oft andn such that, for allt > 0 and
n ∈ N, |fn(t)| ≤ Ctαn−β.

II. CHANNEL MODEL AND PROBLEM STATEMENT

Consider the following MIMO memoryless Gaussian quasi-
static fading channel:

yt =
1√
K

Hnxt + σwt, t = {1, . . . , n} (2)

whereyt ∈ CN is the channel output at timet, Hn ∈ CN×K

is a realization of the random channel matrixHn ∈ CN×K

whose entries are independent and identically distributed
(i.i.d.) CN (0, 1) and the indexn reminds thatHn is con-
stant for the duration ofn channel uses,xt ∈ C

K×1 is the
realization of the random channel inputxt ∈ CK×1 at time
t, andσwt is the realization of the random noise vectorσwt

at time t whose entries are i.i.d.CN
(
0, σ2

)
. The transmitter

end has only statistical knowledge aboutHn while the receiver
end knowsHn perfectly. In particular, we will assumeHn,
xt, and wt to be independent for eacht. We define the
following matrices:Xn = (x1, . . . ,xn) ∈ CK×n, Wn =
(w1, . . .wn) ∈ C

N×n, and Yn = (y1, . . . ,yn) ∈ C
N×n.

Associated to these matrices, we define the random matrices
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Xn = (x1, . . . , xn) ∈ CK×n, Wn = (w1, . . . , wn) ∈ CN×n,
andY n = (y1, . . . , yn) ∈ CN×n.

We denote the sets of admissible inputsXn with unit
maximal and exact energy constraint, respectively, by

Sn △

=

{
Xn ∈ C

K×n
∣∣∣

1

nK
trXn(Xn)H ≤ 1

}
(3)

Sn
=

△

=

{
Xn ∈ C

K×n
∣∣∣

1

nK
trXn(Xn)H = 1

}
. (4)

The mutual information densityof PY n|Xn,Hn , i.e., the
probability measure ofY n conditioned onXn and Hn, is
defined by (see e.g. [19] for the AWGN definition):

I
(n)
N,K

△

=
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

PY n|Hn(dY n|Hn)
(5)

where the ratioPY n|Xn,Hn(·|Xn,Hn)/PY n|Hn(·|Hn), for
givenXn,Hn, denotes the Radon–Nykodym derivative of the
measurePY n|Xn,Hn(·|Xn,Hn) with respect toPY n|Hn(·|Hn)
wheneverPY n|Xn,Hn(·|Xn,Hn) ≪ PY n|Hn(·|Hn) and is set
to ∞ otherwise.

Definition 1 (Code and average error probability):A
(P

(n)
e ,Mn)-code Cn for the channel model (2) with power

constraint (3) consists of the following mappings:

• An encoder mapping:

ϕ : Mn 7−→ C
K×n. (6)

The transmitted symbols areXn
m = ϕ(m) ∈ Sn for

every messagem uniformly distributed over the set
Mn = {1, . . . ,Mn} of messages.

• A set of decoder mappings{φHn}Hn∈CN×K with:

φHn : CN×n 7−→ Mn ∪ {e} (7)

which produces the decoder’s decisionm̂ = φHn(Yn
m),

Yn
m = 1√

K
Hnϕ(m)+σWn, on the transmitted message

m, or the error evente.

For a codeCn with block-lengthn, codebook sizeMn, encoder
ϕ, and decoder{φHn}Hn∈CN×K , theaverage error probability
is defined as

P (n)
e = P (n)

e (Cn) △

= Pr [m̂ 6= m] , (8)

where the probability is taken over the random variablesWn,
Hn andm.

Let supp(Cn) denote thecodebook{ϕ(1), . . . , ϕ(Mn)}. The
optimal average error probability for the rateR is defined as

P(n)
e (R)

△

= inf
Cn:supp(Cn)⊆Sn

{
P (n)
e (Cn)

∣∣∣
1

nK
logMn ≥ R

}
.

(9)

The exact characterization ofP(n)
e (R) for fixed n, K,

and N is generally intractable. As mentioned in the intro-
duction, a classical approach consists in considering rates
within O(1/

√
n) of the ergodic capacity with block-lengthsn

growing to infinity (i.e., second-order coding rates). Thisleads
to tractable limiting error probabilities, referred to asoptimal
average error probabilities for the second-order coding rates
[8], [9]. However, as the capacity of the quasi-static Rayleigh
fading channel is zero, we assume here that the system

dimensionsK andN grow large. This induces ergodicity in
the channel and entails a new definition of the second-order
coding rate and the optimal average error probability for the
quasi-static fading MIMO channel. Precisely, we assume that
K, N , andn are large but of the same order of magnitude.
This is expressed mathematically via the relations

n → ∞ ,
n

K
= β ,

N

K
= c (10)

for some constantsβ, c > 0.1 These relations will be denoted

by n
(β,c)−−−→ ∞ in the remainder of the article. For an infinite

block-length, the per-antenna capacity of the channel con-
verges for almost every channel realization to an asymptotic
limit C [20]:

Theorem 1 ([20, Eq. (9)],[21, Thm. 1]):Let {Hn}∞n=1,
whereHn ∈ CN×K has i.i.d. entriesHn

ij ∼ CN (0, 1). Let
σ2 > 0 and define

CN,K
△

=
1

K
log det

(
IN +

1

σ2K
Hn(Hn)H

)
. (11)

Then, asn
(β,c)−−−→ ∞,

(i) CN,K
a.s.−−→ C

(
σ2
)

(ii) E [CN,K ] = C
(
σ2
)
+O

(
1
n2

)

where, forx > 0,

C (x) = log (1 + δ0 (x)) + c log

(
1 +

1

x (1 + δ0 (x))

)

− δ0 (x)

1 + δ0 (x)
(12)

and

δ0(x)
△

=
c− 1

2x
− 1

2
+

√
(1− c+ x)2 + 4cx

2x
> 0. (13)

Based on this observation, we can characterize the error
probability in the second-order coding rate, i.e., when the
coding rate is withinO(1/

√
nK) of the limiting capacity

C = C(σ2), and estimateP(n)
e (R) via the following limiting

error probability:
Definition 2: Theoptimal average error probability for the

second-order coding rater is

Pe(r|β, c) △

= inf
{Cn:supp(Cn)⊆Sn}∞

n=1



 lim sup

n
(β,c)−−−→∞

P (n)
e (Cn)

∣∣∣

lim inf
n

(β,c)−−−→∞

√
nK

(
1

nK
logMn − C

)
≥ r

}
. (14)

Remark 1 (Fluctuation around ergodic capacity):For the
channel model (2), the optimal average error probability may

1This assumption can be relaxed ton
K

= β + o(n−2) and N
K

= c +
o(n−2). However, it is easy to see that these constraints imposec andβ to
be rational numbers and the sequences{N/K}∞n=1 and {n/K}∞n=1 to be
constant for all largen.
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be alternatively written as

Pe(r|β, c) = inf
{Cn}∞

n=1

supp(Cn)⊆Sn




 lim sup

n
(β,c)−−−→∞

P (n)
e (Cn)

∣∣∣

lim inf
n

(β,c)−−−→∞

√
nK

(
1

nK
logMn − E[CN,K ]

)
≥ r

}
(15)

since √
nK (E[CN,K ]− C) → 0 (16)

asn
(β,c)−−−→ ∞ by Theorem 1(ii). In the finiteN,K, n-regime,

we may therefore see the optimal average error probability as
an approximation of the optimal achievable error under the
rate constraint

1

nK
logMn ≥ E[CN,K ] +

r√
nK

. (17)

Note that the relation (16) is fundamentally dependent on
the Gaussianity ofHn. It was indeed shown in [22, Theo-
rem 4.4] that, whenever the entries ofHn have a non-zero
fourth order cumulantκ = E

[
|Hn

11|4
]
− 2, a bias termB

proportional toκ arises such that (16) must be modified to√
nK (E[CN,K ]− C) → B as n

(β,c)−−−→ ∞. In this case the
equivalence of (15) and (14) does not hold. For Gaussian
channels (sinceκ = 0 and thenB = 0), however, the
asymptotic mutual information is reached at the sufficiently
fast rate ofO(n−2) (as confirmed by Theorem 1(ii)).

Instead of the optimal average error probability, we may
consider thesecond-order outage probabilityPout(r|β, c) for
the rater, which we define as follows:

Definition 3: The second-order outage probability for the
second-order coding rater is

Pout(r|β, c) △

= inf
{Cn:supp(Cn)⊆Sn}∞

n=1



 lim sup

n
(β,c)−−−→∞

P (n)
e (Cn)

∣∣∣

lim inf
n

(β,c)−−−→∞
K

(
1

nK
logMn − C

)
≥ r

}
. (18)

The second-order outage probability and the optimal average
error probability are related byPout(r|β, c) = Pe(r

√
β|β, c).

Definition 3 allows us to study the behavior of the second-
order outage probability for growingβ. In the finite dimen-
sional setting, this corresponds to increasing the block-length
while maintainingN andK (and thus the capacityKC) fixed.
This cannot be performed onPe(r|β, c) since, by growingn,√
nKC grows as well, therefore not maintaining the capacity

fixed asn grows alone.
The main objective of this article is to characterize

Pe(r|β, c) (which will in turn characterizePout(r|β, c)).

III. M AIN RESULT

To determine the optimal average error probability, one
ideally needs to determine the asymptotic fluctuations of the
mutual information densityI(n)N,K for all codesCn. Since this is
intractable, we shall resort to upper and lower bounds, which
shall both rely on establishing the fluctuations of the random

quantity IX
n

N,K as defined, forPXn ∈ P(Sn), in (19) on the
top of the next page.

These fluctuations are provided in the following theorem.
Theorem 2:Let {Xn}∞n=1 be a sequence of random vari-

ables with probabilityPXn ∈ P(Sn
=) and, forAn = IK −

1
nX

n(Xn)H, defineθn > 0 the random variable given by

θ2n =− β log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))
2

)
+ c+ σ4δ′0

(
σ2
)

− β
δ′0(σ

2)

(1 + δ0(σ2))4
1

K
tr
[
(An)2

]
(20)

where the functionδ0(x) is defined in (13). Then, for any real

z, asn
(β,c)−−−→ ∞,

Pr

[√
nK

θn

(
IX

n

N,K − C
)
≤ z

]
→ Φ(z). (21)

Proof: The proof is provided in Appendix D-B.

Based on this result, we can determine the following lower
and upper bounds on the optimal average error probability for
the second-order coding rate.

Theorem 3:The optimal average error probability
Pe(r|β, c) for the second-order coding rater satisfies:

• If r ≤ 0,

Φ

(
r

θ−

)
≤ Pe(r|β, c) ≤ Φ

(
r

θ+

)
(22)

• If r > 0,

1

2
≤ Pe(r|β, c) ≤ Φ

(
r

θ+

)
(23)

whereθ− > 0 andθ+ > 0 are defined by

θ2−
△

= − β log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))2

)

+ c+ σ4δ′0
(
σ2
)

(24)

θ2+
△

= − β log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))
2

)

+ c+ σ4δ′0
(
σ2
)
− δ′0

(
σ2
)

(1 + δ0(σ2))4
(25)

andδ0(x) is defined in (13) with derivative, forx > 0,

δ′0(x) = − δ0(x) (1 + δ0(x))

1− c+ x+ 2xδ0(x)
< 0. (26)

Proof: The details of this proof are provided in Ap-
pendix B.

Theorem 3 shows that, for sufficiently large channel di-
mensions and block-length, the optimal error probability
for a coding rate close to the asymptotic capacity, i.e.,
(nK)−1 logMn = C + (nK)−1/2 r, is comprised between
two explicit bounds which depend only onc, β, and σ2.
This is to be compared with the AWGN scenario of [8], [9]
where the corresponding bounds were found to depend only on
σ2. However, as opposed to Theorem 3, the lower and upper
bounds in these works were shown to be equal. We discuss
in Remark 3 below the technical reasons for this important
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IX
n

N,K
△

=
1

K
log det

(
IN +

1

σ2

Hn(Hn)H

K

)

+
1

nK
tr

[(
Hn(Hn)H

K
+ σ2IN

)−1(
Hn

√
K

Xn + σWn

)(
Hn

√
K

Xn + σWn

)H

−Wn(Wn)H

]
(19)

difference. Note that, for rates above the capacity limit (i.e., for
r > 0), the lower bound is very loose and can be far from its
associated upper bound. In contrast, the more interesting case
r < 0 (corresponding to coding rates below the asymptotic
capacity) features two bounds which are numerically shown
to be quite close to one-another.

Remark 2 (On the quantityδ0
(
σ2
)
): The function

c−1δ0(σ
2) coincides with the Stieltjes transformmµc

(z)
of the Marc̆enko–Pastur measureµc with parameter c
[23] evaluated at positionz = −σ2, which is defined by
mµc

(z) =
∫
(t − z)−1µc(dt) for all z ∈ C \ supp (µc).

This measure is the limiting distribution of the eigenvalues
of K−1Hn(Hn)H as N,K → ∞ and N/K → c. For this
reason, the quantitiesC, θ−, andθ+ of Theorem 3 naturally
appear as functionals ofµc.

Remark 3 (Tightness of the bounds):The caser = 0 set
aside, the lower and upper bounds on the optimal average error
probability are never equal. This unfolds from the presenceof
the random channelHn which induces a dependence of the
second order statistics ofI(n)N,K on the “fourth order moment”
E[K−1tr (n−1Xn(Xn)H)2] of PXn . The weak lower bound
1/2 for r > 0 is a consequence of the impossibility in the
proof to bound the fourth order moment ofPXn from above
under the sole constraint (3); see Appendix B. By contrast, in
[8], [9], only (scalar) second order moments ofPXn play a
role in the second order statistics ofI(n)N,K . These are easily
controlled by (3).

Remark 4 (High SNR-regime):In the high-SNR regime, we
have the following result:

lim
σ2→0

θ2− =





−β log (1− c) + c , c < 1
∞ , c = 1
−β log

(
1− 1

c

)
+ 1 , c > 1 ,

(27)

lim
σ2→0

θ2+ =






−β log (1− c) + c(2− c) , c < 1
∞ , c = 1
−β log

(
1− 1

c

)
+ 1 , c > 1 .

(28)

This follows from the definition ofδ0(x) and δ′0(x) in The-
orem 1 which brings, forc < 1, δ0(x) → c(1 − c)−1

and δ′0(σ
2) → −c(1 − c)3 as x ↓ 0, while, for c > 1,

xδ0(x) → c− 1 andx2δ′0(x) → 1− c asx ↓ 0.

Remark 5 (Low SNR-regime):Both θ2+ andθ2− converge to
0 asσ2 → ∞. Thus, forr < 0, the upper and lower bounds on
Pe(r|β, c) are equal to zero and, forr > 0, the upper bound
tends to one. However, also the asymptotic capacityC is zero.
First order approximations ofC andθ2−, θ

2
+ for σ2 → ∞ are

thus meaningful and are given by

C =
c

σ2
+O(σ−4) (29)

θ2+ =
2c

σ2
+O(σ−4) (30)

θ2− =
2c

σ2
+O(σ−4). (31)

This shows in particular that(θ2+ − θ2−)/θ
2
+ = O(σ−2),

implying the asymptotic closeness of the upper and lower
bounds in the low SNR regime. Note additionally that, for
c = 1, the approximate standard deviation2cσ2 coincides with
the low-SNR channel dispersion reported in [9] for SISO
AWGN channels.

Figure 1 depicts the bounds on the optimal average error
probability for varying second-order coding ratesr and for
different SNR values (defined asSNR = σ−2). We choose
c = 2 andβ = 16. For fair comparison between the various
SNR regimes,r is taken to be proportional toC(σ2). For
finite but largeN,K, n values, Figure 1 therefore provides
approximate error probability bounds when coding at rateR =
C(σ2)(1+r′/

√
nK) for various values ofr′. We observe that,

for negative second-order coding rates, the gap between the
upper- and lower-bound is barely visible.

Remark 6 (Relation to second-order outage probability):
Recalling Definition 3, we have

min

{
Φ

(
r

θout−

)
,
1

2

}
≤ Pout(r|β, c) ≤ Φ

(
r

θout+

)
(32)

whereθout− > 0 andθout+ > 0 are defined by

(
θout−

)2 △

= − log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))
2

)

+
1

β

(
c+ σ4δ′0

(
σ2
))

(33)

(
θout+

)2 △

= − log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))
2

)

+
2

β

(
c+ σ4δ′0

(
σ2
)
− δ′0

(
σ2
)

(1 + δ0(σ2))4

)
.

(34)

Interestingly, forr ≤ 0, asβ → ∞, we recover the limiting
outage probability of MIMO Gaussian fading channels [24],
[22],

lim
β→∞

Pout(r|β, c) = Φ
( r

θout

)
(35)

with θout > 0 defined by

(
θout

)2 △

= − log

(
1− 1

c

δ0(σ
2)2

(1 + δ0(σ2))2

)
. (36)
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Fig. 1. Bounds on the optimal average error probability as a function of the second-order coding rater = r′C(σ2) for different SNRs and the parameters
c = 2 andβ = 16.

Although both results coincide, there is a fundamental differ-
ence in the way they are obtained. In [24], [22], the block-
length is assumed to be infinitely large from the start and then
the limit is taken inN andK. By contrast, we have obtained
(35) by changing the order of both limits. Note also that, while
Φ
(
r/θout

−
)

and Φ
(
r/θout

+

)
are decreasing functions ofβ for

r < 0, Φ
(
r/θout

+

)
is increasing inβ for r > 0. Although no

tight lower bound was derived forr > 0, this strongly suggests
the existence of a crossing point for the optimal average error
probability for an error rate of1/2. We will see a practical
example of this crossing point effect in Figure 3.

Figure 2 depicts the bounds onPout(r|β, c) in (32) as a
function ofβ for different values ofc, assumingSNR = 10 dB
andr = −C(σ2) (for fair comparison sinceC(σ2) is implic-
itly a function of c). For each value ofc we also provide the
limiting outage probability as given in (35). The upper and
lower bounds are seen to approach the outage probability at a
rateO(β−1) asβ grows, which is easily confirmed by direct
calculus.

We conclude this section by a comparison in Figure 3 of

the theoretical results against practical codes. We specifically
consider a scenario withK = 8 transmit andN = 16 receive
antennas employing QPSK modulation at each antenna. Cod-
ing and modulation are set up in a conventional bit-interleaved
coded modulation (BICM) scheme, with a random interleaver
separating the code and the modulation. At the receiver, we
employ a non-iterative demodulation scheme, with a MAP
MIMO demodulator based on a full code book enumeration.
We consider short LDPC codes and take as an example the rate
1/2 code used in the WiMAX standard [25], corresponding
to a coding rate in natsR = log(2). This code is a quasi-
cyclic irregular repeat-accumulate (IRA) LDPC code where
the accumulator is slightly modified to ease the encoding
circuit.

We consider code blocks ofn′ = 576 bit andn′ = 2304
bit, corresponding ton = n′/(2K) ∈ {36, 144} channel
uses. The error probability of the code described above for
n ∈ {36, 144} is compared against the approximate upper and
lower bounds (Theorem 3) obtained when coding at second
order rater = (R − C(σ2))

√
nK, for different SNR (i.e.,

σ−2) values (corresponding to a span fromr ≃ 5.2 for −4 dB
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Fig. 2. Bounds on the second-order outage probability as a function of β for different values ofc, r = −C(σ2), andSNR = 10 dB. The limiting outage

probability isPout
△

= Pout(r|∞, c).

SNR to r ≃ −10 for 0 dB SNR, whenn = 144). We can
make several interesting observations from this figure. Forboth
block-lengths, the SNR-gap between the simulation resultsand
the corresponding bounds by Theorem 3 is roughly constant
(to about4 dB) for a large range of SNR values.

Also note that both theoretical and simulated curves exhibit
a crossing point close to1/2 error probability, which goes in
line with Remark 6.

IV. SUMMARY AND DIRECTIONS FOR FUTURE WORK

We have studied the second-order coding rate of the MIMO
quasi-static Rayleigh fading channel using information-
spectrum methods and Gaussian tools from random matrix
theory. To this end, we derived a CLT for the asymptotic
analysis of the “information density” where the channel di-
mensions as well as the block-length grow infinitely large at
the same speed and the coding rate is a perturbation within
O(1/

√
nK) of the asymptotic capacity. The derived CLT

allowed us to characterize closed-form upper and lower bounds
on the optimal average error probability which depend only

on the main system and channel parameters. The proposed
approach to the study of the asymptotic statistics of the
“mutual information density” for MIMO channels is original
and can be further applied to other scenarios, such as the
block-fading regime where coding is performed over multiple
coherence blocks or, in a more practical context, the error
performance achieved under linear receive filters.

APPENDIX A
AUXILIARY RESULTS ON INFORMATION SPECTRUM

The objective of this section is to prove Proposition 1 below
which provides analytical bounds on the optimal average error
probabilityPe(r|β, c) and constitutes the first step of the proof
of Theorem 3, developed in Appendix B.

We first state a variation of Verdú–Han’s lemma [12] which
appears to be more adequate to characterize the second-order
approximation of the error probability.

Lemma 1 (Variation on Verd́u-Han’s lemma):For any in-
tegern ≥ 1, letXn be an arbitrary random variable uniformly
distributed over the set ofMn messages issued fromMn
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Fig. 3. Approximate bounds on the error probability for finite n, as a function of the SNR= 1/σ2 , r = K(R − C) for K = 8, N = 16, R = log(2),
n ∈ {36, 144}, C being evaluated withc = N/K, β = n/K and for different SNR values. Theoretical curves are compared to a rate1/2 LDPC QPSK
code (givingR = log(2)).

realizations ofPXn ∈ P(Sn), and let Y n be the output
random variable of the channelPY n|Xn,Hn corresponding to
the inputXn and the random fadingHn. Then, the average
error probability of such a(P (n)

e ,Mn)-codeCn must satisfy

P (n)
e (Cn) ≥ sup

γ>0
sup

{Qn}∞
n=1{

Pr

[
log

PY n|Xn,Hn(dY n|Xn, Hn)

Qn(dY n|Hn)
≤ log γ

]
− γ

Mn

}

(37)

whereQn(·|Hn) is anHn-measurable random variable valued
in P(CN×n).

Proof: The proof follows straightforwardly from that
in [12] which itself is related to [13]. We remark that a similar
result was already used in [8] without an explicit proof and
also follows from the same steps used to prove the “meta-
converse” theorem in [9, Thm. 26, 27].

Lemma 2 (Variation of Feinstein’s lemma):Let n ≥ 1 be
an integer and denote byY n the output from the channel
PY n|Xn,Hn corresponding to an input distributionPXn and

random fadingHn. We denotePn(dY
n|Hn) the distribution

of such Y n given Hn. Then, there exists a block-lengthn
codebook of sizeMn that, together with the maximuma
posteriori (MAP) decoder, forms a codeCn whose average
error probabilityP (n)

e (Cn) satisfies:

P (n)
e (Cn) ≤

inf
γ>0

{
Pr

[
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
≤ log γκ

]
+

Mn

γ

}

+ Pr

(
Pn(dY

n|Hn)

P̃n(dY n|Hn)
> κ

)
(38)

for any probability measurẽPn(dY
n|Hn) ≫ Pn(dY

n|Hn)

and positive valueκ, where Pn(dY
n|Hn)

P̃n(dY n|Hn)
denotes the Radon-

Nikodym derivative.
Proof: The proof simply follows from Feinstein’s

lemma [1] and the introduction of the event

Bn =

{
Y n ∈ C

N×n :
Pn(Y

n|Hn)

P̃n(Y n|Hn)
> κ

}
. (39)
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In order to obtain Part-(ii) (Upper bound) of Proposition 1
below, we need the following technical result.

Lemma 3 (A divergence result):Let P̃n(dỸ
n|Hn) and

Pn(dY
n|Hn) be the output distributions of the channels

Ỹ n = 1√
K
HnX̃n + σWn and Y n = 1√

K
HnXn + σWn,

respectively, whereX̃n is standard Gaussian (i.e., with
independentCN (0, 1) entries) andXn =

√
nKX̃n/‖X̃n‖F .

Then, for any sequenceκn satisfyingκn → ∞,

αn , Pr

(
log

Pn(dY
n|Hn)

P̃n(dY n|Hn)
≥ log κn

)
→ 0 (40)

where Pr(·) is taken over Hn standard Gaussian and
Y n ∼ Pn.

Proof: For two distributionsP andQ, let βα(P,Q) be
defined as in [9, Eq. (100)]. Then, we have the following
bounds onβα(P,Q) [9, Eqs. (154)-(157)]:

βα(P,Q) ≥ exp

(
−D (P‖Q) + h(α)

α

)
(41)

whereD (P‖Q) is the Kullback-Leibler divergence andh(x)
the binary entropy function, and [9, Eq. (103)]

βα(P,Q) ≤ 1

γ0
(42)

for any γ0 satisfying

Pr

(
dP

dQ
≥ γ0

)
≥ α. (43)

Setting P = Pn(dY
n|Hn), Q = P̃n(dY

n|Hn), α = αn,
γ0 = κn and using the upper and lower bounds onβα, we
conclude that

exp



−
D
(
Pn(dY

n|Hn)‖P̃n(dY
n|Hn)

)
+ h(αn)

αn





≤ 1

κn
→ 0. (44)

To obtain (40), it is thus sufficient to prove
D
(
Pn(dY

n|Hn)‖P̃n(dY
n|Hn)

)
= O(1).

By the data-processing inequality for the Kullback-Leibler
divergence [26],

D
(
Pn(dY

n|Hn)‖P̃n(dY
n|Hn)

)

= D
(
PY n|Hn‖PỸ n|Hn

)
(45)

≤ D
(
PY nX̃n|Hn‖PỸ nX̃n|Hn

)
(46)

= D
(
PY n|HnX̃n‖PỸ n|HnX̃n

)
(47)

= EHn,X̃n

[
D
(
PY n|Hn=Hn,X̃n=X̃n‖PỸ n|Hn=Hn,X̃n=X̃n

)]
.

(48)

Note that, for givenHn, X̃n, the channel outputsY n, Ỹ n are
Gaussian distributed, i.e.,

PY n|Hn,X̃n ∼ CN
(

vec

(
1√
K

Hn

√
nKX̃n

‖X̃n‖F

)
, σ2IN×n

)

(49)

PỸ n|Hn,X̃n ∼ CN
(

vec

(
1√
K

HnX̃n

)
, σ2IN×n

)
(50)

where the function vec(A) vectorizes the matrixA. Using
D
(
CN

(
m1, σ

2I
)
‖CN

(
m2, σ

2I
))

= ‖m1 − m2‖2/σ2 to-
gether with (49) and (50) in (48), we obtain from standard
computations

EHn,X̃n

[
D
(
PY n|Hn=Hn,X̃n=X̃n‖PỸ n|Hn=Hn,X̃n=X̃n

)]

= EHn,X̃n



 1

σ2K

∣∣∣∣∣

√
nK

‖X̃n‖F
− 1

∣∣∣∣∣

2

‖HnX̃n‖2F



 (51)

=
1

σ2

N

K
E

[∣∣∣
√
nK − ‖X̃n‖F

∣∣∣
2
]

(52)

=
1

σ2

N

K

(
2nK − 2

√
nKE

[
‖X̃n‖F

])
. (53)

Now, sinceX̃n is Gaussian,
√
2‖X̃n‖F is χ2nK-distributed,

so that

E

[
‖X̃n‖F

]
=

Γ(nK + 1/2)

Γ(nK)
. (54)

Using this result in (53) leads to

(53)=
2nN

σ2

(
1− Γ(nK + 1/2)√

nKΓ(nK)

)
(55)

≤ 2nN

σ2

(
1−

√
nK

nK + 1/2

)
(56)

=
2nN

σ2

(
1−

√
1− 1/2

nK + 1/2

)
(57)

=
2nN

σ2
(1− 1 +O(1/(nK))) = O(1) (58)

where we used in (56) that fora ∈ (0, 1) andx > 0 [27]

1 ≥ Γ(x+ a)

Γ(x)xa
≥
(

x

x+ a

)1−a

(59)

and (58) follows because
√
1 + x = 1 +O(x) asx → 0.

With this result at hand, we can prove the following result.
Proposition 1 (Bounds on the average error probability):

The following two statements hold:
(i) Lower bound:Let Y n

+ ∈ C
N×(n+1) denote the random

variable associated to the output of the channelPY n
+ |Xn

+,Hn

corresponding to the inputXn
+ ∈ C

K×(n+1) and fading
Hn ∈ C

K×N . Then, (60) on the top of the next page holds,
where Qn,+(·|Hn) is an Hn-measurable random variable
taking values inP(CN×(n+1)) and

Sn,+
= =

{
Xn

+ ∈ C
K×(n+1)

∣∣∣
1

(n+ 1)K
trXn

+(X
n
+)

H = 1

}
.

(61)
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Pe(r|β, c) ≥ F(r|β, c)
△

= inf
{PXn

+
}∞

n=1

PXn
+
∈P(Sn+1

= )

sup
{Qn,+}∞

n=1

lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

(
1

nK
log

PY n
+ |Xn

+,Hn(dY n
+ |Xn

+, H
n)

Qn,+(dY n
+ |Hn)

− C

)
≤ r − ξ

]
(60)

Pe(r|β, c) ≤ G(r|β, c) △

= lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

(
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
− C

)
≤ r + ξ

]
(62)

(ii) Upper bound: There exists a codebook of sizeMn

with codewords of block-lengthn that together with the ML
decoder form a(P (n)

e ,Mn)-codeCn such that, for all realr,
(62) on the top of the next page holds, which is computed
from the probability measure induced by inputs uniformly
distributed over the power shell:

PXn(Xn) =
1

[
trXn(Xn)H = nK

]

S2nK(
√
nK)

(63)

which satisfy PXn(Sn
=) = 1, and whereS2nK(r) =

2πnKΓ(nK)−1r2nK−1 is the surface area of a2nK-
dimensional sphere of radiusr, andP̃n is the output distribu-
tion of the channelPY n|Xn,Hn induced by a complex Gaussian
input distribution with zero mean and covarianceIKn.

Proof: This proof is segmented in two parts. We first
derive error probability bounds for eachN,K, n, based on the
established slight variations on the Verdú–Han’s Lemma 1 and
the modified Feinstein’s Lemma 2 and then bringingN,K, n
to infinity leads to Proposition 1.

We first start with the proof of the lower bound (60). Let
Cn be a(P (n)

e ,Mn)-code whose probability measure satisfies
PXn ∈ P(Sn). From this code, following the approach
in [9], we define the codeCn,+ with codewords{Xn

i,+ =
[Xn

i ,xi], i = 1, . . . ,Mn}, where {Xn
i , i = 1, . . . ,Mn} =

Supp(Cn) andxi satisfies‖xi‖2 = (n+ 1)K − trXn
i (X

n
i )

H,
and with the same decision region as forCn discarding
the last channel output (corresponding to inputxi). Note
that the probability measurePXn

+
of the codeCn,+ satisfies

PXn
+
∈ P(Sn,+

= ) and thatP (n)
e (Cn,+) = P

(n)
e (Cn).

From Lemma 1, the average error probability must satisfy

P (n)
e (Cn) = P (n)

e (C+,n)

≥ Pr

[
log

PY n
+ |Xn

+,Hn(dY n
+ |Xn

+, H
n)

Q+,n(dY n
+ |Hn)

≤ log γ

]
− γ

Mn

(64)

for eachn = 1, 2, . . . , γ > 0, whereQ+,n(·|Hn) is Hn-
measurable and takes values inP(CN×(n+1)), with Y n

+ =
1√
K
HnXn

+ + σWn
+ , Wn

+ ∈ CN×(n+1) with i.i.d. CN (0, 1)
entries. Let us chooseγ as

1

nK
log γ =

1

nK
logMn − ξ√

nK
(65)

for someξ > 0. We now set the coding rate
1

nK
logMn = C +

r√
nK

(66)

for some realr. Then, combining (64)–(66), we obtain

P (n)
e (Cn) ≥

Pr

[
√
nK

(
1

nK
log

PY n
+ |Xn

+,Hn(dY n|Xn
+, H

n)

Q+,n(dY n
+ |Hn)

− C

)

≤ r − ξ

]
− exp(−

√
nKξ). (67)

Taking the limit superior overn on the last equation, we obtain

lim sup

n
(β,c)−−−→∞

P (n)
e (Cn) ≥ lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

×
(

1

nK
log

PY n
+ |Xn

+,Hn(dY n
+ |Xn

+, H
n)

Q+,n(dY n
+ |Hn)

− C

)
≤ r − ξ

]
.

(68)

As this is true for eachξ > 0 andQ+,n as defined above, we
can takeξ ↓ 0 followed by the supremum overQ+,n on the
RHS of (68). Taking then the infimum over the codes on the
RHS then LHS, we conclude that

Pe(r|β, c) ≥ F(r|β, c) (69)

which proves part(i) of the proposition.
We now prove part(ii) for the upper bound in (62). From

Lemma 2, we know that there exists a(P (n)
e ,Mn)-codeCn

whose average error probability satisfies

P (n)
e (Cn) ≤ inf

γ>0

{
Pr

[
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)

≤ 1

nK
log(γκn)

]
+

Mn

γ

}
+ αn (70)

for everyn = 1, 2, . . . , whereαn is defined as in Lemma 3.
Let us now set

1

nK
log γ =

1

nK
logMn +

ξ√
nK

(71)

for some ξ > 0. Then, we have the following chain of
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inequalities:

P (n)
e (Cn) ≤ Pr

[
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)

≤ 1

nK
log γ +

1

nK
log κn

]
+

Mn

γ
+ αn

(72)

= Pr

[
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)

≤ 1

nK
logMn +

ξ√
nK

+
1

nK
log κn

]

+ exp(−
√
nKξ) + αn (73)

which simply follows by replacing (71) in (70). For somer
real, we choose the coding rate

1

nK
logMn = C +

r√
nK

. (74)

By combining (70) and (73), taking the superior limit onn,
then ξ ↓ 0 on the RHS, and the infimum over the codes on
the LHS, we obtain

Pe(r|β, c) ≤ lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

×
(

1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
− C

)
≤ r + ξ

]

(75)

where we usedαn → 0 while κn → ∞, such that
1√
nK

log κn → 0. This concludes the proof.

APPENDIX B
PROOF OFTHEOREM 3

The proof relies on information spectrum methods [19] and
is more exactly related to Hayashi’s proof-techniques usedin
[8]. Our starting point is Proposition 1 in Appendix A which
relates the optimal average error probabilityPe(r|β, c) to the
statistics of the mutual information density.

The main problem in studying the optimal average error
probability lies in the difficulty to perform any analytical
calculus on the information spectrum ofPY n|Xn,Hn , unless
the underlying distributions (ofXn, Y n|Xn, Hn, or Y n|Hn)
are Gaussian. Proposition 1 precisely handles this difficulty.
Indeed, first note that the lower bound (60) can be further
bounded by the same expression withQn,+ chosen to be
Gaussian with appropriate mean and variance. As for (62), it
already features an information spectrum of Gaussian distribu-
tions. Both lower and upper bounds will thus rely on exploiting
Theorem 2 with the major difference that, while the upper
bound from (62) provides a definite choice forPXn that allows
for an accurate control of the varianceθn of Theorem 2, (60)
does not and will force us to consider the worst case scenario
where 1

K tr (An)2 = 0, with An = IN − 1
nX

n(Xn)H. As
briefly discussed in Section III, the term(An)2 appears due
to the randomness in the channelHn, leaving the problem

of non-matching upper and lower bounds; this is unlike the
previously studied AWGN scenarios (e.g., [8], [9]) where
Hn = IN and only terms inAn but not (An)2 account for
the second-order statistics.

A. Proof of the lower bound on the optimal average error
probability

From (60),

Pe(r|β, c) ≥ inf
{PXn

+
}∞

n=1

PXn
+
∈P(Sn+1

= )

lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

×
(

1

nK
log

PY n
+ |Xn

+,Hn(dY n
+ |Xn

+, H
n)

Qn,+(dY n
+ )

− C

)
≤ r − ξ

]

(76)

where, for fixedHn, Qn,+ is taken to be complex Gaussian
with zero mean and covariance matrix1KHn(Hn)H + σ2IN .
Thus,

Pe(r|β, c) ≥ inf
{PXn

+
∈P(Sn,+

= )}∞
n=1

lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
I
Xn

+

N,K − C
)
≤ r − ξ

]
(77)

where I
Xn

+

N,K is defined in (78) on the next page and where
Wn

+ ∈ CN×(n+1) is composed of i.i.d.CN (0, 1) elements.
To proceed, we now call Theorem 2 for the random variable

I
Xn

+

N,K . Let {Xn
+}∞n=1 be a sequence withXn

+ random with sup-
port inSn,+

= for eachn. DenotingAn
+ = IK− 1

n+1X
n
+(X

n
+)

H,

for any realz, asn
(β,c)−−−→ ∞, we then have

Pr

[√
nK

θ̃n,+

(
I
Xn

+

N,K − C
)
≤ z

]
→ Φ(z) (79)

where θ̃2n,+
△

= 1
1+n−1 (θ

2
− + ζ 1

K tr (An
+)

2 − 1
K log(1 −

c−1δ0(σ
2)(1 + δ0(σ

2))−2) − 1
K ζβ−1), in which the

terms in K−1 or n−1 arise from accounting for the fact
that Xn

+ ∈ CK×(n+1) and Wn
+ ∈ CN×(n+1). But since

− 1
K log(1 − c−1δ0(σ

2)(1 + δ0(σ
2))−2) − 1

K ζβ−1 → 0 as

n
(β,c)−−−→ ∞, we have more simply by Slutsky’s lemma

Pr

[√
nK

θn,+

(
I
Xn

+

N,K − C
)
≤ z

]
→ Φ(z) (80)

with θ2n,+
△

= θ2− + ζ 1
K tr (An

+)
2.

We can now write

Pr
[√

nK
(
I
Xn

+

N,K − C
)
≤ r − ξ

]

= Pr

[√
nK

θn,+

(
I
Xn

+

N,K − C
)
≤ r − ξ

θn,+

]
(81)

(a)

≥





Pr
[√

nK
θn,+

(
I
X̄n

+

N,K − C
)
≤ r−ξ

θ−

]
, r ≤ 0

Pr
[√

nK
θn,+

(
I
X̄n

+

N,K − C
)
≤ 0
]

, r > 0
(82)

=

{
Φ
(

r−ξ
θ−

)
+ ℓn , r ≤ 0

1
2 + ℓn , r > 0

(83)
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I
Xn

+

N,K
△

=
1

K
log det

(
IN +

1

σ2

Hn(Hn)H

K

)

+
1

nK
tr

[(
Hn(Hn)H

K
+ σ2IN

)−1(
Hn

√
K

Xn
+ + σWn

+

)(
Hn

√
K

Xn
+ + σWn

+

)H

−Wn
+(W

n
+)

H

]
(78)

for some sequenceℓn ↓ 0, where(a) holds sinceθn,+ ≥ θ− >
0 and since we tookr− ξ > 0 for r > 0. The term1/2 arises
from Φ(0) = 1/2 which originates fromθn not being bounded
from above since1

K tr (An
+)

2 can grow likeO(n).

Taking the limit superior asn
(β,c)−−−→ ∞ of the above

equation leads to

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
I
Xn

+

N,K − C
)
≤ r − ξ

]

≥
{
Φ
(

r−ξ
θ−

)
, r ≤ 0

1
2 , r > 0.

(84)

By continuity ofΦ, we can freely take the limitξ ↓ 0 on the
right- then left-hand sides to obtain

lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
I
Xn

+

N,K − C
)
≤ r − ξ

]

≥
{
Φ
(

r
θ−

)
, r < 0

1
2 , r ≥ 0.

(85)

Equation (85) is valid regardless of the choice of the
sequence{PXn

+
∈ P(Sn,+

= )}∞n=1. This therefore implies

Pe(r|β, c) ≥
{
Φ
(

r
θ−

)
, r < 0

1
2 , r ≥ 0

(86)

which completes the proof.

B. Proof of the upper bound on the optimal average error
probability

From (62), we recall that

Pe(r|β, c) ≤ lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK×

(
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
− C

)
≤ r + ξ

]
(87)

whereP̃n(·|Hn) is a Gaussian random variable with zero mean
and covarianceHn(Hn)H + σ2IN and the outer probability
is taken overHn and over the random variableXn having
uniform distributionPXn over the sphereSn

=, as per (63).
Denoting, similar to above,

IX
n

N,K =
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
(88)

we get from the Gaussianity of bothPY n|Xn,Hn and P̃n that
IX

n

N,K is given by (19) withXn of law PXn , while Hn and
Wn are zero mean Gaussian with (properly normalized) unit
covariance.

Once again, we resort to Theorem 2 to determine the
limiting behavior of IX

n

N,K . As opposed to the lower bound,
wherePXn ∈ P(Sn

=) was left undefined,PXn is now fixed
and will allow for a more accurate control of the limiting
variance ofIX

n

N,K . We first obtain

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
IX

n

N,K − C
)
≤ r + ξ

]

= lim sup

n
(β,c)−−−→∞

Pr

[√
nK

θn

(
IX

n

N,K − C
)
≤ r + ξ

θn

]
(89)

whereθn is defined in (20) where we recall thatAn = IN −
1
nX

n(Xn)H. Now, it appears that

1

K
tr
[
(An)2

] (β,c)−−−→ 1

β
(90)

almost surely. To obtain this result, it suffices to realize
that Xn = X̄n( 1

NK tr X̄n(X̄n)H)−
1
2 for X̄n ∈ C

K×n a
standard Gaussian random matrix with entries of zero mean
and unit variance; from classical random matrix results (that
may be obtained by means of the Gaussian tools defined
in Appendix C), we have that 1NK tr X̄n(X̄n)H → 1 while
1

NK tr (X̄n(X̄n)H)2 → 1+β−1, almost surely; plugging these
results in the expression of1K tr (An)2 gives the expected

result. As such, we now have thatθn
(β,c)−−−→ θ+ almost surely

(and so in probability), withθ+ defined in Theorem 3. By
Slutsky’s lemma and Theorem 2, we thus have

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
IX

n

N,K − C
)
≤ r + ξ

]

= lim sup

n
(β,c)−−−→∞

Pr

[√
nK

θn

(
IX

n

N,K − C
)
≤ r + ξ

θ+

]
(91)

= Φ

(
r + ξ

θ+

)
(92)

which, along with the fact that

lim
ξ↓0

Φ

(
r + ξ

θ+

)
= Φ

(
r

θ+

)
(93)

concludes the proof.

APPENDIX C
GAUSSIAN TOOLS AND RELATED RESULTS

The CLT, Theorem 2, relies on advanced tools from random
matrix theory along with standard linear algebraic relations
which are constantly called for. This section introduces the
random matrix concepts and collects the aforementioned rela-
tions.
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Lemma 4 (Some matrix inequalities):For twoN ×N ma-
tricesA andB, the following holds

(i) |trAB| ≤
√

trAAHtrBBH. (94)

If A is Hermitian nonnegative definite, it further holds that

(ii) |trAB| ≤ ‖B‖ trA (95)

(iii)
1

N
trA ≤ ‖A‖ . (96)

Lemma 5 (Cauchy-Schwarz inequality):For two complex
random variablesx andy,

|E [xy]| ≤
√
E [|x|2]

√
E [|y|2]. (97)

Remark 7 (Application of the Cauchy-Schwarz inequality):
Consider two random variablesx and y. By the Cauchy-
Schwarz inequality,

|E [(x− E [x]) (y − E [y])]| ≤
√
Var[x]

√
Var[y]. (98)

Thus,

|E [xy]| = |E [x]E [y] + E [(x− E [x]) (y − E [y])]| (99)

≤ |E [x]E [y]|+
√
Var[x]

√
Var[y]. (100)

Moreover, it follows that

Var[x+ y]

= Var[x] + Var[y] + 2Re {E [(x− E [x]) (y − E [y])]}
(101)

≤ Var[x] + Var[y] + 2
√
Var[x]

√
Var[y] (102)

=
(√

Var[x] +
√
Var[y]

)2
. (103)

Lemma 6 (Integration by parts formula [17, Equation (2.1.42)]):
Let x = [x1, . . . , xN ]

T ∼ CN (0,R) and let
f(x) = f (x1, . . . xN , x∗

1, . . . x
∗
N ) be aC1 complex function,

polynomially bounded together with its derivatives. Then,

E [xif(x)] =

N∑

j=1

RijE

[
∂f(x)

∂x∗
j

]
. (104)

Remark 8 (Integration by parts formula for functionals of matrices with i.i.d. entries):
Let f (W ) be aC1 complex function of the elements ofW
andW ∗, polynomially bounded together with its derivatives,
whereW has i.i.d. entriesWij ∼ CN (0, 1). Then

E [Wijf (W )] = E

[
∂f (W )

∂W ∗
ij

]
. (105)

Lemma 7 (Poincaŕe-Nash Inequality [17, Propostion 2.1.6]):
Let x and f(x) be defined as in Lemma 6 and
let ∇xf(x) = [∂f(x)/∂x1, . . . , ∂f(x)/∂xN ]T and
∇x∗f(x) = [∂f(x)/∂x∗

1, . . . , ∂f(x)/∂x
∗
N ]

T. Then,

Var [f(x)] ≤ E
[
∇xf(x)

TR∇xf(x)
∗]

+ E
[
∇x∗f(x)HR∇x∗f(x)

]
. (106)

Remark 9 (Poincaŕe-Nash Inequality for functionals of matrices with i.i.d. entries):
Let f (W ) be a function of the elements ofW and W ∗

as in Remark 8, whereW ∈ CN×n has i.i.d. entries
Wij ∼ CN (0, 1). Then,

Var [f (W )] ≤
N∑

i=1

n∑

j=1

E



∣∣∣∣
∂f (W )

∂Wij

∣∣∣∣
2

+

∣∣∣∣∣
∂f (W )

∂W ∗
ij

∣∣∣∣∣

2

 .

(107)

Lemma 8 (Identities for Complex Derivatives):Let H ∈
CN×K . Then,

∂Hpq

∂H∗
ij

= 0 (108)

∂Hpq

∂Hij
= δipδjq (109)

∂
[
HHH

]
pq

∂H∗
ij

= δiqHpj (110)

∂
[
HHH

]
pq

∂Hij
= δipH

∗
qj (111)

∂
[
HHH

]
pq

∂H∗
ij

= δjpHiq (112)

∂
[
HHH

]
pq

∂Hij
= δjqH

∗
ip. (113)

Moreover, denoteQ =
(

1
KHHH + xIN

)−1
and Q̃ =(

1
KHHH+ xIK

)−1
for somex > 0. Then,

∂Qpq

∂H∗
ij

= − 1

K
[QH]pjQiq (114)

∂Qpq

∂Hij
= − 1

K
[HHQ]jqQpi (115)

∂Q̃pq

∂H∗
ij

= − 1

K
Q̃pj [HQ̃]iq (116)

∂Q̃pq

∂Hij
= − 1

K
Q̃jq[Q̃HH]pi. (117)

Corollary 1: Let H ∈ CN×K and C ∈ CN×N . Denote
Q =

(
1
KHHH + xIN

)−1
for somex > 0. Then,

(i) tr
∂Q

∂H∗
ij

C = − 1

K
[QCQH]ij (118)

(ii) tr
∂
(
HHH

)

∂H∗
ij

C = [CH]ij . (119)

Proof: The proof follows directly from Lemma 8 and
some straightforward calculus.

Theorem 4:Let {Hn}∞n=1, where Hn ∈ CN×K has
i.i.d. entries Hn

ij ∼ CN (0, 1). For u > 0, let

Qn(u) =
(

1
KHn (Hn)

H
+ uIN

)−1

and Q̃n(u) =
(

1
K (Hn)

H
Hn + uIK

)−1

. Then, asn
(β,c)−−−→ ∞,

E

[
1

K
trQn(u)

]
= δ0 (u) +O

(
1

u4n2

)
(120)

E

[
1

K
tr Q̃n(u)

]
= δ̃0 (u) +O

(
1

u4n2

)
(121)
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where

δ0(u) =
c− 1

2u
− 1

2
+

√
(1− c+ u)2 + 4cu

2u
(122)

δ̃0(u) = δ0(u)−
c− 1

u
. (123)

Proof: The proof follows from a direct adaption of [17,
Theorem 7.2.2] (see also [21, Theorem 3 and Proposition 5]
for a more complex matrix model) along with a careful control
of the dependence onu in the bounds.

Remark 10:The functions(z) = δ0(−z)
c for z ∈ C \ R+

corresponds to the Stieltjes transform of the Marc̆enko-Pastur
law, see e.g., [28, Chapter 3.2].

Property 1 (Some properties ofδ0(u)): The function
δ0(u), u > 0, as defined in Theorem 4 satisfies

(i) δ0(u) >
c

(1 +
√
c)2 + u

> 0 (124)

(ii) δ0(u) <
c

u
(125)

(iii) δ0(u) =
c

1− c+ u (1 + δ0(u))
(126)

(iv)
δ0(u)

1 + δ0(u)
= c− uδ0(u) (127)

(v)
1

1 + δ0(u)
= 1− c+ uδ0(u) (128)

(vi) δ′0(x) = − δ0(x)(1 + δ0(x))

1− c+ x(1 + 2δ0(x))
. (129)

Proof: Properties(i)–(iii) are due toδ0(u) = cm(−u),
wherem(z) is the Stieltjes transform of the Marc̆enko-Pastur
law with support in[(1−√

c)2, (1+
√
c)2]∪{0} (see Remark 10

in Appendix C). Property(iv) follows from (iii) since

δ0(u) =
c

1− c+ u (1 + δ0(u))
(130)

⇐⇒ δ0(u) = (1 + δ0(u)) c− uδ0(u) (1 + δ0(u)) (131)

⇐⇒ δ0(u)

1 + δ0(u)
= c− uδ0(u). (132)

Property (v) follows from (iii) and (iv). Property (vi) is
obtained from the differentiation of

c = δ0(x)(1 − c+ x) + xδ0(x)
2 (133)

which follows from Property(iii).
Lemma 9:Let σ2, c > 0 and δm(x),m ≥ 0, be as defined

in Proposition 4 in Appendix E-A. Then,

(i)

∫ ∞

σ2

c
1− c+ 2uδ0(u)− u2

c δ0(u)
2

u(1− c+ u(1 + 2δ0(u)))
du = log(1 + δ0(σ

2))

− δ0(σ
2)

1 + δ0(σ2)
+ c log

(
1 +

1

σ2

1

1 + δ0(σ2)

)
(134)

(ii)

∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u(1 + 2δ0(u))
du

= − log

(
1− 1

c

δ0(σ
2)2

(1 + δ0(σ2))2

)
. (135)

Proof: For the proof of part(i), simply note that

c
1− c+ 2uδ0(u)− u2

c δ0(u)
2

u(1− c+ u(1 + 2δ0(u)))

=
c

u
− uδ0(u)

2 + c

1− c+ u(1 + 2δ0(u))
(136)

=
c

u
− uδ0(u)

2 + c

uδ0(u) +
c

δ0(u)

(137)

=
c

u
− δ0(u) (138)

where we used Property 1(iii) in the second equality. The
result then unfolds from Theorem 1.

For part(ii), we start with the following calculus:

∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u(1 + 2δ0(u))
du

=

∫ ∞

σ2

[
δ0(u)

1− c+ u(1 + 2δ0(u))
+

σ2δ0(u)(1 + δ0(σ
2))

(1− c+ σ2(1 + σ2) + uδ0(u))(1− c+ u(1 + 2δ0(u)))

]
du

(139)

=

∫ ∞

σ2

[
− δ0(u)δ

′
0(u)

δ0(u)(1 + δ0(u))

+
σ2δ′0(u)(1 + δ0(σ

2))

1 + σ2(1 + δ0(σ2)) + δ0(u)σ2(1 + δ0(σ2))

]
du

(140)

where in the first equality we developed the expression of
δ1(u) and in the second equality we introducedδ′0(u) in
both numerators and used the relation by iterating the relation
xδ0(x)

2 = c − δ0(x)(1 − c + x) (from Property 1(iii)) in
the second denominator in order to maintain a degree one
polynomial in δ0(u). Writing δ0(u)δ

′
0(u) = [2δ0(u)δ

′
0(u) +

δ′0(u)] − δ′0(u)(1 + δ0(u)) in the numerator of the first term,
we then find

∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u(1 + 2δ0(u))
du

=

∫ ∞

σ2

[
− 2δ0(u)δ

′
0(u) + δ′0(u)

δ0(u)(1 + δ0(u))
+

δ′0(u)

δ0(u)

+
σ2δ′0(u)(1 + δ0(σ

2))

1 + σ2(1 + δ0(σ2)) + δ0(u)σ2(1 + δ0(σ2))

]
du (141)

=
[
− log(1 + δ0(u))

+ log(1 + σ2(1 + δ0(σ
2))(1 + δ0(u)))

]∞
u=σ2

(142)

= log(1 + δ0(σ
2)) + log(1 + σ2(1 + δ0(σ

2)))

− log(1 + σ2(1 + δ0(σ
2))2) (143)

= log

(
(1 + δ0(σ

2))(1 + σ2(1 + δ0(σ
2)))

1 + σ2(1 + δ0(σ2))2

)
. (144)
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At this point, remark that

(1 + δ0(σ
2))(1 + σ2(1 + δ0(σ

2)))

1 + σ2(1 + δ0(σ2))2

= 1− δ0(σ
2)

1 + σ2(1 + δ0(σ2))2
(145)

and that

1 + σ2(1 + δ0(σ
2))2 = 1 + σ2 + σ2δ0(σ

2) + c+ cδ0(σ
2)

(146)

=
c

δ0(σ2)
+ 2c+ cδ0(σ

2) (147)

= c
(1 + δ0(σ

2))2

δ0(σ2)
(148)

using Property 1(iii) in the second equality.
This allows us to finally conclude that

∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u(1 + 2δ0(u))
du

= − log

(
1− 1

c

δ0(σ
2)2

(1 + δ0(σ2))2

)
. (149)

APPENDIX D
PROOFS OF THE MAIN RANDOM MATRIX RESULTS

In the proof of Theorem 2, we fundamentally rely on the
fact that the random matricesWn andHn are Gaussian by
assumption. This allows us to use the powerful integration-by-
parts and Poincaré–Nash inequalities (Lemma 6 and Lemma 7
in Appendix C) to compute the expectation and bound the vari-
ance of functionals of Gaussian variables. The derivation of
Theorem 2 is specifically based on the characteristic function
approach as explained in great detail in [21], [17].

This appendix is structured as follows: In Appendix D-A,
we introduce some additional notations and useful identities.
We then prove Theorem 2 in Appendix D-B.

A. Preliminaries

For readability, we often drop the indexn in matrix nota-
tions when there is no confusion, e.g., we writeH instead of
Hn.

We start with the definition of two matrices, the so-called
“resolvents” ofK−1HHH andK−1HHH , respectively, which
will be of repeated use:

Q(x) =

(
1

K
HHH + xIN

)−1

∈ C
N×N (150)

Q̃(x) =

(
1

K
HHH + xIK

)−1

∈ C
K×K (151)

for x > 0. One can easily verify that:

Q(x)
HHH

K
= IN − xQ(x), Q̃(x)

HHH

K
= IK − xQ̃(x).

(152)

We will also rely several times on the following identities:

Q(x)H = HQ̃(x), Q̃(x)HH = HHQ(x) (153)

Q(x)
HHH

K
=

HHH

K
Q(x), Q̃(x)

HHH

K
=

HHH

K
Q̃(x)

(154)

Q(x)Q(y) = Q(y)Q(x), Q̃(x)Q̃(y) = Q̃(y)Q̃(x). (155)

Using the above relations, it is easy to prove the following
bounds on the spectral norm:

‖Q(x)‖ =
∥∥∥Q̃(x)

∥∥∥ ≤ 1

x
(156)

∥∥∥∥Q(x)
HHH

K

∥∥∥∥ =

∥∥∥∥Q̃(x)
HHH

K

∥∥∥∥ ≤ 1. (157)

B. Proof of Theorem 2

Outline of the proof:

The central object of Theorem 2 is the real quantity

Γn ,
√
nKI

Xn
+

N,K (158)

=

√
n

K
log det

(
IN +

1

σ2

1

K
HHH

)

+
1√
nK

trQ(σ2)

(
1√
K

HX + σW

)(
1√
K

HX + σW

)H

− 1√
nK

trWWH (159)

whereI
Xn

+

N,K was defined in (78). We also recall the dimensions
H ∈ CN×K , X ∈ CK×n, andW ∈ CN×n. Moreover,X ∈
Sn
=, whereSn

= was defined in (4).
It is our goal to prove that, under the hypotheses of the

theorem,

φ̃n(t)
△

= E

[
e

it
θn

(Γn−µn)
]
→ e−

t2

2 (160)

for t ∈ R as n
(β,c)−−−→ ∞, whereµn

△

=
√
nKC. This will

imply, by Lévy’s continuity theorem [18, Theorem 16.3], that

θ−1
n (Γn − µn) ⇒ N (0, 1) (161)

which is equivalent to the statement of the theorem. The main
difficulty arises from the evaluation of the expectation in (160)
which must be taken with respect to the three random matrices
W , H , and X . Since the direct computation of̃φn(t) is
intractable, we calculate its derivative with respect tot, leading
to a differential equation which must be integrated. In order
to further simplify the analysis, we split the computation of
the expectation in three steps by successively consideringthe
conditional expectations with respect to each of the matrices.
These expectations are developed by the integration by parts
formula (Lemma 6 in Appendix C) which yields terms that
are either further developed or shown to be asymptotically
negligible by bounding their variance with the help of the
Poincaré-Nash inequality (Lemma 7 in Appendix C). The
analysis makes use of several auxiliary results summarizedin
Appendix C. In more detail, the proof consists of the following
three main steps:
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1) We first take the expectation overW by fixing
X ∈ Sn

= and H ∈ CN×K : we define the function

φX
n,Hn

n (t)
△

= E

[
eitΓ

X
n,Hn

n

]
, whereΓX

n,Hn

n is the ran-
dom variableΓn taken for fixedH = Hn andX = Xn,
and show that

∂φX
n,Hn

n (t)

∂t
=

(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n

)
φX

n,Hn

n (t)

+ ε̄X
n,Hn

n (t) (162)

for someµX
n,Hn

n = O(n), θX
n,Hn

n = O(1), κX
n,Hn

n =
O(n−1), andε̄X

n,Hn

n (t) = O(n−2) which must be care-
fully controlled. This establishes a differential equation
for φX

n,Hn

n (t) the solution of which allows us to obtain
an estimate ofφX

n,Hn

n (t) under the formef(t,X,H) (i.e.,
with no expectation overW ).2

2) We then compute the expectation overH : we introduce
the functionφX

n

n (t)
△

= E
[
φX

n,Hn

n (t)
]
. Working mainly

with the tractable estimatoref(t,X,H) of φX
n,Hn

n (t) as
developed in step 1), instead ofφX

n,Hn

n (t) itself, we
prove in a similar fashion that

∂φX
n

n (t)

∂t
=

(
iµX

n

n − t
(
θX

n

n

)2)
φX

n

n (t) + εX
n

n (t)

(163)

for someµX
n

n = O(n), θX
n

n , and εX
n

n (t) = O(n−1).
This establishes a second differential equation.

3) We finally integrate (163) and show that

φ̃X
n

n
△

= E

[
e
i

t

θX
n

n
(ΓX

n

n −µX
n

n )
]
= e−

t2

2 +O
(
n− 1

2

)

(164)

(asn
(β,c)−−−→ ∞). Since (164) holds almost surely for any

random matrixXn with law PXn ∈ P(Sn
=) for all n,

it holds also for the functioñφn(t) = E

[
φ̃Xn

n (t)
]
=

E

[
e

it
θn

(Γn−µn)
]

which finally proves (160).

We now detail all these steps rigorously.

Step 1:

In a first step, we consider the expectation overW by
treating H ∈ CN×K and X ∈ Sn

= fixed. We define the

functionφX
n,Hn

n (t)
△

= E

[
eitΓ

X
n,Hn

n

]
which we would like to

express as a differential equation of the form∂φ
X

n,Hn

n (t)
∂t =

f (X,H, t)φX
n,Hn

n (t) + ε̄X
n,Hn

n (t) for some functionalf
and quantityε̄X

n,Hn

n (t) which vanishes asymptotically. Since
ΓX

n,Hn

n is real, φX
n,Hn

n (−t) = φX
n,Hn

n (t)∗, so that it is
sufficient to considert ≥ 0 for the rest of the proof.

2Note importantly that, although the termκX
n,Hn

n is of orderO(n−1) and
will not play a role at the end of the calculus, it needs to be isolated and not
contained intōεX

n,Hn

n (t) as the estimation errorφX
n,Hn

n (t)− ef(t,X,H),
which is of the same order of magnitude asε̄X

n,Hn

n (t), will increase by a
factorn when we take its expectation overH (this is due toµX

n,Hn

n being
of orderO(n)).

With the help of (152), we can decomposeΓn in the
following way:

Γn = Γn,1 + Γn,2 + Γn,3 + Γn,4 (165)

where

Γn,1 =

√
n

K
log det

(
IN +

1

σ2

1

K
HHH

)

+
1√
nK

trQ
HXXHHH

K
(166)

Γn,2 = − 1√
nK

trQ
HHH

K
WWH (167)

Γn,3 =
σ√
nK

trQ
HXWH

√
K

(168)

Γn,4 =
σ√
nK

trQ
WXHHH

√
K

(169)

and where we have definedQ , Q(σ2) to simplify the
notations.

By (165),

∂φX
n,Hn

n (t)

∂t
=

4∑

k=1

iE
[
ΓX

n,Hn

n,k eitΓ
X

n,Hn

n

]
. (170)

SinceΓX
n,Hn

n,1 is independent ofW ,

E
[
ΓX

n,Hn

n,1 eitΓ
X

n,Hn

n

]
= ΓX

n,Hn

n,1 φX
n,Hn

n (t). (171)

The term inΓX
n,Hn

n,2 is studied as follows:

E

[
ΓX

n,Hn

n,2

]

= − 1√
nK

E

[
trQ

HHH

K
WWHeitΓ

X
n,Hn

n

]
(172)

= − 1√
nK

N∑

k=1

N∑

i=1

[
Q
HHH

K

]

ki

E

[[
WWH

]
ik
eitΓ

X
n,Hn

n

]

(173)

= − 1√
nK

N∑

k=1

N∑

i=1

[
Q
HHH

K

]

ki

n∑

j=1

E

[
WijW

∗
kje

itΓX
n,Hn

n

]
.

(174)

We now use the integration by parts formula (Lemma 6
in Appendix D) to develop the individual terms
E
[
WijW

∗
kje

itΓX
n,Hn

n

]
as follows:

E
[
WijW

∗
kje

itΓX
n,Hn

n

]

= δikE
[
eitΓ

X
n,Hn

n

]
+ itE

[
W ∗

kj

∂ΓX
n,Hn

n

∂W ∗
ij

eitΓ
X

n,Hn

n

]
.

(175)

The derivatives
∂ΓX

n,Hn

n,k

∂W∗
ij

and
∂ΓX

n,Hn

n,k

∂Wij
can be computed by

straightforward application of the derivation rules provided in
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Lemma 8 in Appendix C:

∂Γn,1

∂W ∗
ij

=
∂Γn,1

∂Wij
=

∂Γn,3

∂Wij
=

∂Γn,4

∂W ∗
ij

= 0 (176)

∂Γn,2

∂W ∗
ij

= − 1√
nK

[
Q
HHH

K
W

]

ij

(177)

∂Γn,2

∂Wij
= − 1√

nK

[
WH

HHH

K
Q

]

ji

(178)

∂Γn,3

∂W ∗
ij

=
σ√
nK

[
Q

H√
K

X

]

ij

(179)

∂Γn,4

∂Wij
=

σ√
nK

[
XH

HH

√
K

Q

]

ji

. (180)

Using (165) together with the derivatives (176), (177), (179)
in (175), we obtain

E
[
[WWH]ike

itΓX
n,Hn

n

]

= nδikφ
X

n,Hn

n (t)

+ it

n∑

j=1

E

[
W ∗

kj

(
∂ΓX

n,Hn

n,2

∂W ∗
ij

+
∂ΓX

n,Hn

n,3

∂W ∗
ij

)
eitΓ

X
n,Hn

n

]

(181)

= nδikφ
X

n,Hn

n (t)− it
1√
nK

E

[([
Q
HHH

K
WWH

]

ik

− σ

[
Q

H√
K

XWH

]

ik

)
eitΓ

X
n,Hn

n

]
. (182)

Replacing the last result in (173) yields

E

[
ΓX

n,Hn

n,2 eitΓ
X

n,Hn

n

]

= − n√
nK

trQ
HHH

K
φX

n,Hn

n (t)

+ itE

[(
1

nK
tr

(
Q
HHH

K

)2

WWH

− σ

nK
trQ

HHH

K
Q

H√
K

XWH

)
eitΓ

X
n,Hn

n

]
. (183)

We will now individually treat the second and third terms
on the RHS of the last equation. For the second term, using

the same steps as above, we arrive at

E

[
1

nK
tr

(
Q
HHH

K

)2

WWHeitΓ
X

n,Hn

n

]

=
1

nK

N∑

k=1

N∑

i=1

[(
Q
HHH

K

)2
]

ki

E
[[
WWH

]
ik
eitΓ

X
n,Hn

n

]

(184)

=
n

nK
tr

(
Q
HHH

K

)2

φX
n,Hn

n (t)

− it

(nK)
3
2

E

[(
tr

(
Q
HHH

K

)3

WWH

− σtr

(
Q
HHH

K

)2

Q
H√
K

XWH

)
eitΓ

X
n,Hn

n

]
(185)

=
n

nK
tr

(
Q
HHH

K

)2

φX
n,Hn

n (t)

− it
n√
n3K3

tr

(
Q
HHH

K

)3

φX
n,Hn

n (t) + εX
n,Hn

n,1 (t)

(186)

where

εX
n,Hn

n,1 (t) =

− itE

[
n√
n3K3

tr

(
Q
HHH

K

)3(
WWH

n
− IN

)
eitΓ

X
n,Hn

n

]

+ itE

[
σ

(nK)
3
2

trQ

(
Q
HHH

K

)2
H√
K

XWHeitΓ
X

n,Hn

n

]
.

(187)

Consider now the third term on the RHS of (183) and define
T = QHH

H

K Q H√
K
X. Then,

σ

nK
E
[
trTWHeitΓ

X
n,Hn

n

]

= it
σ

nK

N∑

i=1

n∑

j=1

TijE

[
∂ΓX

n,Hn

n

∂Wij
eitΓ

X
n,Hn

n

]
(188)

= it
σ2

√
n3K3

trQ2HHH

K
Q
HXXHHH

K
φX

n,Hn

n (t)

+ εX
n,Hn

n,2 (t) (189)

where

εX
n,Hn

n,2 (t) =

− it
σ

(nK)
3
2

E

[
trQ

(
Q
HHH

√
K

)2
H√
K

XWHeitΓ
X

n,Hn

n

]
.

(190)
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Combining the last results, we arrive at

E
[
ΓX

n,Hn

n,2 eitΓ
X

n,Hn

n

]
=

− n√
nK

trQ
HHH

K
φX

n,Hn

n (t)

+ it
n

nK
tr

(
Q
HHH

K

)2

φX
n,Hn

n (t)

+ t2

{
n√
n3K3

tr

(
Q
HHH

K

)3

+
σ2n√
n3K3

trQ2HHH

K
Q
HXXHHH

nK

}
φX

n,Hn

n (t)

+ it
{
εX

n,Hn

n,1 (t)− εX
n,Hn

n,2 (t)
}
. (191)

We now consider the terms inΓX
n,Hn

n,4 andΓX
n,Hn

n,3 . Using
similar calculus as above,

E
[
ΓX

n,Hn

n,4 eitΓ
X

n,Hn

n

]

= E

[
σ√
nK

trQWXH
HH

√
K

eitΓ
X

n,Hn

n

]
(192)

=
σ√
nK

N∑

i=1

n∑

j=1

[
XH

HH

√
K

Q

]

ji

E
[
Wije

itΓX
n,Hn

n

]
(193)

= it
σ√
nK

N∑

i=1

n∑

j=1

[
XH

HH

√
K

Q

]

ji

E

[
∂ΓX

n,Hn

n

∂W ∗
ij

eitΓ
X

n,Hn

n

]

(194)

= it
σ√
nK

N∑

i=1

n∑

j=1

[
XH

HH

√
K

Q

]

ji

E

[(
σ√
nK

[
Q

H√
K

X

]

ij

− 1√
nK

[
Q
HHH

K
W

]

ij

)
eitΓ

X
n,Hn

n

]
(195)

= it
σ2n

nK
trQ2HXXHHH

(n+ 1)K
φX

n,Hn

n (t)

− itE

[
σ

nK
trQ

HHH

K
WXH

HH

√
K

QeitΓ
X

n,Hn

n

]
. (196)

Doing the same calculus for the second term on the RHS
of the last equation, one arrives at

E

[
σ

nK
trQ

HHH

K
WXH

HH

√
K

QeitΓ
X

n,Hn

n

]

= it
σ2n√
n3K3

trQ2HHH

K
Q
HXXHHH

nK
φX

n,Hn

n (t)

+ εX
n,Hn

n,4 (t) (197)

where

εX
n,Hn

n,4 (t) =

− it
σ

(nK)
3
2

E

[
trQ

(
Q
HHH

K

)2

WXH
HH

√
K

eitΓ
X

n,Hn

n

]
.

(198)

Thus,

E
[
ΓX

n,Hn

n,4 eitΓ
X

n,Hn

n

]

= it
σ2n

nK
trQ2HXXHHH

nK
φX

n,Hn

n (t)

+ t2
σ2n√
n3K3

trQ2HHH

K
Q
HXXHHH

nK
φX

n,Hn

n (t)

− itεX
n,Hn

n,4 (t). (199)

SinceΓX
n,Hn

n,3 =
(
ΓX

n,Hn

n,4

)∗
, it follows that

E
[
ΓX

n,Hn

n,3 eitΓ
X

n,Hn

n

]
= E

[
ΓX

n,Hn

n,4 e−itΓX
n,Hn

n

]∗
. (200)

Gathering all pieces together as a polynomial int, we obtain
a first differential equation ofφX

n,Hn

n (t) as given in (202)–
(206) on the top of the next page, where

A
△

= IK − 1

n
XXH. (201)

Let us now have a closer look at the quantitiesθX
n,Hn

n ,
κX

n,Hn

n , andε̄X
n,Hn

n (t) individually. Using the identities and
bounds presented at the beginning of this proof, one can verify
that

0 ≤
(
θX

n,Hn

n

)2
≤ N

K
+

2

nK
trXXH =

(
N

K
+ 2

)
(207)

0 ≤ κX
n,Hn

n ≤ N√
nK3

+
3√

n3K3
trXXH

=
1√
nK

(
N

K
+ 3

)
. (208)

Based on Remark 7 in Appendix C, we can bound the absolute
value of ε̄X

n,Hn

n (t) as
∣∣∣ε̄X

n,Hn

n (t)
∣∣∣ ≤

t3




√√√√Var

[
1√
nK3

tr

(
Q
HHH

K

)3(
WWH

n
− IN

)]

+4

√√√√Var

[
σ√
n3K3

trQ

(
Q
HHH

K

)2
HXWH

√
K

]

 .

(209)

By Lemma 10(ii) in Appendix E-A, it follows that

Var

[
1√
nK3

tr

(
Q
HHH

K

)3(
WWH

n
− IN

)]

= Var

[
n√
n3K3

tr

(
Q
HHH

K

)3
WWH

n

]
(210)

≤ 2

nK3
tr

(
Q
HHH

K

)6

(211)

≤ 2N

nK3
. (212)
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∂φX
n,Hn

n (t)

∂t
= (iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n )φX
n,Hn

n (t) + ε̄X
n,Hn

n (t) (202)

µX
n,Hn

n =

√
n

K
log det

(
IN +

1

σ2

HHH

K

)
− n√

nK
trQ

HAHH

K
(203)

(
θX

n,Hn

n

)2
=

n

nK
tr

(
Q
HHH

K

)2

+
2σ2n

nK
trQ2HXXHHH

nK
(204)

κX
n,Hn

n =
n√
n3K3

tr

(
Q
HHH

K

)3

+
3σ2n√
n3K3

trQ2HHH

K
Q
HXXHHH

nK
(205)

ε̄X
n,Hn

n (t) = it2E

[{
n√
n3K3

tr

(
Q
HHH

K

)3(
WWH

n
− IN

)
− 3σ√

n3K3
trQ

(
Q
HHH

K

)2
HXWH

√
K

− σ√
n3K3

trQ

(
Q
HHH

K

)2
WXHHH

√
K

}
eitΓ

]
. (206)

Similarly, by Lemma 10(i) in Appendix E-A, it follows that

Var

[
σ√
n3K3

trQ

(
Q
HHH

K

)2
HXWH

√
K

]

=
σ2

n3K3
tr

(
Q
HHH

K

)4

Q
HXXHHH

K
Q (213)

≤ σ2

n3K3
tr Q̃2H

HH

K
XXH (214)

≤ 1

n3K3
trXXH (215)

=
1

n2K2
. (216)

Replacing (212) and (216) in (209), we then obtain

ε̄X
n,Hn

n (t) = O
(
t3n−2

)
. (217)

Similarly, from (207) and (208),

(
θX

n,Hn

n

)2
= O(1) (218)

κX
n,Hn

n = O
(
n−1

)
. (219)

Two remarks are important at this point. First observe that
the introduction ofκX

n,Hn

n allows one to gain at each step
one order of precision on the estimation ofφX

n,Hn

n (through
refinements of the coefficients of its differential equation).
The choice of the order to be used is mainly ruled by the
subsequent averaging steps. For the present proof, we need
the error (given bȳεX

n,Hn

n (t)) to be withinO(n−2).
Second, it is very important to keep the terms int in the

various bounds derived here and below. The reason for this
is twofold: (i) to solve the differential equations inφX

n,Hn

n ,
thenφX

n

n , it will be necessary to integrate these bounds and
their integrability must be controlled, (ii) at the end of the
calculus, the normalization ofΓn by (the estimate for) its
standard deviationθX

n

n , used to ensure a limiting unit variance,
will be performed via a change of variablet 7→ t/θX

n

n which
requires a close inspection of the polynomials int andn−1 in
the bounds.

Step 2:

In this step, we first solve (202) to expressφX
n,Hn

n (t) as a
function ofX andH. We then proceed similar to Step 1 and
express the functionφX

n

n (t) = E[φX
n,Hn

n (t)] as the solution
of a differential equation.

The solution of (202) reads

φX
n,Hn

n (t) = eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

(
1+

∫ t

0

e−ixµX
n,Hn

n + x2

2 (θ
X

n,Hn

n )
2−i

x3

3 κX
n,Hn

n ε̄X
n,Hn

n (x)dx

)
.

(220)

Define the functionφX
n

n (t) = E[φX
n,Hn

n (t)]. The equation
(222) on the top of the next page follows then from (220).

We will now show that only the first term on the RHS of
(222) is asymptotically non-negligible. Let us first define

Θ =
(∫ t

0

e−ixµX
n,Hn

n + x2

2 (θ
X

n,Hn

n )
2−i

x3

3 κX
n,Hn

n ε̄X
n,Hn

n (x)dx

)

× eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n . (223)

Since

|Θ| ≤ e−
t2

2 (θ
X

n,Hn

n )
2
∫ t

0

e
x2

2 (θ
X

n,Hn

n )
2
∣∣∣ε̄X

n,Hn

n (x)
∣∣∣ dx

(224)

= O
(
t4n−2

)
(225)

it follows that E[Θ] = O(t4n−2) andVar[Θ] = O(t8n−4).
Thus, by Remark 7 in Appendix C,
∣∣∣E
[
µX

n,Hn

n Θ
]∣∣∣

≤
∣∣∣E
[
µX

n,Hn

n

]∣∣∣ |E [Θ]|+
√
Var

[
µXn,Hn

n

]√
Var [Θ]

(226)

≤
∣∣∣E
[
µX

n,Hn

n

]∣∣∣O
(
t4n−2

)
+

√
Var

[
µXn,Hn

n

]
O
(
t4n−2

)
.

(227)
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∂φX
n

n (t)

∂t
= E

[
∂φX

n,Hn

n (t)

∂t

]
(221)

= E

[(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n

)
eitµ

X
n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

]

+ E

[(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n

)(∫ t

0

e−ixµX
n,Hn

n + x2

2 (θ
X

n,Hn

n )
2−i

x3

3 κX
n,Hn

n ε̄X
n,Hn

n (x)dx

)

× eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

]
+ E

[
ε̄X

n,Hn

n (t)
]
. (222)

Again, from Remark 7 in Appendix C,

Var
[
µX

n,Hn

n

]
≤
(√

n

K
Var

[
log det

(
IN +

1

σ2

HHH

K

)]

+

√
n

K
Var

[
trQ

HAHH

K

])2

. (228)

From Proposition 3(iii) in Appendix E-A, we know that

Var
[
trQHAHH

K

]
= O

(
1
K trA2

)
. It remains to find a bound

for the variance of the first term in (228). By Lemma 7 in
Appendix C,

Var

[
log det

(
IN +

1

σ2

HHH

K

)]

≤ 2

σ4

∑

i,j

E




∣∣∣∣∣
1

K
trQ

∂
(
HHH

)

∂Hn
ij

∣∣∣∣∣

2


 (229)

=
2

σ4

∑

i,j

E




∣∣∣∣∣
1

K

∑

p,q

δip (Hqj)
∗
Qqp

∣∣∣∣∣

2


 (230)

=
2

σ4

∑

i,j

E

[∣∣∣∣
1

K

[
HHQ

]
ji

∣∣∣∣
2
]

(231)

=
2

σ4

1

K
trQ2HHH

K
(232)

= O(1). (233)

Using the fact that trA2 = O(n2), we conclude that
Var

[
µX

n,Hn

n

]
= O (n).

Similarly, we have from Proposition 4(i) in Appendix E

∣∣∣E
[
µX

n,Hn

n

]∣∣∣ =
∣∣∣∣∣

√
n

K
E

[
log det

(
IN +

1

σ2

HHH

K

)

−
√

n

K
trQ

HAHH

K

]∣∣∣∣∣ (234)

= O
(
n+

√
1

n3
trA2

)
(235)

= O (n) . (236)

Combining the last results, we have shown that
∣∣∣E
[
µX

n,Hn

n Θ
]∣∣∣ = O

(
t4n−1

)
. (237)

Similarly, one can show that
∣∣∣∣E
[(

θX
n,Hn

n

)2
Θ

]∣∣∣∣ = O
(
t4n−2

)
(238)

∣∣∣E
[
κX

n,Hn

n Θ
]∣∣∣ = O

(
t4n−3

)
. (239)

Using (237), (238), and (239), we can finally conclude that

E

[(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n

)
Θ

]

= O
(
t4n−1 + t5n−2 + t6n−3

)
. (240)

Since all bounds are clearly integrable overt, this now means

thateitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n is an estimator ofφX
n

n

within O(n−1). Note that this bound would beO(1) if we
had only used an estimation ofφX

n,Hn

n within O(n−1) in the
previous step. Hence the fundamental importance of the term
κX

n,Hn

n .
We can therefore proceed to studyφX

n

n via the estimator

eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n .
Starting back from (222), we first verify that
∣∣∣E
[
it2κX

n,Hn

n eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

]∣∣∣

= O(t2n−1)E
[
e−

t2

2 (θ
X

n,Hn

n )
2]

= O(t2n−1). (241)

Thus, we have

∂φX
n

n (t)

∂t
= E

[(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2)

× eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

]

+O
(
t2 + t4

n
+

t3 + t5

n2
+

t6

n3

)
. (242)

We now develop the term in the expectation and express it
under the form off (X)φX

n

n (t)+ εX
n

n (t) for some functional
f and asymptotically negligible quantityεX

n

n (t). For better
readability, we define the shorthand notation

γX
n,Hn

n = itµX
n,Hn

n − t2

2

(
θX

n,Hn

n

)2
+ i

t3

3
κX

n,Hn

n (243)

and consider individually the terms

A: E
[
µX

n,Hn

n eγ
X

n,Hn

n

]
, B: E

[(
θX

n,Hn

n

)2
eγ

X
n,Hn

n

]
.
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Term A: The term A cannot be evaluated in a straightfor-
ward manner as the integration by parts formula (Lemma 6 in
Appendix C) cannot be applied to the log-term inµX

n,Hn

n (as
defined in (203)). To avert this difficulty, we use the identity

log det

(
IN +

1

σ2

HHH

K

)
=

∫ ∞

σ2

1

u
trQ(u)

HHH

K
du (244)

which, together with the Fubini theorem (using
trQ(u)HHH ≤ u−1trHHH), gives for A:

E
[
µX

n,Hn

n eγ
X

n,Hn

n

]

=

√
n

K

∫ ∞

σ2

1

u
E

[
trQ(u)

HHH

K
eγ

X
n,Hn

n

]
du

−
√

n

K
E

[
trQ

HAHH

K
eγ

X
n,Hn

n

]
. (245)

Before we continue, we need the following result which is
the cornerstone of the subsequent analysis:

Proposition 2: Let u ≥ σ2 > 0 andγX
n,Hn

n be defined as
in (243). Then,

(i) E

[
trQ(u)

HHH

K
eγ

X
n,Hn

n

]

= N

(
1− c+ 2uδ0(u)− u2

c δ0(u)
2
)

1− c+ u (1 + 2δ0(u))
E
[
eγ

X
n,Hn

n

]

+ it

√
n

K
u

δ0(u)− σ2δ1(u)

1− c+ u (1 + 2δ0(u))
E
[
eγ

X
n,Hn

n

]

+O
(

P (t)

u
√
K

)
(246)

(ii) E

[
trQ

HAHH

K
eγ

X
n,Hn

n

]

= −it

√
n

K

γ1
(
σ2
)

1
K trA2

(1 + δ0(σ2))2
E

[
eγ

X
n,Hn

n

]

+O
(
P1(t)√

K
+

tP2(t)√
K

1

K
trA2

)
(247)

for some non-zero polynomialsP (t), P1(t), P2(t) in t with
nonnegative coefficients and withδm(x) andγm(x) given by
Proposition 4 in Appendix E.

Proof: The proof is provided in Appendix E-B.
Applying Proposition 2(i) and (ii) to the first and second

terms of (245), respectively, we obtain the result in (248) on
the top of the next page, where for the last RHS term, we
used

∫∞
σ2 u−2du < ∞ andP1, P2 are non-zero polynomials

with nonnegative coefficients, possibly different from those of
Proposition 2. Note in passing the fundamental importance
of maintaining1/u in the big-O term of Proposition 2(i).
The existence of the two integrals in (248) can be proved
via bounds on theδt(u) and γt(u), essentially relying on
their definitions in Proposition 4 and on controls similar to
Property 1 (i) and (ii) in Appendix C. Nonetheless, a more
immediate argument consists in remarking that, since the LHS
of (248) is finite, and so are all terms aside from the integrals
on the RHS, so is the sum of the integrals. Takingt = 0 then
justifies with the same argument that the first integral is finite
which, taking thent 6= 0, ensures the finiteness of the second
integral.

Also note that the last RHS term of (248) isnot necessarily
negligible in the largen limit. Indeed, forX ∈ Sn, trA2 can
grow asO(K2), so that the whole term may grow asO(

√
K).

It is therefore essential to keep track of the terms inA. The
pre-factort in front of 1

K trA2 will play a significant role in
controlling these terms at the end of the proof, which explains
why we also need to keep track oft in the various bounds.

Term B: For the term B, we have from the identities in
(152)

E

[(
θX

n,Hn

n

)2
eγ

X
n,Hn

n

]

= E

[(
1

K
tr

(
Q
HHH

K

)2

+
2σ2

K
tr

(
Q
HXXHHH

nK
Q

))

× eγ
X

n,Hn

n

]
(249)

= E

[(
1

K
trQ

HHH

K
+

σ2

K
trQ2HHH

K

− 2σ2

K
trQ2H

(
IK − 1

nXXH
)
HH

K

)
eγ

X
n,Hn

n

]
+O

(
1

K

)

(250)

= E

[(
c− σ4

K
trQ2 − 2σ2

K
trQ2HAHH

K

)
eγ

X
n,Hn

n

]

+O
(

1

K

)
. (251)

To proceed with this term, which is essentially equal to
the product of the expectations of the two arguments, we
rely on Remark 7 in Appendix C. Using Proposition 3 in
Appendix E-A and Proposition 4 in Appendix E-A to bound
the variances of each term, we have

E

[(
θX

n,Hn

n

)2
eγ

X
n,Hn

n

]
=
(
c− σ4δ1(σ

2)
)
E

[
eγ

X
n,Hn

n

]

+O
(

1√
K

)
(252)

where we used in particular
√
K−3trA2 ≤ 1/

√
K.

Combining (242), (248), and (252) we finally obtain the
differential equation (253) on the next page, whereµX

n

n ,(
θX

n

n

)2
, and ε̄X

n

n (t) are defined in (254)–(256) for some
non-zero polynomials with nonnegative coefficientsP1(t) and
P2(t).

Using Lemma 9 in Appendix C and the definition ofγ1, δ1
in Proposition 4, the expressions ofµX

n

n and θX
n

n can be
simplified as:

µX
n

n =
√
nKC (257)

θX
n

n =

[
θ2− + ζ

1

K
trA2

] 1
2

(258)

whereθ− is defined in the statement of Theorem 3 andζ =
−δ′0(σ

2)(1 + δ0(σ
2))−1. Note that we have used the relation

δ0(σ
2) = −δ1(σ

2). Before we continue with the main proof,
we will show thatθ2− > 0 andζ > 0.

For the former, first note that the logarithm term ofθ−
in (24) is well defined. Indeed, forc ≥ 1, the argument is
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E
[
µX

n,Hn

n eγ
X

n,Hn

n

]
=

√
nK






∫ ∞

σ2

c
(
1− c+ 2uδ0(u)− u2

c δ0(u)
2
)

u (1− c+ u (1 + 2δ0(u)))
du




E
[
eγ

X
n,Hn

n

]

+ it
n

K

{∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u (1 + 2δ0(u))
du+

γ1
(
σ2
)

1
K trA2

(1 + δ0(σ2))
2

}
E
[
eγ

X
n,Hn

n

]

+O
(
P1(t)√

K
+

tP2(t)√
K

1

K
trA2

)
(248)

∂φX
n

n (t)

∂t
=

(
iµX

n

n − t
(
θX

n

n

)2)
E

[
eγ

X
n,Hn

n

]
+ ε̄X

n

n (t) (253)

µX
n

n =
√
nK






∫ ∞

σ2

c
(
1− c+ 2uδ0(u)− u2

c δ0(u)
2
)

u (1− c+ u (1 + 2δ0(u)))
du




 (254)

(
θX

n

n

)2
=

n

K

{∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u (1 + 2δ0(u))
du+

γ1
(
σ2
)

1
K trA2

(1 + δ0(σ2))
2 +

K

n

(
c− σ4δ1(σ

2)
)
}

(255)

ε̄X
n

n (t) = O
(
P1(t)√

K
+

tP2(t)√
K

1

K
trA2

)
(256)

clearly positive. Forc < 1, by Property 1(iv) in Appendix C,
δ0(σ

2)2(1 + δ0(σ
2))−2 = (c − σ2δ0(σ

2))2 < c2, with the
inequality arising from Property 1(i) and(ii) in Appendix C;
this then implies that the argument is greater than1− c > 0.
Obviously, in both cases, as the argument of the logarithm is
less than one, the logarithm itself is negative. This implies that

θ2− = −β log

(
1− 1

c

δ0(σ
2)2

(1 + δ0(σ2))2

)
+
(
c+ σ4δ′0(σ

2)
)

(259)

(a)
> c− σ4δ0

(
σ2
) (

1 + δ0
(
σ2
))

1− c+ σ2 (1 + δ0 (σ2)) + σ2δ0 (σ2)
(260)

(b)
= c− cσ2

(
1 + δ0

(
σ2
))

c
δ0(σ2) + σ2δ0 (σ2)

(261)

(c)
> c

(
1− σ2

(
1 + δ0

(
σ2
))

σ2 + σ2δ0 (σ2)

)
(262)

= 0 (263)

where (a) follows from the definition ofδ′0(x) established
in Property 1(vi) in Appendix C, (b) follows from Prop-
erty 1 (iii) in Appendix C, and(c) is due to Property 1(ii)
in Appendix C which implies that c

δ0(σ2) > σ2.
Concerningζ, we first show thatδ1(σ2) = −δ′0(σ

2) > 0
(where this identity follows from Property 1(vi) in Ap-
pendix C). Sincec−1δ0(σ

2) is the Stieltjes transform of the
Marc̆enko-Pastur lawµc taken in−σ2 (see, e.g., [28, Chapter
3.2]), we can conclude that

δ1(σ
2) = −δ′0(σ

2) =
1

c

∫
1

(t+ σ2)2
µc(dt) > 0. (264)

Since alsoδ0(σ2) > 0, it follows that ζ = −βδ′0(σ
2)(1 +

δ0(σ
2)) > 0.

We now relateφX
n

n (t) = E
[
φX

n,Hn

n (t)
]

andE

[
eγ

X
n,Hn

n

]

with the help of the previously established results. Starting
from (220), one can easily show that

∣∣∣φX
n,Hn

n (t)− eγ
X

n,Hn

n

∣∣∣ ≤ Mt4n−2 (265)

for some constantM independent ofH, t, andn, from which

φX
n

n (t) = E

[
φX

n,Hn

n (t)
]
= E

[
eγ

X
n,Hn

n

]
+O

(
t4n−2

)

(266)

or, equivalently,

E

[
eγ

X
n,Hn

n

]
= φX

n

n (t) +O
(
t4n−2

)
. (267)

Replacing the last equation in (253) leads to

∂φX
n

n (t)

∂t
=

(
iµX

n

n − t
(
θX

n

n

)2)
φX

n

n (t)

+

(
iµX

n

n − t
(
θX

n

n

)2)
O
(
t4n−2

)
+ ε̄X

n

n (t).

(268)

One can verify from (254) and (255) that

µX
n

n = O(n) (269)
(
θX

n

n

)2
= O

(
1 +

1

K
trA2

)
. (270)

Hence

∂φX
n

n (t)

∂t
=

(
iµX

n

n − t
(
θX

n

n

)2)
φX

n

n (t) + εX
n

n (t) (271)

whereεX
n

n (t) satisfies

εX
n

n (t) = O
(
P1(t)√

K
+

tP2(t)√
K

1

K
trA2

)
. (272)



23

Step 3:

Solving the differential equation (271), we arrive at

φX
n

n (t) = eitµ
X

n

n − t2

2 (θ
X

n

n )
2

(
1+

∫ t

0

e−ixµX
n

n + x2

2 (θ
X

n

n )
2

εX
n

n (x)dx

)
(273)

= eitµ
X

n

n − t2

2 (θ
X

n

n )
2

+ ε̃X
n

n (t) (274)

with ε̃X
n

n (t) = O
(
tεX

n

n (t)
)
.

Denoteφ̃X
n

n (t) = E

[
e
i

t

θX
n

n
(ΓX

n

n −µX
n

n )
]
. Then, from (274),

φ̃X
n

n (t) = E

[
e
i

t

θX
n

n
(ΓX

n

n −µX
n

n )
]

(275)

= φX
n

n

(
t

θXn

n

)
e
−it

µX
n

n

θX
n

n (276)

= e−
t2

2 + ε̃X
n

n

(
t

θXn

n

)
e
−it

µX
n

n

θX
n

n . (277)

To conclude, we need to control the term̃εX
n

n

(
t(θX

n

n )−1
)
.

This is where the precision onεXn
n (t) from (272) is used. Take

t ≥ 0 fixed. First, observe from (263) thatθX
n

n ≥ θ− > 0.
We then have

ε̃X
n

n

(
t

θXn

n

)

= O
(

t

θXn

n

εX
n

n

(
t

θXn

n

))
(278)

= O
(
P1

(
t(θX

n

n )−1
)

√
KθXn

n

+
P2

(
t(θX

n

n )−1
)

√
K (θXn

n )
2

1

K
trA2

)
(279)

= O
(

1√
K

)
(280)

where, in the last equality, we usedP1

(
t(θX

n

n )−1
)
(θX

n

n )−1 ≤
P1(tθ

−1
− )θ−1

− , P2

(
t(θX

n

n )−1
)
≤ P2(tθ

−1
− ), both bounded for

t fixed, and
1
K trA2

(θXn

n )
2 =

1
K trA2

θ2− + ζ 1
K trA2

≤ 1

ζ
< ∞. (281)

We conclude that∣∣∣∣∣ε̃
X

n

n

(
t

θXn

n

)
e
−it

µX
n

n

θX
n

n

∣∣∣∣∣ = O
(

1√
K

)
. (282)

Take now PXn ∈ P (Sn
=) for all n and let

φ̃n(t)
△

= E

[
φ̃Xn

n (t)
]
. Then, from (277) and (282),

φ̃n(t) = e−
t2

2 +O
(

1√
K

)
. (283)

Taking t < 0, and usingφ̃n(−t) = φ̃n(t)
∗, the result above

generalizes tot ∈ R.
This implies by Lévy’s continuity theorem that

Γn − µn

θn
⇒ N (0, 1) (284)

where we have definedµn = µXn

n and θn = θX
n

n . This
terminates the proof.

APPENDIX E
ADDITIONAL RANDOM MATRIX RESULTS

A. Auxiliary results

Lemma 10:Let G ∈ CM×L have i.i.d. entriesGij ∼
CN (0, 1) and letS ∈ CL×M andT ∈ CM×M . Then,

(i) Var [trSG] = trSSH (285)

(ii) Var
[
trTGGH

]
≤ 2LtrTTH. (286)

Proof: The proof of part(i) is obvious. Part(ii) is
proved by a mere application of Lemma 7 and Lemma 8 in
Appendix C.

Lemma 11:Let G ∈ CM×L have i.i.d. entriesGij ∼
CN (0, 1). Let T ∈ CM×M be a deterministic matrix andω
be a function ofG. Then,

E
[
trTGGHeω

]
= LtrTE [eω]

+ E




∑

i,j

∂ω

∂G∗
ij

[
GHT

]
ji
eω



 . (287)

Proof: This follows immediately from Lemma 6 in Ap-
pendix C.

Proposition 3: Let H ∈ CN×K have i.i.d. elements
Hij ∼ CN (0, 1) and define the functionalsQ(x) =(

1
KHHH + xIN

)−1
and Q̃(x) =

(
1
KHHH + xIK

)−1
for

x > 0. Further, letC,D ∈ CN×N andC̃, D̃ ∈ CK×K . Then,
for u, v > 0 and any nonnegative integerm, the following
holds:

(i) Var

[
1

K
trCQ(u)DQ(v)m

]

≤ 2

(√
v
u +m

)2

u2v2m+1

‖D‖2
K3

trCCH (288)

(ii) Var

[
1

K
tr C̃Q̃(u)D̃Q̃(v)m

]

≤ 2

(√
v
u +m

)2

u2v2m+1

‖D̃‖2
K3

tr C̃C̃H (289)

(iii) Var

[
1

K
trQ(u)Q(v)m

HC̃HH

K

]

≤ 2

(√
v
u + 2m

)2

v2m+1

1

K3
tr C̃C̃H (290)

(iv) Var

[
1

K
trQ(u)Q(v)m

HC̃HH

K

]

≤ 2

(
2
√

v
u + 2m− 1

)2

u2v2m−1

1

K3
tr C̃C̃H, m ≥ 1.

(291)

Moreover, forC andC̃ Hermitian,

(v) Var

[
1

K
trCQ(u)CQ(v)m

]
≤ 2

(√
v
u +m

)2

u2v2m+1

1

K3
trC4

(292)

(vi) Var

[
1

K
tr C̃Q̃(u)C̃Q̃(v)m

]
≤ 2

(√
v
u +m

)2

u2v2m+1

1

K3
tr C̃4.

(293)
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Proof: The results follow from the successive applications
of Lemma 7 and Lemma 4 in Appendix C.

Proposition 4: Let {Hn}∞n=1, where Hn ∈ CN×K has
i.i.d. elementsHn

ij ∼ CN (0, 1), and defineQn(x) =(
1
KHn (Hn)

H
+ xIN

)−1

for x > 0. Let {Cn}∞n=1, where

Cn ∈ CN×N . Then, foru ≥ σ2 > 0 and any nonnegative

integerm, the following holds asn
(β,c)−−−→ ∞:

(i) E

[
1

K
trQn(u)Qn(σ2)m

HnCn (Hn)
H

K

]

= γm (u)
1

K
trCn +O

(√
1

u2K5
trCn (Cn)H

)
(294)

(ii) E

[
1

K
trQn(u)Qn(σ2)m

]
= δm (u) +O

(
1

un2

)
(295)

where, form ≥ 1,

γm(u) = δm−1(u)− σ2δm(u) (296)

δm(u) =
δm−1(u)

[
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+

∑m−1
k=1

[
δk−1(u)− σ2δk(u)

]
δm−k

(
σ2
)

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
(297)

and

γ0 (u) = c− uδ0(u) (298)

with δ0(u) as defined in Theorem 4 in Appendix C.
Proof: In order to simplify the notations, we drop the

dependence ofn, e.g., we writeH instead ofHn. We begin
by standard Gaussian calculus based on the integration by parts
formula (Lemma 6 in Appendix C):

E

[
1

K
trQ(u)Q(σ2)m

HCHH

K

]

=
1

K2

∑

i,j,k,r,s

E
[
HijCjkH

∗
rkQ(u)rs

[
Q(σ2)m

]
si

]
(299)

=
1

K2

∑

i,j,k,r,s

CjkE

[
∂
(
H∗

rkQ(u)rs
[
Q(σ2)m

]
si

)

∂H∗
ij

]
(300)

=
1

K2

∑

i,j,k,r,s

CjkE

[
δirδjkQ(u)ls

[
Q(σ2)m

]
si

− 1

K
H∗

rk [Q(u)H ]rj Q(u)is
[
Q(σ2)m

]
si

+H∗
rkQ(u)rs

∂
[
Q(σ2)m

]
si

∂H∗
ij

]
(301)

=
1

K
trCE

[
1

K
trQ(u)Q(σ2)m

]

− E

[
1

K
trQ(u)

HCHH

K

1

K
trQ(u)Q(σ2)m

]

+
1

K2

∑

i,j,s

E

[
[
CHHQ(u)

]
js

∂
[
Q(σ2)m

]
si

∂H∗
ij

]
. (302)

To continue, we will develop the term
∂[Q(σ2)m]

si

∂H∗
ij

as
follows:

∂
[
Q(σ2)m

]
si

∂H∗
ij

=
m∑

k=1

∑

p,q

[
Q(σ2)k−1

]
sp

∂Q(σ2)pq
∂H∗

ij

[
Q(σ2)m−k

]
qi

(303)

= − 1

K

m∑

k=1

∑

p,q

[
Q(σ2)k−1

]
sp

[
Q(σ2)H

]
pj

×Q(σ2)iq
[
Q(σ2)m−k

]
qi

(304)

= − 1

K

m∑

k=1

[
Q(σ2)kH

]
sj

[
Q(σ2)m−k+1

]
ii
. (305)

Replacing (305) in (302), we arrive at

E

[
1

K
trQ(u)Q(σ2)m

HCHH

K

]

=
1

K
trCE

[
1

K
trQ(u)Q(σ2)m

]

− E

[
1

K
trQ(u)

HCHH

K

1

K
trQ(u)Q(σ2)m

]

−
m∑

k=1

E

[
1

K
trQ(u)Q(σ2)k

HCHH

K

1

K
trQ(σ2)m−k+1

]
.

(306)

By Proposition 3 in Appendix E-A and Remark 7 in
Appendix C, we have

E

[
1

K
trQ(u)

HCHH

K

1

K
trQ(u)Q(σ2)m

]

= E

[
1

K
trQ(u)

HCHH

K

]
E

[
1

K
trQ(u)Q(σ2)m

]

+O
(√

1

u3K5
trCCH

)
(307)

E

[
1

K
trQ(u)QkHCHH

K

1

K
trQm−k+1

]

= E

[
1

K
trQ(u)QkHCHH

K

]
E

[
1

K
trQm−k+1

]

+O
(√

1

u2K5
trCCH

)
(308)

and, thus,

E

[
1

K
trQ(u)Q(σ2)m

HCHH

K

]

=
1

K
trCE

[
1

K
trQ(u)Q(σ2)m

]

− E

[
1

K
trQ(u)

HCHH

K

]
E

[
1

K
trQ(u)Q(σ2)m

]

−
m∑

k=1

E

[
1

K
trQ(u)Q(σ2)k

HCHH

K

]
E

[
1

K
trQ(σ2)m−k+1

]

+O
(√

1

u2K5
trCCH

)
. (309)
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Define the following quantities

γ◦
m (u,C) = E

[
1

K
trQ(u)Q(σ2)m

HCHH

K

]
, m = 0, 1, . . .

(310)

δ◦m (u) = E

[
1

K
trQ(u)Q(σ2)m

]
, m = −1, 0, 1, . . .

(311)

which satisfy the relations

δ◦−1(σ
2) = c (312)

γ◦
m (u, IK) = E

[
1

K
trQ(u)Q(σ2)m

HHH

K

]
(313)

= E

[
1

K
trQ(σ2)m

]
− uE

[
1

K
trQ(u)Q(σ2)m

]

(314)

= δ◦m−1(σ
2)− uδ◦m(u) , ∀m. (315)

For m ≥ 1, we also have from the relations in (152)

γ◦
m (u, IK) = δ◦m−1(u)− σ2δ◦m(u). (316)

Using these definitions, we can express (309) as

γ◦
m (u,C) =

1

K
trCδ◦m(u)− γ◦

0 (u,C) δ◦m(u)

−
m∑

k=1

γ◦
k (u,C) δ◦m−k(σ

2) +O
(√

1

u2K5
trCCH

)
.

(317)

Evaluating the last equation form = 0 and collecting the
terms inγ◦

0 (u,C) on one side, leads to

γ◦
0 (u,C) =

δ◦0(u)

1 + δ◦0(u)

1

K
trC+O

(√
1

u2K5
trCCH

)
.

(318)

By Theorem 4 in Appendix C,

δ◦0(u) = δ0(u) +O
(

1

u4K2

)
. (319)

Thus, we can define

γ0 (u) ,
δ0(u)

1 + δ0(u)
(320)

such that

γ◦
0 (u,C) = γ0 (u)

1

K
trC+O

(√
1

u2K5
trCCH

)
(321)

where we use the fact that
∣∣ 1
K trC

∣∣ ≤
√

1
K5 trCCH andu−4 ≤

u−1σ6 (sinceu ≥ σ2) to discard the termO(u−4K−3trC).
For m ≥ 1, we can gather the terms involvingγ◦

m (u,C)
in (317) on one side, replaceγ◦

0 (u,C) by γ0 (u)
1
K trC and

δ◦0(u) by δ0(u), to obtain, iteratively onm,

γ◦
m (u,C) =

1
K trCδ◦m(u)− γ0 (u)

1
K trCδ◦m(u)

1 + δ0 (σ2)

−
∑m−1

k=1 γ◦
k (u,C) δ◦m−k(σ

2)

1 + δ0 (σ2)

+O
(√

1

u2K5
trCCH

)
. (322)

From the last equation, we can obtain a recursive expression
of δm(u)◦ by letting C = IK and using the relations (315)
and (316):

δ◦m(u) =
δ◦m−1(u)

[
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+

∑m−1
k=1

[
δ◦k−1(u)− σ2δ◦k(u)

]
δ◦m−k(σ

2)

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+O
(

1

uK2

)
. (323)

Note that the denominator of the RHS of the last equation is
strictly positive (see Property 1(i) − (iii) in Appendix C).
For m = 1, we obtain with the help of (319)

δ◦1(u) =
δ◦0(u)

[
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
+O

(
1

uK2

)

(324)

=
δ0
[
1 + δ0(u)

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
+O

(
1

uK2

)
.

(325)

Due to the recursive definition ofδ◦m(u), we can now
conclude that

δ◦m(u) = δm(u) +O
(

1

uK2

)
(326)

where

δm(u) =
δm−1(u)

[
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+

∑m−1
k=1

[
δk−1(u)− σ2δk(u)

]
δm−k

(
σ2
)

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
, m ≥ 1.

(327)

Using (326) in (322), we have so far proved that, form ≥ 1,

γ◦
m (u,C) =

1
K trCδm(u)− γ0 (u)

1
K trCδm(u)

1 + δ0 (σ2)

−
∑m−1

k=1 γ◦
k (u,C) δm−k

(
σ2
)

1 + δ0 (σ2)

+O
(√

1

u2K5
trCCH

)
(328)

where we have relied on the fact thatγ◦
k (u,C) 1

uK2 ≤
1

u2K3 trC = O
(√

1
u2K5 trCCH

)
. In particular, form = 1,

we obtain

γ◦
1 (u,C) =

δ1(u)− γ0 (u) δ1(u)

1 + δ0 (σ2)

1

K
trC

+O
(√

1

u2K5
trCCH

)
. (329)

Iterating the recursionm− 1 times, we have proved that

γ◦
m (u,C) = γm (u)

1

K
trC+O

(√
1

u2K5
trCCH

)
(330)
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where, form ≥ 1,

γt (u) =
δm(u) (1− γ0 (u))−

∑m−1
k=1 γk (u) δm−k

(
σ2
)

1 + δ0 (σ2)
.

(331)

Using now the relationγ0(u) = c−uδ0(u) (see Property 1(iv)
in Appendix C), we write the last equation as

γm (u)
(
1 + δ0

(
σ2
))

= δm(u) (1− c+ uδ0(u))

−
m−1∑

k=1

γk (u) δm−k

(
σ2
)
. (332)

Adding δm(u)σ2
[
1 + δ0

(
σ2
)]

to both sides, we can express
δm(u) as

δm (u) =

[
γm(u) + σ2δm(u)

] [
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+

∑m−1
k=1 γk (u) δm−k

(
σ2
)

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
. (333)

Equating (333) and (327), we can see thatγm(u) must satisfy
the following relation

γm(u) = δm−1(u)− σ2δm(u) , m ≥ 1. (334)

This terminates the proof.

B. Proof of Proposition 2 in Appendix D-B

We want to derive asymptotically exact approx-
imations of E

[
trQ(u)HHH

K eγ
X

n,Hn

n

]
(part (i)) and

E

[
trQ(σ2)HAHH

K eγ
X

n,Hn

n

]
(part (ii)).

In the proofs below, we will often use the notationP (t)
or Pi(t) to refer to some non-zero polynomials int with
nonnegative coefficients. These polynomials may take different
values from one equation to the next.

Proof of part (i): By the product rule of differentiation,
Lemma 6 and Lemma 8 in Appendix C, we obtain the chain
of equations (335)–(338) on the top of the next page.

Gathering the terms involving trQ(u)HHH

K on the LHS
yields

E

[
trQ(u)

HHH

K

(
1 +

1

u
+

1

K
trQ(u)

)
eγ

X
n,Hn

n

]

=
N

u
E

[
eγ

X
n,Hn

n

]

+
1

K

∑

i,j

E

[
∂γX

n,Hn

n

∂H∗
ij

[
HHQ(u)

]
ji
eγ

X
n,Hn

n

]
. (339)

Recall that γX
n,Hn

n = itµX
n,Hn

n − t2

2

(
θX

n,Hn

n

)2
+

i t
3

3 κ
X

n,Hn

n (243). From the standard derivation rules as pro-
vided in Lemma 8 and Corollary 1 in Appendix C, denoting

Q = Q(σ2) for brevity,

∂µX
n,Hn

n

∂H∗
ij

=

√
n

K3
[QH ]ij −

n+ 1√
nK3

[QHA]ij

+
n+ 1√
nK5

[
QHAHHQH

]
ij

(340)

= − 1√
nK3

[QH ]ij +
1√
nK3

[
QHXXH

]
ij

+
n+ 1√
nK5

[
QHAHHQH

]
ij
. (341)

Similarly,

∂
(
θX

n,Hn

n

)2

∂H∗
ij

= −2(n+ 1)

nK

[(
Q

1

K
HHH

)2

Q
1

K
H

]

ij

+
2(n+ 1)

nK

[
Q

1

K
HHHQ

1

K
H

]

ij

− 2σ2

nK

[
Q

1

K
HXXHHHQ2 1

K
H

]

ij

+
2σ2

nK

[
Q2 1

K
HXXH

]

ij

− 2σ2

nK

[
Q2 1

K
HXXHHHQ

1

K
H

]

ij

(342)

=
2σ2(n+ 1)

nK

[
Q

1

K
HHHQ2 1

K
H

]

ij

+
2σ4

nK

[
Q2 1

K
HXXHQ̃

]

ij

− 2σ2

K

[
Q

1

Kn
HXXHHHQ2 1

K
H

]

ij

(343)

where, in the last equality, we usedIN − 1
KQHHH = σ2Q,

IK − 1
KHHQH = σ2Q̃, andQH = HQ̃. Following the same

derivation, we also have

∂κX
n,Hn

n

∂H∗
ij

=

3σ2(n+ 1)√
n3K3

[(
Q

1

K
HHH

)2

Q2 1

K
H

]

ij

+
3σ4

√
n3K3

[
Q

1

K
HXXHHHQ3 1

K
H

]

ij

+
3σ4

√
n3K3

[
1

K
HHHQ3 1

K
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]

ij

− 3σ2

√
n3K3

[
1

K
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K
HXXHHHQ2 1

K
H

]
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. (344)

Using these results, the second term on the RHS of (339)
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E

[
trQ(u)

HHH

K
eγ

X
n,Hn

n

]

= E



 1

K

∑

i,j,k

∂
(
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kjQ(u)kieγ
X

n,Hn

n

)

∂H∗
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 (335)

= E


 1

K

∑

i,j,k

(
δikQ(u)kie

γX
n,Hn

n −
H∗

kj [Q(u)H ]kj Q(u)ii

K
eγ

X
n,Hn

n +H∗
kjQ(u)ki

∂γX
n,Hn

n

∂H∗
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eγ
X
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n

)
 (336)

= E




trQ(u)− 1

K
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K
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1

K
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∂γX
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n

∂H∗
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[
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]
ji
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X
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n


 (337)

= E




N

u
− 1

u
trQ(u)

HHH

K
− 1

K
trQ(u)

HHH

K
trQ(u) +

1
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∂γX
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n

∂H∗
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[
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]
ji


 eγ

X
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n


 (338)

can be developed as follows:

1

K

∑

i,j

E

[
∂γX

n,Hn

n

∂H∗
ij

[
HHQ(u)

]
ji
eγ

X
n,Hn

n

]

(a)
= it

n+ 1√
nK

(
E

[
1

K
trQ

HXXHHH

(n+ 1)K
Q(u)eγ

X
n,Hn

n

]

+ E

[
1

K
trQ

HAHH

K
Q
HHH

K
Q(u)eγ

X
n,Hn

n

])

+O
(
P (t)

uK

)
(345)

(b)
= it

n+ 1√
nK

(
E

[
1

K
trQ

HHH

K
Q(u)eγ

X
n,Hn

n

]

− E

[
σ2

K
trQ

HAHH

K
QQ(u)eγ

X
n,Hn

n

])
+O

(
P (t)

uK

)

(346)

for some polynomialP (t), where (a) follows from the
derivative of γX

n,Hn

n as developed in (341)–(344) and the
observations that all terms resulting from

(
θX

n,Hn

n

)2
and

κX
n,Hn

n areO((uK)−1) andO(u−1K−2), respectively, and
(b) follows from QHHH

K = IN − σ2Q (see (152)) and the
definition ofA = IK − 1

n+1XXH.
Based on Proposition 3 in Appendix E-A and Lemma 5 in

Appendix C, we find the following estimations:

E

[
1

K
trQ

HHH

K
Q(u)eγ

X
n,Hn

n

]

= E

[
1

K
trQ(u)Q

HHH

K

]
E

[
eγ

X
n,Hn

n

]
+O

(
1

uK

)
(347)

E

[
σ2

K
trQ

HAHH

K
QQ(u)eγ

X
n,Hn

n

]

= E

[
σ2

K
trQ(u)Q2HAHH

K

]
E

[
eγ

X
n,Hn

n

]

+O
(√

1

u2K3
trA2

)
. (348)

By Proposition 4 in Appendix E-A,

E

[
1

K
trQ(u)Q

HHH

K

]
= δ0(u)− σ2δ1(u) +O

(
1

uK2

)

(349)

E

[
σ2

K
trQ(u)Q2HAHH

K

]

= σ2γ2 (u)
1

K
trA+O

(√
1

u2K5
trA2

)
(350)

= O
(√

1

u2K5
trA2

)
. (351)

Combining (339), (346), (347), (348), (349), and (351), we
obtain

E

[
trQ(u)

HHH

K

(
1 +

1

u
+

1

K
trQ(u)

)
eγ

X
n,Hn

n

]

=
N

u
E

[
eγ

X
n,Hn

n

]
+O

(
1

u
√
K

P (t)

)

+ it
n+ 1√
nK

(
δ0(u)− σ2δ1(u)

)
E
[
eγ

X
n,Hn

n

]
(352)

=
N

u
E

[
eγ

X
n,Hn

n

]
+ it

√
n

K

(
δ0(u)− σ2δ1(u)

)
E
[
eγ

X
n,Hn

n

]

+O
(

1

u
√
K

P (t)

)
(353)

for some other polynomialP (t), where we used in partic-
ular

√
K−3trA2 ≤ 1/

√
K and 1√

nK

(
δ0(u)− σ2δ1(u)

)
=

O((uK)−1) by Property 1 in Appendix C.
Next, we consider the LHS of (339). Let us first define the

following quantities:

Ψ =
1

K
trQ(u), Φ = trQ(u)

HHH

K
. (354)

Using these definitions, we can express the LHS of (339) as

E

[
trQ(u)

HHH

K

(
1 +

1

u
+

1

K
trQ(u)

)
eγ

X
n,Hn

n

]

=

(
1 +

1

u

)
E

[
Φeγ

X
n,Hn

n

]
+ E

[
ΦΨeγ

X
n,Hn

n

]
. (355)
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We can now develop the second term on the RHS of the
last equation as follows:

E

[
ΦΨeγ

X
n,Hn

n

]

= E [Ψ]E
[
Φeγ

X
n,Hn

n

]
+ E

[
Φ (Ψ − E [Ψ]) eγ

X
n,Hn

n

]
(356)

(a)
= E [Ψ]E

[
Φeγ

X
n,Hn

n

]
− E [Φ]E [Ψ]E

[
eγ

X
n,Hn

n

]

+ E [Φ]E

[(
1

u

N

K
− 1

u

1

K
trQ(u)

HHH

K

)
eγ

X
n,Hn

n

]

+O
(

1

u2K

)
(357)

= E [Ψ]E
[
Φeγ

X
n,Hn

n

]
− E [Φ]E [Ψ]E

[
eγ

X
n,Hn

n

]

+
1

u

N

K
E [Φ]E

[
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X
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n

]
− 1

u
E

[
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K
Φ

]
E

[
Φeγ

X
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n

]
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(

1
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)
(358)

= E

[
Φeγ

X
n,Hn

n

](
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u
E

[
1

K
Φ
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− E [Φ]E [Ψ]E
[
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X
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]
+

1

u

N

K
E [Φ]E

[
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X
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]
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(

1
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(b)
= E

[
Φeγ

X
n,Hn

n

](
δ0(u)−

1

u
γ0(u)

)

−Kγ0 (u) δ0(u)E
[
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X
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]
+

1

u
cKγ0 (u)E

[
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X
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n
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(

1
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)
(360)

(c)
=
(
2δ0(u)−

c

u

)
E

[
Φeγ

X
n,Hn

n

]

+N
( c
u
− 2δ0(u) +

u

c
δ0(u)

2
)
E

[
eγ

X
n,Hn

n

]

+O
(

1

uK

)
(361)

where (a) follows from Remark 7 and Proposition 3 in
Appendix E-A, andΨ is expanded using (152),(b) follows by

Proposition 4 in Appendix E-A and the fact that
∣∣∣eγX

n,Hn

n

∣∣∣ ≤
1, and in(c) we usedγ0(u) = c−uδ0(u) (see Proposition 4).
Thus, (355) can be expressed as

E

[
Φ

(
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1

u
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)
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X
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n

]
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(
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u
+ 2δ0(u)

)
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X
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u

c
δ0(u)

2
)
E

[
eγ

X
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]

+O
(

1

uK

)
. (362)

Equating the RHS of (362) and the RHS of (353) and

solving forE
[
Φeγ

X
n,Hn

n

]
leads to

E

[
Φeγ

X
n,Hn

n

]

= N

(
1− c+ 2uδ0(u)− u2

c δ0(u)
2
)

1− c+ u (1 + 2δ0(u))
E

[
eγ

X
n,Hn

n

]

+ it

√
n

K
u

δ0(u)− σ2δ1(u)

1− c+ u (1 + 2δ0(u))
E

[
eγ

X
n,Hn

n

]

+O
(

1

u
√
K

P (t)

)
(363)

for some polynomialP (t).
This concludes the proof of part(i).
Proof of part (ii): We begin as in the proof of part(i).

From the derivative ofγX
n,Hn

n in (341)–(344) and standard
Gaussian calculus, we have

E

[
trQ

HAHH

K
eγ

X
n,Hn

n

]

=
1

K

∑

i,j,k,l

E

[
HijAjkH

∗
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]
(364)

=
1

K

∑

i,j,k,l

AjkE




∂
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∂H∗
ij



 (365)

=
1

K
trAE

[
trQeγ

X
n,Hn

n

]
− E
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trQtrQ

HAHH

K
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]
(366)

= −E

[
1

K
trQtrQ

HAHH

K
eγ

X
n,Hn

n

]

+ it

√
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K
E

[(
1

K
trQ2HXXHAHH

K(n+ 1)

+
1

K
trQ

(
QHAHH

K

)2
)
eγ

X
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n

]

+O
(
P1(t)

K

(
1 +

1

K
trA2

))
(367)

for some polynomialP1(t), where the last line follows from
the observation that trA = 0 and that the terms in the
derivative ofγX

n,Hn

n resulting from
(
θX

n,Hn

n

)2
andκX

n,Hn

n

are of orderO( t
2

K (1 + 1
K trA2)) and O( t3

K2 (1 +
1
K trA2)),

respectively.
Rearranging the terms, one arrives at

E

[
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(
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1

K
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)
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X
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n

]

= it

√
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K
trQ2HXXHAHH

K(n+ 1)

+
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Q
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]

+O
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(
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K
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. (368)
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Using the identityA−A2 = XX
H

n+1 A, we obtain

it

√
n

K
E
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K
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K(n+ 1)

+
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K
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Q
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√
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X
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]
. (369)

Note now that
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[
1

K
trQ

(
Q
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K
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= Var
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K
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K
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K
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]
(370)
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[
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K
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(
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)
A
(
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)
A

]
(371)

≤
(√

Var

[
1

K
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]
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√
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K
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√
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(
Q̃A
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(372)

= O
(

1

K3
trA4

)
= O

(
1

K

(
1

K
trA2

)2
)

(373)

where the inequality follows from Remark 7 in Appendix C
and the last line follows from a direct application of Proposi-
tion 3 in Appendix E-A to each of the individual terms, along
with trA4 ≤ (trA2)2. By Proposition 3,
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[
1

K
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K

]
= O
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1
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)
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(
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(374)
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K

]
= O
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trA4

)
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= O
(

1

K

(
1

K
trA2

)2
)
. (376)

Thus, by Lemma 5 in Appendix C, the RHS of (369) can
be written as in (377) on the top of the next page. By
Proposition 4 in Appendix E-A, we can approximate the first

two terms in (377) by

E

[
1

K
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K

]
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(
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) 1

K
trA+O

(√
1
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trA2

)
(378)
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)
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K
trA2

)
. (381)

It remains to find an approximation of the term

E
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1
K trQ

(
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K

)2]
. By Lemma 6 in Appendix C,
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The derivative further develops as

∂
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]
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=
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]
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Replacing (385) in (384) and rearranging the resulting
terms, we arrive at
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Q
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)2
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+ E

[
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K
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1

K
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K

]
. (386)

Applying Proposition 4 in Appendix E-A together with
Proposition 3 in Appendix E-A and Lemma 5 in Appendix C
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to the individual terms leads to
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(
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)
γ1
(
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K
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(
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)
. (387)

Similarly, by Lemma 5, Proposition 3, the variance bound
in (373), and Proposition 4,
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K
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Q
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Q
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(
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Equating the RHSs of (387) and (389) and solving for

E

[
1
K trQ

(
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K

)2]
yields
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K
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K trA2

1 + δ0(σ2)

+O
(

1√
K5

trA2

)
. (390)

Similar to the proof of Part(i), let us define

Ψ =
1

K
trQ (391)

Φ = trQ
HAHH

K
. (392)

Putting the results from (368), (369), (377), (379), (381),and
(390) together, we conclude that

E
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Φ (1 + Ψ) eγ

X
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]
= −it

√
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γ1(σ
2)
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K
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(393)

for two polynomialsP1(t) andP2(t), where the termt in front
of P2(t) arises from the pre-multiplication by at leastit of the
various estimators involved.

We now need to find an alternative representation of the
term E

[
ΦΨeγ

X
n,Hn

n

]
in the LHS of the last equation. Fol-

lowing the same arguments as in (356)–(361), and using√
K−3trA2 ≤ 1/

√
K, we can write
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From the last result and (393), we have
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for some polynomialsP1(t) andP2(t).
Solving (400) and (401) forE
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This concludes the proof of part(ii).

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable comments which helped to improve and significantly
shorten some of the proofs. In particular, we are indebted to
one of the reviewers for providing the proof of Lemma 3. We
would like to thank Dr. Laurent Schmalen for the generation
of the simulation results for Figure 3 and Prof. Stephan ten
Brink for various discussions around the topic of iterative
coding systems. We are grateful to Prof. Mérouane Debbah
for discussions at the early stage of this work.

REFERENCES

[1] A. Feinstein, “A new basic theorem of information theory,” IRE Trans.
Inf. Theory, vol. 4, no. 4, pp. 2–22, Sep. 1954.

[2] C. E. Shannon, “Probability of error for optimal codes ina Gaussian
channel,”Bell Syst. Tech. J., vol. 38, no. 3, pp. 611–656, May 1959.

[3] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: Information-
theoretic and communications aspects,”IEEE Trans. Inf. Theory, vol. 44,
no. 6, pp. 2619–2692, Oct. 1998.

[4] C. Shannon, “Certain results in coding theory for noisy channels,”
Information and control, vol. 1, no. 1, pp. 6–25, Sep. 1957.

[5] R. Gallager, “A simple derivation of the coding theorem and some
applications,” IEEE Trans. Inf. Theory, vol. 11, no. 1, pp. 3–18, Jan.
1965.

[6] H. Shin and M. Z. Win, “Gallager’s exponent for MIMO channels: A
reliability-rate tradeoff,”IEEE Trans. Commun., vol. 57, no. 4, pp. 972–
985, Apr. 2009.

[7] V. Strassen, “Asymptotische Abschätzugen in Shannon’s Information-
stheorie,” in Trans. Third Prague Conf. Inf. Theory, Statist. Decision
Functions, Random Processes, Czechoslovak Academy of Sciences,
Prague, Czech Repulic, 1962, pp. 689–723.

[8] M. Hayashi, “Information spectrum approach to second-order coding
rate in channel coding,”IEEE Trans. Inf. Theory, vol. 55, no. 11, pp.
4947–4966, Nov. 2009.

[9] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel codingrate in the
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[14] T. S. Han and S. Verdú, “Approximation theory of outputstatistics,”
IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 752–772, May 1993.

[15] W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Quasi-static SIMO
fading channels at finite blocklength,” inProc. IEEE Int. Symp. Inf.
Theory (ISIT), Istanbul, Turkey, Jul. 2013.

[16] ——, “Quasi-static multiple-antenna fading channels at finite block-
length,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4232–4265, Jun.
2014.

[17] L. A. Pastur and M. Shcherbina,Eigenvalue distribution of large random
matrices. Providence, RI, USA: American Mathematical Society,
Mathematical Surveys and Monographs, 2011, vol. 171.

[18] P. Billingsley, Probability and Measure, 3rd ed. John Wiley & Sons,
Inc., 1995.

[19] T. S. Han, Information-Spectrum Methods in Information Theory.
Springer-Verlag, 2003.
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