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The Second-Order Coding Rate of the MIMO
Quasi-Static Rayleigh Fading Channel

Jakob HoydisMember, IEEE Romain CouilletMember, IEEE and Pablo Piantanid&djember, IEEE

Abstract—The second-order coding rate of the multiple-input
multiple-output (MIMO) quasi-static Rayleigh fading channel is
studied. We tackle this problem via an information-spectrun
approach and statistical bounds based on recent random maitx
theory techniques. We derive a central limit theorem (CLT) ©
analyze the information density in the regime where the blok-
length n and the number of transmit and receive antennask
and N, respectively, grow simultaneously large. This result leds
to the characterization of closed-form upper and lower bounls
on the optimal average error probability when the coding rate
is within O(1/v/nK) of the asymptotic capacity.

Index Terms—Finite block-length, second-order coding rate,
error probability, quasi-static fading channel, block-fading chan-
nel, MIMO, information spectrum, random matrix theory.

I. INTRODUCTION

exponential rate of decrease—were derived_in [2]. A simpler
formula for the latter was then provided by Gallager [5], ebhi

is still difficult to evaluate for wireless channel modeis.[6],

an explicit expression of Gallager’s error exponent wastbu
for the block-fading MIMO channel, but the computation of
this result remains quite involved.

Since the aforementioned bounds are in general not
amenable to simple evaluation, asymptotic considerati@re
made, in particular by Strassehn! [7] who derived a general
expression of the error probability for the discrete merfexy
channel with unconstrained inputs of code lengthin the
regime where the coding rate is withi®(1/,/n) of the capac-
ity, which is referred to as theecond-order coding ratén his
work, the variance of the “mutual information density” appe
to be the fundamental quantity when focusing on Gaussian ap-

In real-world wireless communications, the codeword (Q4roximations of the error probability. Nevertheless, Stemn’s

block) length of the transmission is naturally limited doale-

lay and complexity constraints. It is thus unfortunate thaly

approach could not be generalized to channels with input
constraints, such as the additive white Gaussian noise (RWG

few tractable performance limits of wireless communiaatiozpgnnel. Hayashi [8] focused on the second-order codirgg rat
scenarios under the finite block-length regime are avalabhng provided an exact characterization of the optimal error
In general, only bounds on the optimal error probability f(jérobability for different channel models and input conistis

a given coding rate and block-length are derivable, €.4., [fyrther considerations were made by Polyanskiy-Pooriverd
[2], which are for most relevant cases difficult to analyzd anp, [9] where several novel results are provided for memasyle
evaluate. This is in particular the case for non-ergodimehachanneb, among which new upper and lower bounds on the
nels (e.g., quasi-static or block-fading channels), foichh maximal achievable rate for a fixed error probability and
the error probability is fundamentally limited by the outagp|ock-length. Along the same lines, the scalar AWGN block-
probability [3]. The evaluation of these non-asymptotiabds  taging channel was addressed in the coherent and non-chere

becomes even more challenging in presence of multipletinRigttings in [10] and [11], respectively.

multiple-output (MIMO) channels.

Additional work on the asymptotic block-length regime via

Feinstein [1] and Shannonl![4] were among the first taformation-spectrum methods comprises the general égpac

explore the tradeoff between coding rate, error probagbdind

formula by Verdi-Han([12] proving the converse via a novel

block-length and developed bounds on the optimal errorprogwer bound on the error probability fromi [13]; [14]. A

ability in the finite block-length regime. Bounds on the limiyery comprehensive literature survey on related aspedats ca
of the scaled logarithm of the error probability—known a8 th3isg pe found in [9]. During the revision of this article,
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we became aware of the related works![15] and [16] which
study respectively the quasi-static fading single-inputtiple-
output (SIMO) and MIMO channel at finite block-length in
great detail.

In this paper, we investigatelosed-formbounds on the
average error probability of th& x K MIMO quasi-static
Rayleigh fading channel where the transmission takes place
over n channel uses during which the channel realization is
randomly drawn but remains constant, and wh¥&hek', and
n are of similar order of magnitude.

A. Contribution and outline

We focus on the asymptotic behavior of the error probability
when the coding rate is a small perturbation of the ergodic
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capacity, and hence follow the line of work dfl [8] on theespectively. The symbdPr|-] denotes the probability of the
second-order coding rate (see alsb [9, Section 1V]). We takeacketed random argument. For a Setwe define byP(S)
the approach of inducing ergodicity in the inherently northe set of probability measures with support a subsé&. dfle
ergodic quasi-static fading channel by growing the channako denote byupp(PP) the support ofP.

matrix dimensions. Indeed, assuming &h x K channel For random matrice(,Y in C¥*™ andCV*", let Px €
matrix with independent standard Gaussian entries, tetti?(C**™) and letX — Py x(-|X) be any Borel measur-
K,N — oo at the same speed, the channel becomes ergodite mapping. We define the probability measirgy, by
in the limit (even for a single channel use). This ensures thRyy (AxB) = [, Py x (B|X)Px (dX) whereA, B are Borel
communications at rates arbitrarily close to the asymptotiets ofCX*™ andC» *» respectwely Similarly, we define the
capacity are possible in this regime and it becomes natudddtribution Py as Py (B) = [Py |x(B|X)Px(dX) for any
to investigate the optimal average error probability foe thBorel subset3 C (DNX", where the integral is understood to
second-order coding rate whé, IV, and the block-length  be taken ovelCK*™, We also define for &y -measurable

grow simultaneously, i.e., the asymptotically achievadai®r functional f, its mean E[f J F(X)Px(dX) and
probability for rates withirO(1/v/nK) of the ergodic capacity varianceVar[f(X)] = [|f( ) [f(X)]| ]

(nK being the total number of symbols in each codeword). Let P and Q be two measures on (the BoreHield of)
Our approach closely follows the information spectrur@®>", ThenP is said to beabsolutely continuousith respect
methodology of([8]. We first start from some basic variation® Q if P(A) = 0 for every Borel setd for which Q(A) = 0.
of Feinstein’s and Verdi—Han’s lemma that provide, respethis is written asP <« Q. For such measureB and Q, we
tively, lower and upper bounds on the optimal error proligbil denotej—P(X) = (g(dx the Radon—Nykodym derivativé [18,
These bounds are exploited to study the second-ordettistsitisTheorem 32.2] o w|th respect toQ at posmonX ie.,

of the information density, seen as a real functional oféhréor any Borel set4, P(A) = [, jP dQ = [,7g ‘;’Q)@ dX).
large-dimensional random matrices, i.e., tNex K channel, The notationP(dX) < Q(dx) W||| then be understood as
the K x n input, and theV x n noise matrices. The analysis;iP (X) = @((Z);)) < 1. If P is not absolutely continuous with

of such statistics naturally requires the use of random|matr

tools, and in particular here of Gaussian methods such &
§derstood as an always false statement.
developed by Pastur [17].

The main contribution of this paper is to derive a central We denoteCA'(0,0*) the complex circularly symmetric

normal distribution with zero mean and varianed. We
limit theorem (CLT) uniformly over the set of admissible cha o .
. . ) . ) call ® the distribution funct|0n of the real standard normal
nel inputs. From this result it entails that the optimal ager

t2
error probabilityP.(r|3, ¢) for the second order coding ratedlsmbl'ltIon given by®(x f— ( ) The

r < 0 (defined in [T#) below) can be bounded as weak convergence of the sequence of probablllty measures
{1n )22, to u is denoted byu,, = 1; “23" stands for almost

o (L) <P.(rlf,c) < (L) (1) Sure convergence. . |
0_ 0y The notationf,,(t) = O(t*n~=?) means that there exists

where = n/K, c = N/K, ®(-) is the Gaussian distribution C>0 mdependen{tl ofﬁandn such that, for allt > 0 and
function andf > 6_ are closed-form functions ¢f, ¢, and €N, [fu()] < G777,
the signal-to-noise ratio (SNR). Unlike![8].1[9], we do not
obtain matching lower and upper bounds due to the presence II. CHANNEL MODEL AND PROBLEM STATEMENT
of the non-ergodic random channel matrix. Nonethelesg-it a
pears that the gap between both bounds is quite tight for SN
values of practical interest. Besides, numerical compaggo
LDPC codes reveal good similarities with theory in the slope 1 .,
of the error probability. Yt = \/—EH A t={1,...,n} ©

espect toQ, we setdP/dQ = oo and P(dX) < Q(dX) is

onsider the following MIMO memoryless Gaussian quasi-
static fading channel:

wherey, € CV is the channel output at timg H” € CV*X
is a realization of the random channel matfik* ¢ CV*¥

The set of nonnegative integers is denotedMbythe real whose entries are independent and identically distributed
and complex fields byR and C, respectively. Boldface letters(i.i.d.) CA/(0,1) and the indexn reminds thatH" is con-
x and upper-case letteX are used to denote vectors andtant for the duration of. channel usesx; € CX*! is the
matrices, respectively. The transpose, complex conjugaté realization of the random channel input € CX*! at time
complex conjugate (Hermitian) transpose are denoted)By ¢, andow; is the realization of the random noise vectan,
(-)*, and (-)", respectively. The trace and determinant of at time¢ whose entries are i.i.d’A/ (0,0?). The transmitter
square matrixX are written t’X and defX), respectively. end has only statistical knowledge abdift while the receiver
The spectral norm of a square mati, i.e., the absolute end knowsH™ perfectly. In particular, we will assum&™,
largest eigenvalue, is denoted BX||. The Frobenius norm of x;, and w; to be independent for each We define the
a matrix X is denoted byi|X||». The (i, j)-element ofX is following matrices: X" = (xi,...,%,) € CK*X" W =
denoted byX;; or [X],,. Random vectors and matrix variablegwy, ... w,) € CN*" and Y™ = (yi,...,yn) € CVX™
are denoted by lowercase lettersand uppercase lettet®, Associated to these matrices, we define the random matrices

Notation and definitions



X" = (x1,...,2,) € CEX?, W™ = (wy,...,w,) € CN*", dimensionsk and N grow large. This induces ergodicity in

andY™ = (y1,...,yn) € CNX", the channel and entails a new definition of the second-order
We denote the sets of admissible inpds* with unit coding rate and the optimal average error probability fer th
maximal and exact energy constraint, respectively, by guasi-static fading MIMO channel. Precisely, we assumé tha
1 K, N, andn are large but of the same order of magnitude.
= {X" e ¢itxn ﬁtrX”(X”)H } (8) This is expressed mathematically via the relations
K= {X"GCKX" LtrX"(X")H _1}. (4) n — 00 n =8 ﬁ:c (20)
- nk ’ K ’ K

The mutual information densityof Py xn g-, i.€., the
probability measure o™ conditioned onX" and H", is
defined by (see e.d. [19] for the AWGN definition):

for some constants, ¢ > 0 These relations will be denoted

by n ﬂ oo in the remainder of the article. For an infinite

block-length, the per-antenna capacity of the channel con-
m o 1 Pyexe e (dY"| X", H") (5) Vverges for almost every channel realization to an asymptot
NEZ 0K 8T Py (Y [ H™) limit C' [20]:

where the ratioPy . xn gn (X7, H")/Pyna (-[H"), for Theorem 1 ([20, Eq. (9)].121, Thm. 1))tet {H"}>2,,

givenX", H", denote‘;s the ée"':\don—N))/éodyl‘”n dsalivat%ve of thg/hereH" € CM*¥ has ii.d. entriest; ~ CN(0,1). Let

measur@sy | xn» g (-|X", H") with respect t@yn - (-[H") o? >0 and define

whenevePy | xn g (X", H") < Pyn g (-[H") and is set 1

to co otherwise. Oni = 3 10gd3t(IN + —KHn(Hn) > (11)

Definition 1 (Code and average error probabilityp
(P(”),M )-code C,, for the channel model12) with power
constraint[(B) consists of the following mappings:

Then, asn (ﬂ—>

« An encoder mapping: (1) Cn.k =0 (C’ )
M CKxn 6 (“) CNK ( 2) +0 (%)
$:Mar— ' © where, forz > 0,

The transmitted symbols alX” = ¢(m) € S™ for

every messagen uniformly distributed over the set C (z) =log (1 + & (x)) + clog (1+ 1 )

M, ={1,...,M,} of messages. 2 (14 6o (x))
« A set of decoder mappingSpun }yneonxx With: 0o (z) (12)

brrn - OV M U {e} ) L+ 0o (z)

which produces the decoder’s decision= ¢y~ (Y?,), and
Y, = 7zH p(m)+oW™, on the transmitted message se—1 1 JO-cta?+da

m, or the error eveng. do(z) = 55 3 + o >0. (13)

For a cod&,, with block-lengthn, codebook sizé/,,, encoder

©, and decodefénn }ncon x &, theaverage error probability  Based on this observation, we can characterize the error
is defined as probability in the second-order coding rate, i.e., when the
coding rate is withinO(1/v/nK) of the limiting capacity

(n) _ p(n) 2 5
Fe Fe™(Ca) = Prm # m], ®) C = C(0?), and estimate®{" (R) via the following limiting
where the probability is taken over the random variahl€s, error probability:
H"™ andm. Definition 2: The optimal average error probability for the

Let supfC,,) denote theodebooK ¢ (1),...,¢(M,)}. The second-order coding rate is
optimal average error probability for the rat® is defined as

O me | L ! 2 (Ca) |
P()(R) cn;suphnci)gs"{Pe (C)| —=log M, > R}. LAUEROR S hgliup PM(C,)
9) °°
. 1
The exact characterization (" (R) for fixed n, K, liminf vnK <ﬁ10gMn —C) > T}- (14)
and N is generally intractable. As mentioned in the intro- n=—""300

duction, a classical approach consists in consideringsrate
within O(1/+/n) of the ergodic capacity with block-lengths
growing to infinity (i.e., second-order coding rates). Tleiads

to tractable limiting error probabilities, referred to @gtimal , N
average error probabilities for the second-order codinges 'This assumption can be relaxed % = 5+ o(n"?) and & = ¢+
o(n™2). However, it is easy to see that these constraints |mp0mﬁ B to

[8], [O]. However, as the capacity of the quasi-static R&¥e pe rational numbers and the sequen¢es/(}>> | and {n/K}°>, to be
fading channel is zero, we assume here that the systemmstant for all larger.

Remark 1 (Fluctuation around ergodic capacityjor the
channel model{2), the optimal average error probability ma



be alternatively written as quantity[f\f,’}'( as defined, fo’x» € P(S™), in (I3) on the

top of the next page.
_ (n) These fluctuations are provided in the following theorem.
Pe(r|B,e) {cir}lg;;l { hf?f)up P (Cn )‘ Theorem 2:Let {X"}°2, be a sequence of random vari-
SUPHCr)CS™ 700 ables with probabilityPy. € P(S%) and, for A" = Iy —
Lxn(x™H defined, > 0 the random variable given b
liminf vn (—1ogM —E[Cn, K]) > r} (as) " (x) , g Y
(B8,¢)
n———>00 ) 2
. 02 = — Blog I—EL)Q +c+ o8 (0?)
since ¢ (1+do(0?))
VnK (E[Cy k] —-C) =0 (16) 5 (02) 1
— B —tr [(4")?] (20)
(B:) (14+60(c2))* K

asn —— oo by Theorenfl(i:). In the finite N, K, n-regime,
we may therefore see the optimal average error probabaity where the functiod,(z) is defined in[(IB). Then, for any real
an approximation of the optimal achievable error under ti}e, asn M

rate constraint

VnK
% log M,, > E[Cy.x] + \/;_K (17) Pr l (,nn (IﬁK - C) <z| = ®(2). (21)

Note that the relation[{16) is fundamentally dependent on Proof: The proof is provided in Appendix'DiB. [ ]

the Gaussianity off/”. It was indeed shown in_[22, Theo- Based on this result, we can determine the following lower
rem 4.4] that, whenever the entries 8f" have a non-zero and upper bounds on the optimal average error probability fo
fourth order cumulant = E |H11| — 2, a bias termB  the second-order coding rate.

proportional tox arises such thaf (16) must be modified to Theorem 3:The optimal average error probability

VK (E[Cn.x] — C) — B asn 2% oo. In this case the Pe(r|5,c) for the second-order coding ratesatisfies:
equivalence of[(15) and_(14) does not hold. For Gaussiane If 7 <0,
channels (sinces = 0 and thenB = 0), however, the r r
asymptotic mutual information is reached at the sufficientl P <9—) (r(B,c) <—> (22)
fast rate ofO(n=2) (as confirmed by Theore] (i)). -
Instead of the optimal average error probability, we may ° It r >0,
consider thesecond-order outage probabilit§,.. (|5, ¢) for 1 r
the rater, which we define as follows: 5 Pe(r|B, ¢) (9_) (23)

L . o +
Definition 3: Th_e seconql-order outage probability for thewhereo, ~ 0 andf, > 0 are defined by
second-order coding rate is

1
0> = — Blog 1——
Pout (7|8, ¢) = inf limsup P(™(C,) 1_|_50 02
{Cn:supCn)CS™}2 (8,0) ',
nT e +c+ 06 (0?) (24)
1

liminf K ( —logM, —C ) >r}. 18 a 1

R )—’“} @ 2 i Mo 0_2 )

The second-order outage probability and the optimal aeerag e )

error probability are related b, (7|3, ¢) = P.(rv/B| 5, ¢). +ec+ 0o (0%) - 0+ 5 (25)
Definition [3 allows us to study the behavior of the second- i .

order outage probability for growing. In the finite dimen- @Nddo(z) is defined in[(IB) with derivative, fom >0,
sional setting, this corresponds to increasing the blecith 5 (z) = — do(z) (14 d0o(x))
while maintaining/V-and K (and thus the capaciti C) fixed. o(@) = 1 —c+x+ 2z60(x)
This cannot be performed dh.(r|3, ¢) since, by growingn,
vnKC grows as well, therefore not maintaining the capacit

fixed asn grows alone. endix(B. -
The main objective of this article is to characterlze Theoreml B shows that, for sufficiently large channel di-

P.(r|8, ¢) (which will in turn characteriz@e.(r|3, ¢) ][nensions _and block-length, the optimal error pro_bab?lity
or a coding rate close to the asymptotic capacity, i.e.,

(nK) 'logM,, = C + (nK)~'/?r, is comprised between

two explicit bounds which depend only on 3, and o2.

To determine the optimal average error probability, orithis is to be compared with the AWGN scenario [of [8], [9]
ideally needs to determine the asymptotic fluctuations ef tlwhere the corresponding bounds were found to depend only on
mutual information densﬂj%‘% for all code<C,,. Since thisis o2. However, as opposed to Theoréin 3, the lower and upper
intractable, we shall resort to upper and lower bounds, lwhibounds in these works were shown to be equal. We discuss
shall both rely on establishing the fluctuations of the randoin Remark[B below the technical reasons for this important

< 0. (26)

Proof: The details of this proof are provided in Ap-

I1l. M AIN RESULT



n 1 1 HM(H™)M
IN,K 2 Elogdet(IN—l- g%)
1

n n - n n H
+ Ltr l(w+0211\,> (H—X”—i-aW”) (H X"+0W") —W"(W”)H] (19)

difference. Note that, for rates above the capacity limét (for thus meaningful and are given by
r > 0), the lower bound is very loose and can be far from its

C
associated upper bound. In contrast, the more interestieg c C= o2 +0(e™) (29)
r < 0 (corresponding to coding rates below the asymptotic 02 2c O (30)
capacity) features two bounds which are numerically shown 52
to be quite close to one-another. 92 — 2_2 0. (31)
Remark 2 (On the quantitf, (¢%)): The function g
¢160(c?) coincides with the Stielties transformm,, (z) This shows in particular thato? — 62)/67 = O(o?),
of the Maréenko—Pastur measure. with parameterc Implying the asymptotic closeness of the upper and lower
[23] evaluated at positionr = —o2, which is defined by bounds in the low SNR regime. Note additionally that, for

mu,(2) = [(t — 2) pc(dt) for all z € C\ supp (). €= 1, the approximate standard deviatiégl coincides with
This measure is the limiting distribution of the eigenvalughe low-SNR channel dispersion reported in [9] for SISO
of K~'H"(H")" as N,K — oo and N/K — c. For this AWGN channels. .

reason, the quantitie§, 6_, and6, of TheoreniB naturally ~ Figure[l depicts the bounds on the optimal average error
appear as functionals gf.. probability for varying second-order coding ratesand for

, different SNR values (defined &NR = o~2). We choose
Remark 3 (Tightness of the bounddhe caser = 0 set ¢ =2 and 8 = 16. For fair comparison between the various

aside, t_he lower and upper boupds on the optimal average eEQR regimes; is taken to be proportional t6'(o2). For
probability are never equal. This unfolds from the presemcefinite but large N, K, n. values, Figuréll therefore provides

the random channeli™ which induces a dependence of th‘?jlpproximate error probability bounds when coding at fate

second order statistics dﬁ}( on the “fourth order moment” C(0?)(1++' /v/nK) for various values of’. We observe that
E[K~'tr (n7'X™(X™)")?] of Px~. The weak lower bound ¢, ’

) A el Bu r negative second-order coding rates, the gap between the
1/2 for » > 0 is a consequence of the impossibility in th%pper- and lower-bound is barely visible.

proof to bound the fourth order moment Bf» from above  Remark 6 (Relation to second-order outage probability):
under the sole constrairil (3); see Apperidix B. By contrast, Recalling Definitior[B, we have
[8l, [9], only (scalar) second order moments Bf - play a

role in the second order statistics Qi’,l)K These are easily  min {(I) (#) 7%} < Pow(r|B,c) < @ <#) (32)
controlled by [(B). - +

Remark 4 (High SNR-regime)n the high-SNR regime, we Whereg2"* > 0 and#5"* > 0 are defined by

have the following result: s L6 (02)2
(6> 2 —log (1-=—22 L
¢ (14 0d¢(c2))
_ _ 1
e {0 e
0250 —fBlog (1—%)—1—1 ,e>1, (90ut)2 s O 1_} 5o (02)2
—Blog(1—c)+c(2—¢) , c<1 T TR T T 60 (07)
1im0 91 = 0 ,e=1 (28) 9 s ( 2)
02— 1 o
—Blog(1—-2)+1 ,c>1. z a5 (2) _ 0
( ) —i—ﬂ(c—i-a 8o (0%) (5 6002

(34)

This follows from the definition ofy(x) and dy(x) in The- Interestingly, forr < 0, as3 — oo, we recover the limiting
orem[1 which brings, forc < 1, do(z) — ¢(1 — )" outage probability of MIMO Gaussian fading channéls [24],
and 6y(0®) = —c(1 — ¢)*> asz | 0, while, forc > 1, 27,
26o(z) — ¢ — 1 andz?5j(x) — 1 —c asz | 0.

. T
Remark 5 (Low SNR-regimeBoth 62 and¢* converge to Bh—>nolo Pou(r]8,¢) = @ (eout) (35)
0 aso? — co. Thus, forr < 0, the upper and lower bounds onyith gout > 0 defined by
P.(r|8,c) are equal to zero and, for > 0, the upper bound s
tends to one. However, also the asymptotic capacitg zero. (gout)Q 2 _log (1 _ 1 d(07) ) ) (36)
First order approximations af' and 62, 62 for o> — oo are ¢ (1+d0(0?))?
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Fig. 1. Bounds on the optimal average error probability asretion of the second-order coding rate= »'C/(o2) for different SNRs and the parameters
c=2andg = 16.

Although both results coincide, there is a fundamentakdiff the theoretical results against practical codes. We spaltyfi
ence in the way they are obtained. [n[24],1[22], the bloclconsider a scenario withh = 8 transmit andN = 16 receive
length is assumed to be infinitely large from the start and thantennas employing QPSK modulation at each antenna. Cod-
the limit is taken inN and K. By contrast, we have obtaineding and modulation are set up in a conventional bit-intedea
(39) by changing the order of both limits. Note also that,lerhi coded modulation (BICM) scheme, with a random interleaver
P (r/@ﬁ”t) and ¢ (7’/93}") are decreasing functions ¢f for separating the code and the modulation. At the receiver, we
r<0,® (r/@?r“‘) is increasing ins for » > 0. Although no employ a non-iterative demodulation scheme, with a MAP
tight lower bound was derived for> 0, this strongly suggests MIMO demodulator based on a full code book enumeration.
the existence of a crossing point for the optimal averagaer eriWe consider short LDPC codes and take as an example the rate
probability for an error rate of /2. We will see a practical 1/2 code used in the WIMAX standard_[25], corresponding
example of this crossing point effect in Figlre 3. to a coding rate in nat®2 = log(2). This code is a quasi-

] . ) cyclic irregular repeat-accumulate (IRA) LDPC code where
Figure[2 depicts the bounds dfu(r(B,c) in (32) as a the accumulator is slightly modified to ease the encoding
function of 3 for different values ot, assumingNR = 10dB  ¢jrcyit.
andr = —C(o?) (for fair comparison sinc€’(c?) is implic- e consider code blocks of = 576 bit andn’ = 2304
ily a function of ¢). For each value of we also provide the pit corresponding ton = n'/(2K) € {36,144} channel
limiting outage probability as given iri {B5). The upper angses. The error probability of the code described above for
lower bounds are seen to approach the outage probability g & {36,144} is compared against the approximate upper and
rate O(3~") as 8 grows, which is easily confirmed by directigwer bounds (Theorerfl 3) obtained when coding at second
calculus. order rater = (R — C(0?))v/nK, for different SNR (i.e.,
We conclude this section by a comparison in Figure 3 of 2) values (corresponding to a span frem- 5.2 for —4 dB
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Fig. 2. Bounds on the second-order outage probability asetiin of 3 for different values ok, r = —C(02), andSNR = 10 dB. The limiting outage
probability isPout £ Pout (1|00, ¢).

SNR tor ~ —10 for 0dB SNR, whenn = 144). We can on the main system and channel parameters. The proposed
make several interesting observations from this figurebetin approach to the study of the asymptotic statistics of the
block-lengths, the SNR-gap between the simulation reanlls “mutual information density” for MIMO channels is original
the corresponding bounds by Theorein 3 is roughly constamtd can be further applied to other scenarios, such as the
(to about4 dB) for a large range of SNR values. block-fading regime where coding is performed over mudtipl
Also note that both theoretical and simulated curves ekhilgioherence blocks or, in a more practical context, the error
a crossing point close tb/2 error probability, which goes in performance achieved under linear receive filters.
line with Remark6.

APPENDIXA
IV. SUMMARY AND DIRECTIONS FOR FUTURE WORK AUXILIARY RESULTS ON INFORMATION SPECTRUM

We have studied the second-order coding rate of the MIMO The objective of this section is to prove Proposifidn 1 below
guasi-static Rayleigh fading channel using informatiorwhich provides analytical bounds on the optimal averagererr
spectrum methods and Gaussian tools from random matpisobabilityP.(r|3, ¢) and constitutes the first step of the proof
theory. To this end, we derived a CLT for the asymptotiof TheorenB, developed in Appendi} B.
analysis of the “information density” where the channel di- We first state a variation of Verdi—Han'’s lemmal[12] which
mensions as well as the block-length grow infinitely large appears to be more adequate to characterize the secord-orde
the same speed and the coding rate is a perturbation withpproximation of the error probability.

O(1/v/nK) of the asymptotic capacity. The derived CLT Lemma 1 (Variation on VefdHan’s lemma):For any in-
allowed us to characterize closed-form upper and lower dsurtegern > 1, let X” be an arbitrary random variable uniformly
on the optimal average error probability which depend onbistributed over the set of\/,, messages issued from/,
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Fig. 3. Approximate bounds on the error probability for finit, as a function of the SNR= 1/02, r = K(R — C) for K = 8, N = 16, R = log(2),
n € {36,144}, C being evaluated witle = N/K, 8 = n/K and for different SNR values. Theoretical curves are coetghdo a ratel /2 LDPC QPSK
code (givingR = log(2)).

realizations ofPx. € P(S™), and letY"™ be the output random fadingH”. We denoteP,,(dY™|H™) the distribution

random variable of the channBl . x~ g~ corresponding to of suchY™ given H". Then, there exists a block-length

the inputX™ and the random fading/™. Then, the average codebook of sizeM,, that, together with the maximura

error probability of such aPe("),Mn)-codeCn must satisfy posteriori (MAP) decoder, forms a codé, whose average
Pe(") (Co) > sup  sup error probabilityPe(”)(Cn) satisfies:

>0 {Qn}22, Pe(n)(cn) <
Pyejxe e (dY"] X", HY) gl P (dY™| X", H") M,
Pr |:10g . S logfy - . Yn|Xn Hn s < M,
{ Qn(dY™|H™) My, inf§ Pr[loe P, (dY"|H") = logyn| =
37
. e P, (dY™|H™)
whereQ,,(-|H™) is an H"-measurable random variable valued+ Pr = v " (38)
in P(CN*m), n(dY™|H™)

Proof: The proof follows straightforwardly from that for any probability measur@’n(dY”|H") > P, (dY"|H")
in [12] which itself is related to [13]. We remark that a sianil and positive values, where 2(2"12") genotes the Radon-
result was already used ifl[8] without an explicit proof anfjiyodym derivative. Pn(dY™[H™)
also follows from the same steps used to prove the “meta- pyoof: The proof simply follows from Feinstein's
converse” theorem irl_[9, Thm. 26, 27]. B jemma [1] and the introduction of the event

Lemma 2 (Variation of Feinstein’s lemmalet n > 1 be
an integer and denote by™ the output from the channel B, — {Yn c oNxn . ]INDn(Yn|Hn) S Ii}. (39)
Pyn|x= gn corresponding to an input distributidhx. and P, (Y"|H")



m Note that, for giverHH", X", the channel outputs™, Y™ are
In order to obtain Partii) (Upper bound) of Proposition] 1 Gaussian distributed, i.e.,
below, we need the following technical result. \/—X
Lemma 3 (A divergence resultyet P, (dY"[H") and Py, g, g, ~ CN (vec(\/E ) chIan>

P,(dY"|H") be the output distributions of the channels X7 o)
vno o _ 1 nyn n n o __ 1 nyn n
Y = \/—?H X + UW a.nd Y = WH X + O'W

respectively, whereX™ is standard Gaussian (i.e., with P g0 0 ~ CN (vec(LH"fi"yaQIan) (50)
independent (0, 1) entries) andX™ = vaK X" /|| X"| . | VK

Then, for any sequenoe, satisfyingx, — oo, where the function ve(A) vectorizes the matrixA. Using
D(CN(ml,GQI) ||CN(IT12,O'QI)) = ||IT11 - m2H2/0'2 to-

o A pr <log P, (dY"|H™) gether with [4D) and[{30) iN(48), we obtain from standard

" P, (dY"|H™)

> log kn, 0 40 :
=08 ) - (40) computations

where Pr(-) is taken over H" standard Gaussian and “#» % {D (PY"\H":H"X":)?"HP?"IH":H"X":X")}
2

Y"~P —
Proof: For two distributionsP and @, let 5,(P, Q) be =E;. 0 QL ~nK —1| |H"X"|% (51)
defined as in[[9, Eq. (100)]. Then, we have the following 7 oK || X7
bounds ons, (P, Q) [9, Egs. (154)-(157)]:
— B |[VAE — 1% | 52
D(P|Q) + h(a))
W(P,Q) > exp | ——— 1</ T 41 1 N .

e @0 LN g aveRE[1%0)]). 3
where D (P||Q) is the Kullback-Leibler divergence aridz)  Now, sinceX™ is Gaussiany/2||X"||r iS xznx-distributed,
the binary entropy function, andl[9, Eq. (103)] so that

= I'(nK +1/2)

1 n =
fa(P.Q) < (42) E (1% Tnk) (54)

Using this result in[(53) leads to
for any v, satisfying
. 2nN T(nK +1/2)
dP (3= o2 1= VnKT(nK) 3)
Pr (— > ) > a. (43) " "

IN

Z7% | =2
dQ 2nN nK
1— | —— (56)
. ~ o? nK +1/2
Setting P = P,(dY"|H"), Q = P,(dY"|H"), a = au,
v = kn and using the upper and lower bounds @n we N 1/2
conclude that = (1Tt nK +1/2 ®7)

( D (Pn(dY"IH")IIﬁDn(dY”IH")) +h(an>) =N G b 00 /mK)) = 00)  (58)
exp — 0
“n where we used if(56) that farc (0,1) andz > 0 [27]
1
=L 0 (44) I(z + a) z \7°
fin 12 [(z)x® = (I + a) (59)

To obtalg 5@2 it ) |sn thus sufficient to prove_ [5B) follows becaus¢TT 7 = 1 + O(z) asz — 0. m
D (P"(dy |H )H]P)”(d?/ W )) :.0(1)' . With this result at hand, we can prove the following result.
By the data-processing inequality for the Kullback-Letble proposition 1 (Bounds on the average error probability):

divergencel[26], The following two statements hold:
B (i) Lower bound:Let Y € CV*"*! denote the random
D (]P’n(dY”|H”)H]Pn(dY”|H”)) variable associated to the output of the char{ﬂ)ebxi_ﬂn
. . n Kx(n+1) .

—D(PY”IH"||Pyn|Hn) (45) corresp%ijjl\?g to the inpuk? e C and fading

H" e C . Then, [€D) on the top of the next page holds,
<D (IED w2 g IPon 2n n) (46) where Q, (-|H™) is an H"-measurable random variable

YrXnH™ 1D Y X" H ; ac i Nx(n+1)

taking values inP(C**{"*Y) and

= D (PanHan ||Pyn‘Han) (47)

S —+ {Xn c CKX (n+1) - trxn (Xn)H =1
= EH717)’2n |:D (Pyn‘Hn:Hnin:)?n H]P)i;n|Hn:Hn_’)~(n:)’Z’n)i| (n + 1)K + +

(48) (61)
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Pe(r|B,c) = F(r|B,c)

1 Pynxp gn (dY | X, H?
inf sup lim limsup Pr |vVnK | — log F1X3 ( :| ,;r )

Bxp i {Quai, 80 0o, i Q. (VEIH)
IP’XiGP(SQH)

—C> ST-&] (60)

]P n n n dyn Xn7 Hn
P.(r|8,¢) < G(r|B,¢c) = 1£1in limsup Pr [\/nK (Llog Yoxn H ( | ) - C) <r+4¢ (62)

K n n
G n P,(dY™|H™)

oo

(1) Upper bound: There exists a codebook of siz&/,, for some real. Then, combining[{84)E(66), we obtain
with codewords of block-length that together with the ML
decoder form a(Pe("),Mn)—codeCn such that, for all reat, Pe(n)(cn) >

(62) on the top of the next page holds, which is computed P dynlxn. gn
from the probability measure induced by inputs uniformly py [v/nK Llog Y+|X+.,Hn( n| + )_
distributed over the power shell: nk Q n(dY[H™)
1 [tr X"(X™")" = nK]
Pxn(X") = (63) <r—¢| —exp(—vVnK¢). (67)
X ( ) SgnK(\/nK)
which satisfy Px-(S*) = 1, and where Sy, x(r) =

QW"KI‘(nK)_lrQ"K_l is the surface area of @&nk- Takingthe limit superior over on the last equation, we obtain

dimensional sphere of radius andP,, is the output distribu-

tion of the channéPy»| x» gz~ induced by a complex Gaussian () )

input distribution with zero mean and covariarke, . hf?f)up PI™(Cn) > hgl CS)up Pr
Proof: This proof is segmented in two parts. We first n——oc n——>00

derive error probability bounds for eaéh K, n, based on the y ( 1 Pynixe mn (dY | X7, H™) - C) <r_t

VnK

established slight variations on the Verdi—Han’s Lerhinad. a - Q. (dYT|H)
the modified Feinstein’'s Lemnia 2 and then bringiNgk, n ’ 68)
to infinity leads to Propositionl 1.

We first start with the proof of the lower bound {60). LetAS this is true for eaclf > 0 andQ,., as defined above, we

Cn be a(Pe("), My)-code whose probability measure satisfiegan take¢ | 0 followed by the supremum ovep, ,, on the

ng < 7)5187;.)' Ftrr:)m tr:j':: code_,tr:‘ollo(\;vlng ghe}g?prciachRHS of [68). Taking then the infimum over the codes on the
in [9], we define the code, ;. with codewords{Xj, = RHS then LHS, we conclude that

[X? x;], i = 1,...,M,}, where {X" i = 1,...,M,} =

Supp(C,,) andx; satisfies||x;||2 = (n + 1)K — tr X?(X)H,

and with the same decision region as f6y, discarding Pe(r(f;c) 2 F(r|B, c) (69)

the last channel output (corresponding to inpy). Note _ -

that the probability measurgx. of the codeC, ; satisfies which proves parti) of the proposition.

Py, € P(S™+) and thatP™ (Cps) = pm (Cy). We now prove partii) for the upper bound in{62). From
rom LemmdL, the average error probability must satisfiremmal2, we know that there exi;ts(ﬁ’é"), M,)-codeC,
Pe(") (€)= Pe(") (Con) whose average error probability satisfies

Pynixn gn (dY| XY, H™) o P dy"| X", H"
> Pr 10g + 4 o < 10gf}/ - — (n) < i P L Y7L‘X717Hn( | R )
QA (dY][H™) M, Pe(Co) = fnf 4 Pz log B, (dY"|H")
(64) | v
for eachn = 1,2,..., v > 0, whereQ ,,(-|H") is H"- < —KlOg(%n) + —n} +a, (70)
measurable and takes values {CN*("+D) with Y = " i
FHMXE + oW, Wi e €V D with iid. CA(0,1) . . .
entries. Let us choose as for everyn =1,2,..., wherea, is defined as in Lemmi 3.
1 1 ¢ Let us now set
—logy = —logM, - —— 65
Y Y VnK ) 1 1 3
for some¢ > 0. We now set the coding rate oo logy = — log My + Jnk (71)

r

VnK

1

for some ¢ > 0. Then, we have the following chain of
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inequalities: of non-matching upper and lower bounds; this is unlike the

om T previously studied AWGN scenarios (e.d.] [8]) [9]) where

P (C,) < Pr [L log PY”IXZ-,H” (dY™| X", H™) H™ = Iy and only terms inA™ but not (A™)? account for
nk P,(dY™|H™) the second-order statistics.

1 1 M, .
< —logy+ —=logk,| + — + ap, A. Proof of the lower bound on the optimal average error

nk nk .,y Probabilty
(72) From [60),
_ Pr L 10 PYnIanHn (dYn|Xn, Hn)
nk % P, (dY"|H") P.(r|3,c) > inf lim limsup Pr |vVnK
Pxninz: &0 5,0
1 1 n n+1 n o0
S _K 1og Mn _|_ L + _K log K/n‘| PX G'P(S, )
n V TLK n " 1 1 ]P)Y"‘Xn Hn (dYn|Xn Hn) C < é_
+ exp(—VnKE) + an, (73) nk O° Qo (dY7) =T
which simply follows by replacing({71) if_(Y0). For some (76)
real, we choose the coding rate where, for fixedH"”, Q,, ; is taken to be complex Gaussian
1 r with zero mean and covariance mat@d{” (H")H + 021y,
— log M,, = C+ . (74) Thus
nK vVnK
By combining [7D) and[(3), taking the superior limit an Pe(r]f, ) = ® nepl({lgfg,ﬂ}w 15%1
then¢ | 0 on the RHS, and the infimum over the codes on x5 B :1
the LHS, we obtain limsup Pr {\/ nkK (IJ)V(} — C) <7r— f} (77)
ICONS '

P.(r|B8,c) < 151&1 limsup Pr [VnK

50 WhereINK is defined in [(7B) on the next page and where

- on 1rm Wi e CN*(+1) s composed of .. dCAN(0,1) elements.
% L log PY"IX"N.,H" (dY™| X", H") —C| <r+e To proceed, we now call Theorérh 2 for the random variable
nk P, (dY™|H™) IX+ Let {X7}>°, be a sequence with” random with sup-
(75) port|n82+for eachn. Denoting A’ _IK XX,
where we usedo,, — 0 while s, — oo, such that for any realz, asn (B, oo, we then have
—L_1log k, — 0. This concludes the proof. ]
Vi 198 P VAE / x3
Pr|—= (IN}( - C’) <z| — ®(z) (79)
APPENDIXB On,+
PROOF OFTHEOREM where 77, = or(62 4 CRU(AL? — flog(l —

The proof relies on information spectrum methads [19] andlgo(UQ)@ + 0o(0?))7?) — £¢B7'), in which the
is more exactly related to Hayashi's proof-techniques usedterms in K~ or n~! arise from accounting for the fact
[8]. Our starting point is Propositidd 1 in AppendiX A whichthat X7 € CKx(+1) and W e ¢N*(+1). But since

relates the optimal average error probability(r|3, ¢) to the ——10g(1 — ¢ 10o(0?)(1 + do(0?)) %) — £¢B~" — 0 as
statistics of the mutual information density. (B,¢) : ,
n —= oo, we have more simply by Slutsky’s lemma
The main problem in studying the optimal average error
probability lies in the difficulty to perform any analytical vnK [ x7
calculus on the information spectrum B n|xn g, unless Pr O+ (INvK - O) Sz| = (2) (80)

the underlying distributions (oX™, Y"|X", H", or Y"|H™)
are Gaussian. Propositién 1 precisely handles this difficulwith 62 4= 292 + (I1<tr (A7)2.
Indeed, first note that the lower bour[d](60) can be furtherWe can now write

bounded by the same expression wifh,  chosen to be pr IVok (154 o) <r—
Gaussian with appropriate mean and variance. As[fdr (62), it ' { " ( N.K ) =" 4

already features an information spectrum of Gaussianlalistr vnK [ xp r—¢&
tions. Both lower and upper bounds will thus rely on expijti =Pr ot (IN,K - C) < " (81)

Theorem2 with the major difference that, while the upper

bound from[[6R) provides a definite choice g~ that allows (a) | Pr {;:f (IféiK - C) < T;ﬂ , <

for an accurate control of the varianag of Theoreni2,[(60) Z Pr [\/ﬁ (IXz N <o o0 (82)
does not and will force us to consider the worst case scenario On,+ \"NK = ’

where %tr (A")? = 0, with A" = Iy — LXn(Xm)H. As P (re—ﬁ) 4, ,r<o0

briefly discussed in Sectidnlll, the terfA")? appears due =91, (83)
to the randomness in the channél’, leaving the problem 31l , 7>0
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n 1 1 H*(H™)H
I])\?JFK = ?logdet<IN + E(T))
1 Hn(Hn)H 2 - H" n n H" n n : n n\H
+ﬁtr T‘FO’ Iy \/—XX_‘_—FUW_‘_ \/—EX++0W+ —W+(W+) (78)

for some sequenakg, | 0, where(a) holds sincd,, > 6_ > Once again, we resort to Theordmh 2 to determine the
0 and since we took — ¢ > 0 for » > 0. The terml1/2 arises limiting behavior oflﬁ,}. As opposed to the lower bound,
from ®(0) = 1/2 which originates fron®,, not being bounded wherePx~. € P(S2) was left undefinedPx- is now fixed
from above sincektr (A% )2 can grow likeO(n). and will allow for a more accurate control of the limiting

) o . .
Taking the limit superior as: 2% oo of the above Variance ofly . We first obtain

equation leads to limsup Pr [\/ﬁ (vaf} — C) <r+ 5}

limsup Pr [\/TLK (IJ)V(,%{ — C’) <r— g] RGN
(8.¢) —
@(T;) r <0 = limsup Prl ; (I])\f,K—C) < 7’5—5 (89)
> o- = (84) LGN n n
% , r>0.

whered,, is defined in[(2D) where we recall thaf* = I —
By continuity of ®, we can freely take the limi§ | 0 on the %Xn(Xn)H, Now, it appears that

right- then left-hand sides to obtain

1 (B,0)

1
n — n\2 -
lgiﬁ)l limsup Pr [\/nK (Ifé} - C) <r-— 5} Ktr [(A™)7] B (90)
(B,c)
" 700 almost surely. To obtain this result, it suffices to realize
S 4’(9%) , 7 <0 85 that X” = X"(getr X*(X"H)~2 for X» ¢ C**" a
=11 >0 (85) standard Gaussian random matrix with entries of zero mean
2 b

_ _ _ _ and unit variance; from classical random matrix resultst(th
Equation [(8b) is valid regardless of the choice of thgyay be obtained by means of the Gaussian tools defined

sequencgPxy € P(SZF)}02 ;. This therefore implies in Appendix[C), we have thatl-tr X"(X")! — 1 while
. et (X™"(X™)M)2 — 1+ 471, almost surely; plugging these
P, (r|8,c) > {‘I’ (9_,) , <0 (86) results in the expression of?tr (A™)? gives the expected

% ;720 result. As such, we now have th&t M 0, almost surely

which completes the proof. (and so in probability), withd defined in Theoreml3. By

Slutsky’s lemma and Theorelh 2, we thus have
B. Proof of the upper bound on the optimal average error lim sup Pr {\/ﬁ (I])\fr}( B C) < T+4

probability (B.0)
From [62), we recall that " =
' vVnK n
= limsup Pr loL (Ifé_’K — C) < 7“9—1—5 (91)
P.(r|8,c) < 1£1§J1 limsup Pr anKx LGOI n +
L I T B r+¢&
1 P (dYy™| X", H") =7 (92)
— 1o le\Xi,Hn B _c S r +§ (87) . +-
nk P, (dY™|H™) which, along with the fact that
whereP, (-|H") is a Gaussian random variable with zero mean im o [ +&\ o 93)
and covariancef"(H™)" + 021y and the outer probability €10 0. ) \0s
is taken overH™ and over the random variabl&™ having concludes the proof
uniform distributionPx~» over the spheres”, as per [(GB). proot.
Denoting, similar to above,
nlvn 1m APPENDIXC
[NT}( — 1 lo PY"|X"~=H" (dY™|X™, H™) (88) GAUSSIAN TOOLS AND RELATED RESULTS
’ nk P, (dY™|H™)

B The CLT, Theoreril2, relies on advanced tools from random
we get from the Gaussianity of botty»|x~ 5= andP,, that matrix theory along with standard linear algebraic relagio
IJ{,(K is given by [19) withX™ of law Px., while H™ and which are constantly called for. This section introduces th
W™ are zero mean Gaussian with (properly normalized) umdindom matrix concepts and collects the aforementioned rel
covariance. tions.
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Lemma 4 (Some matrix inequalitiedfor two N x N ma- as in Remark[]8, wherdV < CN*" has i.i.d. entries

trices A and B, the following holds W, ~CN(0,1). Then,
(i) |tr AB| < Vir AAHtr BBH. (94) N n 2 2
Var[f (W)] < Z Z ‘ L OV) + of (Vy)
If A is Hermitian nonnegative definite, it further holds that por e oW oW
(ii) [trAB| < |B|trA (95) (107)
a1 Lemma 8 (ldentities for Complex Derivatived)et H €
(i4) NtrA <|IA]l- (96) (@nxK Then,
Lemma 5 (Cauchy-Schwarz inequalitygor two complex OH,,
) =0 (108)
random variables andy, OH;
0H
[E [zy]] < VE[«PlvVE[y]. (97) T S (109)
)
Remark 7 (Application of the Cauchy-Schwarz inequality): b [HHH}
Consider two random variables and y. By the Cauchy- FTE P = §;,Hp, (110)
Schwarz inequality, i
a [HHH}PQ *
|E[(z —E[z]) (y — E[y])]| < /Var[z]\/Varly].  (98) Tom, dipHy; (111)
Thus, a I:HHH} rq
|E [zy]| = [E[z] E[y] + E[(z — E[z]) (y —E[y])]| (99) 9
< |E[2]Ely]| + \/Varla] /Var[y). (100) SIH'H], | 113
OH, A a0 ( )
1]

Moreover, it follows that )
Moreover, denoteQ = (%HHH—HEIN)_I and Q =

Varlz +y] (#H"H + :cIK)71 for somez > 0. Then,
= Var[z] + Var[y] + 2Re{E [(z — E[z]) (y — E[y])]} 5Q '
(1oL R = ——[QH),;Q (114)
< Var[z] + Var[y] 4+ 2+/Var[z]/Var[y (102) 8Qij
2 L erH
= (Varla] + vTarly]) (103) om, — e QioQ (115)
Lemma 6 (Integration byTparts formula 17, Equation (2.)]%2 BQT - _iij [HQ]- (116)
Let 2 = [z1,...,2N] ~ CN(0,R) and let OH;
f(@) = f(z1,...an,2%,...2%) be aC' complex function, 0Q 1~ -
polynomially bounded together with its derivatives. Then, 6HIZ = _EQM[QHH]M- (117)
Corollary 1: Let H € CVN*K and C € CV*N. Denote
E [z f(z ZR”E [ - ] . (104) Q= (LHH" + :vIN) for somex > 0. Then,

Remark 8 (Integration by parts formula for functionals oftrizees with (l2 d. entrip??ﬂc - 21 [QCQH],. (118)
Let f (W) be aC' complex function of the elements & H; K Y

and W*, polynomially bounded together with its derivatives, N o (HH"Y)
whereW has i.i.d. entriedV;; ~ CA(0,1). Then (@) tr—pmr—C=[CH];. (119)
¥
8f( ) Proof: The proof follows directly from Lemm&]8 and
E Wi f (W)] = oWy (105) some straightforward calculus. ]

Theorem 4:Let {H"}>,, where H* € CM*K has
Lemma 7 (Poinca&-Nash Inequality [17, Propostion 2.1.6])j.d. entries HY  ~ CN(0,1). For u > 0, let

Let z and f(x) be defined as in Lemmd]6 and N -1 .
let V.f(z) = [0f(2)/0z1,...,0f(x)/0xy]" and €W = (#H (1{) tuly) and Q"(w) =
Vo f(x) = [0f (x)/0x7, ..., 0f (x) /0% . Then, - (B.c)

(HM" H"+uIK) . Then, asn —= oo,
Var [f(x)] <E [V, f(z) RV, f(z)"] . 1
+E [V, f(2)"RV,-f(2)] . (106) E [—”Q M] =0 (u) + 0O (W) (120)

Remark 9 (Poinca-Nash Inequality for functionals of matrices with E|[dﬁ@p@n ] =60 (u)+ 0O (L) (121)
Let f (W) be a function of the elements dV and W* u'n?

1
K



So(u) = 62;1 —% v _C;UU)QHC“ (122)
Fo(u) = bo(u) — = (123)

Proof: The proof follows from a direct adaption df [17,
Theorem 7.2.2] (see alsb [21, Theorem 3 and Proposition 5]
for a more complex matrix model) along with a careful control

of the dependence om in the bounds. ]
Remark 10:The functions(z) = 22 for » € €\ R

corresponds to the Stieltjes transform of the MarCenksttPa

law, see e.g., [28, Chapter 3.2].

Property 1 (Some properties 6§(u«)): The function

do(u), u > 0, as defined in Theorefd 4 satisfies

. C

(7) do(u) > 0T vor+u >0 (124)

(i4) Sou) < 5 (125)

(4i7) do(u) et a1 oo(@) (126)

(iv) N —ioézgu) = ¢ — udp(u) (127)

(v) H%o(u) =1—c+ udp(u) (128)

(vi) 5 (x) = do(x)(1 + do(x)) (129)

1 —c+z(1+200(z))

Proof: Properties(:)—(iii) are due tody(u) = cm(—u),

wherem(z) is the Stieltjes transform of the Martenko-Pastur
, (1++/¢)?]u{0} (see Remark10

law with supportin[(1—./c)?
in Appendix[@). Propertyiv) follows from (7iz) since

c

do(u) = 1—ctu(ltoo) (130)

< do(u) = (1+do(u))c—udo(u)(l+do(u)) (131)
~Go(u)

TTo0(w) — =c—udp(u). (132)

Property (v) follows from (iii) and (iv). Property (vi) is
obtained from the differentiation of
c=060(z)(1 — c+ ) + xd(x)? (133)

which follows from Property(iii). [ |
Lemma 9:Let 02, ¢ > 0 and d,,(x),m > 0, be as defined
in Propositio % in AppendikEJA. Then,

%)

1 — ¢+ 2udg(u) — L8y (u)?
(Z)/ c+ 2u O(u) c O(U) du:log(l—i—&)(a

, € u(l — ¢+ u(1l 4+ 260(u)))
1+50(0’2)

[ Go(w) — 0?61 (u)
(w)/gz T—c+u(l+20(u) "

1 bo(0?)?
~loe (1_ ¢ (14 60(02))?

+ clog <1 +

;)

1
1+ 50(02)> (134)

(135)
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Proof: For the proof of par{i), simply note that

cl — ¢+ 2udp(u) — “—jéo(u)z
u(l —c+u(l+200(u)))

c udp(u)? + ¢

u  1—c+u(l+25(u)) (136)
_c udo(u)? + ¢
Cu ubo(u) + Wcu) (137)
= = — do(u) (138)

u

where we used Properfy (i) in the second equality. The
result then unfolds from Theoreim 1.

For part(ii), we start with the following calculus:
do(u) — o261 (u)

/02 1—c+u(l+25(u))

Y do(u)
_/C,z [1—c+u(1+250(u))+

0280 (u) (1 + do(0?))
(1—c+02(1+02) 4+ udo(u))(1 — ¢+ u(1l + 200(u)))
do(u)(1 + do(u))

(139)
a?5y(u) (1 + do(0?))

1 +02(1 4 d0(0?2)) + do(u)o?(1 + dp(c?))

du

du

3o (u)d) (w)

du
(140)

where in the first equality we developed the expression of
d1(v) and in the second equality we introducéf(«) in
both numerators and used the relation by iterating theioelat
zdy(z)? = ¢ — do(x)(1 — ¢ + x) (from PropertylL(iii)) in
the second denominator in order to maintain a degree one
polynomial in o (w). Writing do(u)dj(u) = [200(w)dg(u) +
5 (w)] — 66 (w)(1 + do(w)) in the numerator of the first term,
we then find

/°° do(u) — 0®01 (u)

=+ u(l+ 200 (@) ™"

:/°° ~ 200(w)dp(u) + 6p(u) | 6p(u)
o2 do(u)(L+do(w)  do(u)
o264 (u) (1 + do(0?))
+ 1+02(1+50(02))+50(u)02(1+60(02))]du (141)

- [_ log(1 + 6o (u))

Tlog(1+ 02 (L+ (@) (1 + ()] (142)
= log(1 + do(c?)) + log(1 + a*(1 + do(c?)))

—log(1 4 o*(1 + 6o(c?))?) (143)
(1 +60(02)( + 02(1 + 6o(02)))
— log < i L 50(02))20 ) , (144)



At this point, remark that

(1+60(c%))(1 4 (1 + do(0?)))
14 02(1 4 do(02?))?
. 50(0’2)
1+ 02(1+ 00(02))2

(145)

and that

1+ 0%(1+60(0%)? =1+ 0%+ 02%0(0?) + ¢ + cdp(0?)

(146)
__¢ 2
= 500D +2c+ cdo(07) (147)
_ (1+30(0?))®
=c 507 (148)
using Property]1ii7) in the second equality.
This allows us to finally conclude that
/°° do(u) — 0261 (u)
o2 1 —cH+u(l+20(u))
o 1 50(0’2)2
[ |

APPENDIXD
PROOFS OF THE MAIN RANDOM MATRIX RESULTS
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We will also rely several times on the following identities:

Q(z)H = HQ(x), Q(z)H" = H"Q(z) ~ (153)
H H B H Hrp _
Q) = 0w, ow T = aw)
(154)
Q(@)Qy) = QYQ(z), Q@)Qy) = Qy)Q(x). (155)

Using the above relations, it is easy to prove the following
bounds on the spectral norm:

le@l =[ew| << ase
H ~ H
HQ(I) 2l = HQ(sc)HKHH <1 sy

B. Proof of Theorer]2
Outline of the proof:

The central object of Theorel 2 is the real quantity

T 2 ViK' (158)
n 11 H
:1/E10gdet(1N+§?HH)
1 1 1 H
+ trQ(o?) (| —=HX +oW | | —=HX + oW
Uik Q(”)(ﬁ ° )<\/E ° )
1
- —trww" 159
— (159)

In the proof of Theorerfi]2, we fundamentally rely on the B
fact that the random matricéd$’™ and ™ are Gaussian by whereIf\ffK was defined in[(78). We also recall the dimensions

assumption. This allows us to use the powerful integratign-

Hec CNXK X ¢ ¢K*xn andW € CV*", Moreover,X ¢

parts and Poincaré-Nash inequalities (Lerfiina 6 and LdMma&7, whereS” was defined in[{4).

in AppendiX Q) to compute the expectation and bound the vari-1t is our goal to prove that, under the hypotheses of the
ance of functionals of Gaussian variables. The derivatibn georem,

Theoren{® is specifically based on the characteristic fancti

approach as explained in great detaillin|[2L],][17].

da(t) 2 E [ee%(rn*#ﬂ e T (160)

This appendix is structured as follows: In AppendixD-A,

we introduce some additional notations and useful idestiti for t € R asn

We then prove Theorefd 2 in AppendixD-B.

A. Preliminaries

For readability, we often drop the indexin matrix nota-
tions when there is no confusion, e.g., we wiifeinstead of
H™.

We start with the definition of two matrices, the So'ca"eﬂ'ntracta

“resolvents” of K ~' H H" and K ~' H" H, respectively, which
will be of repeated use:

-1
Q(x) = (%HHH + :cIN> e ¢V (150)
-1

Q(z) = (%HHH + xIK) e CExK (151)

for x > 0. One can easily verify that:

H B H 5
0w T — 1y 20@). 0w — 1 - 2Q()

(152)

B9 o, where u, 2 VnKC. This will
imply, by Lévy’s continuity theoren [18, Theorem 16.3]ath

0, (T — pn) = N(0,1) (161)

which is equivalent to the statement of the theorem. The main
difficulty arises from the evaluation of the expectationi6(Q)
which must be taken with respect to the three random matrices
W, H, and X. Since the direct computation af,(t) is

ble, we calculate its derivative with respect, tieading

to a differential equation which must be integrated. In orde
to further simplify the analysis, we split the computatioh o
the expectation in three steps by successively considéniig
conditional expectations with respect to each of the mexdric
These expectations are developed by the integration bg part
formula (Lemmdb in Appendik]C) which yields terms that
are either further developed or shown to be asymptotically
negligible by bounding their variance with the help of the
Poincaré-Nash inequality (Lemmad 7 in Appendix C). The
analysis makes use of several auxiliary results summaiized
AppendiXC. In more detail, the proof consists of the followi
three main steps:
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1) We first take the expectation ovel by fixing With the help of [(I5R), we can decompo#g, in the
X € S* andH < CV*K: we define the function following way:
X (1) 2 E e“rfn’Hnl, whereT’X"-H" s the ran-
dom variablel,, taken for fixedH = H,, and X = X", Fn=Tni+Tn2+Tns+Tna (165)
and show that

. where
Oy (1)
ot - n 11 H
) Fn,l = E 1ogdet Iy + —EHH
<i‘u§",H" -t (07)1("71_1") + it2li§n’Hn> ¢§H,Hn (t) 1 HXXHHH
e + tr@ (166)
+an () (162) Jnk K
n n n n n n 1 HHH H
for somep X" H" = O(n), 0X"H" = O(1), kX"H" = o= \/_trQ WWwW (167)
O(n~1), andzX" 1" (1) = O(n~?) which must be care- [—
fully controlled. This establishes a differential equatio p— trQ (168)
for X" H" (¢) the solution of which allows us to obtain T Vn VK
an estimate 06X"-H" (t) under the forme/(tXH) (e, r " QWXHHH (169)
with no expectation over’) 3 md = ‘/ VK

2) We then compute the expectation ovér we introduce
the functionpX” (t) = E [pX"H" (t);. Working mainly and where we have define@ = Q(o?) to simplify the
with the tractable estimatar/(+X-H) of ¢X"H"(4) a5 notations.
developed in step 1), instead 6f<"H" (1) itself, we By (1&5),
prove in a similar fashion that

¢Xn Hn i |: b Hn tFx JH™ :|
06X (1) (. xn x\2) | xn - iE [T e' : (170)
= (X = (6X7)) oX (1) + X ) =
(163) S
§ § § SinceT') ;™" is independent ofV,
for someuX” = O(n), 6X", andeX" (t) = O(n™1).
This .establllshes a second differential equation. E {FnX,Z,H"eithf H } _ Ff},H"(bf",H" (t). (171)
3) We finally integrate[(183) and show that
X eg [e e (T uff")] e 540 (nfé) The term in0X, ™" is studied as follows:
164 X717H71
164 g [rx;m]
(asn 22, o). Since [I64) holds almost surely forany _ __ 1 5 trQ—HHH W Heir (172)
random matrixX™ with law Px» € P(S2) for all n, vVnK K
it holds also for the function, (t) = E [¢X"(t)| = N H xn
i _ ) |: :| 1 ZZ [ HH :| [[WWH} . et }
E {eﬁ( n‘““)} which finally proves[{160). - VnK Pl ki !
We now detail all these steps rigorously. (173)
N N n
1 HHH X HT
_ E Wi_W*_eltFn ’ .
Step 1. ‘/”K;;[Q K Li; { 97 kg }
In a first step, we consider the expectation oVEr by (174)

treatingH € CY*X and X € 8" fixed. We define the _ _

function ¢X" " (1) 2 I [ ™" | which we would like to We now use the integration by parts formula (Lemira &
g in  Appendix [D) to develop the individual terms

express as a differential equation of the foM E Wing,eitfifn’m} as follows:

f(X,H,t) ¢X" (1) + ex "M (t) for some functlonalf Y

and quantity=X"-H" (1) Wh|ch vanishes asymptotically. Since

X" H" X" H" X" H" « L. E {lewl;kjeitrf H :|
Iy s real, ¢ 4 (—t) = ¢5 7 (1), so that it is

sufficient to considet > 0 for the rest of the proof. X ArX"H"  xn an
= 6’LkE |:€ " :| ltE ij aW* "
2Note importantly that, although the temﬁfn’Hn is of orderO(n—1) and
will not play a role at the end of the calculus, it nergdsnto lodaied and not (175)
contained inteeX H" (¢) as the estimation erroﬁn (t) — ef (X H),
which is of the same order of magnitude will increase by a arx" H" arXx’ H"
9 (), Y@ The derivatives—z: and can be computed by

factor n when we take its expectation ovEf (this is due touffn’Hn being oW, 8W
of order O(n)). straightforward apphcatlon of the derivation rules pasd in



LemmalB in AppendiXC:

aI‘n,l 6:[‘71,1 arn 3 al—‘nél
oWy oWy OWy W
I, 1 HHY
o]
aWij nkK K ij
I 1 HHA
o s
6Wij nk K i
ar"f E— {QiX]
aWZJ V nk \/E ij
Ons _ 0 {XH H" Q]

Using [165) together with the derivativés (176), (L7[7).917

in (I78), we obtain

E [[Ww et
néadX H (1)

Xn Hn
or

X™H"
n,2 8Fn,b’

=0

+it) E W,;‘-< _ _
> i (T T

nddX B () — it

- [Q%XWH] )éffi‘”’H"] .
ik

Replacing the last result i (173) yields

X" H" X"
E [FM e

n_ HHH
rQ

<_tr

o HHH
— —tr
nk Q

ox"H(t)

HHH

+ itE

> wwH

H

Vi

We will now individually treat the second and third terms
on the RHS of the last equation. For the second term, using

Q _XWH> U

(176)
(177)
(178)
(179)

(180)

X" H?
) eltFn ]

(181)

e |([oF ],

(182)

'H"] . (183)
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the same steps as above, we arrive at

N 2
1 HHH X" H™
:ﬁZZKQ K )] E [t e
k=1 i=1 ki
(184)
n HH"\? o o
Y (Q i ) o (1)
it HH"®
— _E| | tr wwH
(nK)2 l Q K )
HA 2 o
— otr (QHE > Q%XWH>6“F§ H ] (185)
n HH"\? 0 g
:ﬁtr (Q i ) o M (1)
. on HH"\® 0 .
—1 n3K3tr <Q K ) ¢nx ’H()‘anlH(t)
(186)
where
) =
_ n HHM\® (WwwH X
HH"\’ H X" w
+itE | ——tr ( > ——XWHeltn
o) 77

(187)

ConS|der now the third term on the RHS pbf (183) and define

HH"
T = Q> QL f X. Then,
o H ltl—‘xn Hn
nKE [trTW }
—1t—ZZT g [O0n T e (188)
=1 j=1 K anj
o2 HygH
_y Q2 QHXX H Xt ()
\/n3K3 K
+ery (1) (189)
where
X H”(t) =
HH"\’ H —_
—it—F |tr — XWHelt!
(nK)z l Q<Q\/?> VK
(190)
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Combining the last results, we arrive at Thus,

E {FX",H"eithf”’H"} _ E [Ff;vH"eitFi‘”’H”
- " o’n HXX"H" 0 e
\/_t Q—¢X H () T QI —— X (1)
2 5 o°n ,HH" HXX"H" . 4n
. N X" H" +t rQ Q o (8)
+ it—tr Q— o () Vi3K3 nk
nk K X" H"
" - —ite, 7 (1) (199)
+t2{ —r (Q iR ) .
n*K Sincelx ;™" = (FfA’H ) , it follows that
n o’n trQ2HHHQHXXHHH SXTH () i R
VK3 T K nk " E D5 T | < B [T e L (200)
X" H" X" H"
it { (8) — ene (t)} ' (191) Gathering all pieces together as a polynomial, iwe obtain

a first differential equation ofX" 2" (¢) as given in [20R)-

We now consider the terms i, ;" and'X,™". Using (208) on the top of the next page, where
similar calculus as above, )
" gn A =T — -XX" 201
E [FnX,Z,H"eitl“f H } KT (201)
=B [ /_trQWXH S } (192)  Let us now have a closer look at the quantitigs -H",
nK

N xX5H" andeX" 1" (1) individually. Using the identities and
_ Z Z {XH H ] E [Wweﬂx JH" } (193) ?hoalinds presented at the beginning of this proof, one cafyveri

VK = VK
N n H X" H" n gyn N 2 N
. g H ]_—‘ X" H" < X _’H < v e H _ v
=1tﬂzz [XH El At 1 0 (Gn ) <5 T opUXX <K+2> (207)
=1 j=1
J (194) o<wx < N3 xxH
N . VvnK3 Vn3K3
o - H o H 1 N
=it XH—Q} El|l — [Q—X] = —— <— + 3> . 208
VnK;Jz—;[ VK ji [(V”K VK ij vVnK \ K (208)
1 HH" X" HT 195 Based on RemaiK 7 in AppendiX C, we can bound the absolute
- VnK R y o (195)  value of X" H" (t) as
0'277/ HX.X H n pyn X" H"
=it—trQ? XHT (¢ En t’é
RO o (t)
o HHH HH X HT 1 HHH 3 WWH
—itE tr WX ——Qeitn } : 196 3 _
1 |: K Q K \/EQe ( ) t Var nK3 tr Q K " IN

Doing the same calculus for the second term on the RHS A 2 H
of the last equation, one arrives at +4, | Var  _rQ (Q HH ) HXW
Vn3K3 K VK
H HY . xnowun
9 wxH ey ] (209)
B | v WX | o
 o2p 2HHH HXXWHN 40 g By Lemma[10(i7) in Appendix[E-4, it follows that
— it rQ*=—Q oX"H (1)
Vi3K3 K nk HA 3 H
X" H" Var L tr QHH Ww= _ I
+ena (1) (197) VoS K - N
here Hy ? H
W — Var tr (Q HH ) W ] (210)
n n n3K3 K n
X" H
671,4 (t) - H 6
NN <2 (QBH (211)
_ itLSE trQ (QE) WXHI ury | — nKk3 K
(nK)> K VK 2N
(198) S (212)
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DT (i 0y (007 ) g2 X ) 4 X (202)
p X" \/; 1ogdet<IN+ ! H]I;IH) \/”_t QHAHH (203)
f<>WfH

Similarly, by LemmdI0(¢) in Appendix[E=A4, it follows that Step 2:

In this step, we first solvé (202) to expres$ 2" (¢) as a
2
Var g trQ (Q HHH) HXWH function of X andH. We then proceed similar to Step 1 and
Vn3K3 K VK express the functiopX” (t) = E[¢X"H" (t)] as the solution
2 HE'\? HXXHHH of a d|ﬁeren_t|al equation.
= —n3K tr (Q—K ) QiK Q (213) The solution of [(202) reads
H X" H" gy it (X e X
2 ? frnd My n 3 ''n
< K3t Q (214) dn T (1) <1+
1 H
e i (215) /teiwui‘"*“‘"#f("i‘"”")zifnf"'”ngx",H" (z)da
1 0 "
= =7 (216) (220)
Replacing [21R2) and (216) ifi (209), we then obtain Define the functiomX” () = E[¢X"-#" (¢)]. The equation
(222) on the top of the next page follows then frdm (220).
N () =0 (BPn?). (217)  We will now show that only the first term on the RHS of
(222) is asymptotically non-negligible. Let us first define
Similarly, from (207) and[{208), o
Xn Hn 2 t xn Hn 2 XN HM\2 ,z3 X" g
(ox75) = oq) (218) ( R O B e S (x)dx)
Xn,Hn o _ 0
Rn — O (n 1) . (219) t,uffn JH™ t22 (exn'Hn)2+i§I€§n'HH (223)
Two remarks are important at this point. First observe thgince
the introduction of«X"H" allows one to gain at each step P ¢ -
one order of precision on the estimationggf " (through O] <e —g () / 5 (o) H” (x)‘ dx
refinements of the coefficients of its differential equa}ion 0 (224)
The choice of the order to be used is mainly ruled by the A
subsequent averaging steps. For the present proof, we need = o (t n ) (225)
the error (given byeX"-H" (¢)) to be withinO(n=2). it follows that E[©] = O(t'n=2) and Var[0] = O(t5n~4).

Second, it is very important to keep the termstim the Thys, by Remarkl7 in Appendix|C,
various bounds derived here and below. The reason for thjs oo
is twofold: (i) to solve the differential equations < H B {unx o 9}

then ¢X", it will be necessary to integrate these bounds and i

their integrability must be controlled, (ii) at the end ofeth < |E [ufan" }|E [©]] + {/Var [ufn’H"}\/Var [©]
calculus, the normalization of,, by (the estimate for) its . (226)
standard deviatioiX ", used to ensure a limiting unit variance,

will be performed via a change of variable— ¢/6X" which ‘E [ X", H" ] ‘ O (t*n72) + | Var {an,H"} O (t'n~?).
requires a close inspection of the polynomialg indn ! in J

the bounds. (227)
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don (1) _ o [9oXH" (1)
- E{ o ] (221)

n pn nopn\ 2 n ogn i1 XH™ 42 (pX™ H™\2 43 X" H"
:E[(luf M —t(eff " ) +it?kx M )e‘t“n (007 ) i

n - n - 2 n - t . X" g™ '1-2 XN H"\2 .,1_3 xXn g n n
+E (i,uf H —t(é’ff H ) +it2 X H ) (/ P - A B b LA gx"H (x)dx)
0
ST Aol B E Tl [ (1) (222)
Again, from Remarkl7 in AppendixIC, Similarly, one can show that
2
H X" H" _ 4, —2
Var[ X", H" } < Var logdet|{ Iy + iHH ‘E [(9" ) 9” B O(t n ) (238)
K K
‘E [ﬁf H @H — 0 ('), (239)
n HAHH 298
+ EVM rQ K - (228) Using [237), [[238), and_(ZB9), we can finally conclude that
n n n n 2 n n
From Propositior{13(iii) in Appendix[E-A, we know that E wa H (935 H ) +it?kXH >®]
Var |tr QZAEY | — O (Ltr A2). It remains to find a bound
a L @ K } (K. ) . . =0 (t4n_1 +t°n72 + th_3) . (240)
for the variance of the first term i (228). By Lemrmh 7 in
Appendix[C, Since all bounds are clearlygmtegrable ovethis now means
1 HH" thateits " =2 (0 1) SR is an estimator ofX”
Var [10gd9t(11v R )] within O(n~!). Note that this bound would bé&(1) if we
N had only used an estimation ¢f" " within O(n~") in the
2 o (HH"Y) previous step. Hence the fundamental importance of the term
< FZ]E —t rQ—p" oI, } (229) RXTH"
We can therefore proceed to stugyt” via the estimator

9 2 lt#x JH™ t22 (ex",H") +i t3 KX HY
e n n ’Vl
T4 Z E Z Oip (Has)" Qap (230) Starting back from[{222), we flrst verify that
] p,q

o XMOHT 42 (pXT HT\2 .43 X HT
‘E |:it2/{§anﬂelt‘u” 7%(971 ) +1%l~cn :|

2 11 oy 2
FZ]E 'E (7], (231)

— O(>nME [e—é("i‘"’””f] —onY).  (241)

_ 21, , HH"
=% trQ = (232) Thus, we have
= O M 233 X’” n n n n 2
(1) (233) 9o (t)_EKi“’)f o (s .,H))
Using the fact that tA2 = O(n?), we conclude that ot
Var[ X, Hn} = O(n) X HT t_((_)x" H") L8 X HT
Slmllarly, we have from Propositidd &) in AppendixB xen 2 s
n pn [n 1 HH" 2+ttt 45 b
HAHH We now develop the term in the expectation and express it
Vi ~trQ (234)  under the form off (X) ¢X" (t) + X" (¢) for some functional
f and asymptotically negligible quantity*" (). For better

_ 0 (n n /%trA2> (235) readability, we define the shorthand notation
n t2 2 3

n n n n t n n
X XS (B iR (243)

—On). (236) O Tt
Combining the last results, we have shown that and consider individually the terms

B e]|=0 (). (237) AE X et B:E{(ef}”-ﬂn)zevi‘"}l"].
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Term A: The term A cannot be evaluated in a straightfor- Also note that the last RHS term ¢f (248)rist necessarily
ward manner as the integration by parts formula (Lerhima 6 iregligible in the large: limit. Indeed, forX € S™, tr A2 can
AppendixQ) cannot be applied to the log-termyiff"-*" (as grow asO(K?), so that the whole term may grow &5/K).
defined in [[20B)). To avert this difficulty, we use the identit It is therefore essential to keep track of the termsAinThe
1 HHY % q H pre-factort in front of X trA2 will play a significant role in

T) :/ ~trQ(u) du (244) controlling these terms at the end of the proof, which exglai

o2 U why we also need to keep track oin the various bounds.

which, together with the Fubini theorem (using Term B: For the term B, we have from the identities in
trQ(u)HHM" < w~'tr HHY), gives for A: @52)

log det <IN + —

X", H"

B Ny

\/>/ —E{tr@ ngHe”fH]du 1 HH'\? 252 HXXHHH
=K (Etr (Q I ) —I—?tr (QTQ)>

— /= {t QHAH Wi‘"'”"} . (245)
K X", H™
. . x eTn (249)
Before we continue, we need the following result which is
the cornerstone of the subsequent analysis: H 5 H
Proposition 2: Let u > ¢2 > 0 andyX"-#" be defined as — g (ltrQHH + 2w @? i
in (243). Then, K K K K
HH XN, H" 20’2 H (IK — —XXH) H X" H™ 1
; Vo —ZZ tro? Vi —_
(i) [trQ( ) e ] KtrQ e e +(9<K)
(1= ¢+ 2ud(w) - u_jao(u)Q)E e (250)
e ’Y’Vl Xn Hn
1—c+u(l+200(u)) {e } _JEKC——trQ?——t QQHAH >e7n ’ ]
n 50(11,) — 0'261 (u) X", H™
ty = E e
P R T e (11 200(w) [e ] +o<%). (251)
P(t)
+0 <u\/—) (246) To proceed with this term, which is essentially equal to
AR xn o the product of the expectations of the two arguments, we
(D) {trQ ern ] rely on RemarkJ7 in Appendik]C. Using Propositibh 3 in
Appendix[E-A and Propositiop] 4 in Appendix B-A to bound
/ ?) gtrA? " he vari f each h
YO ! (0?) & E [673; H } the variances of each term, we have
K (1+680(c2))? < g \? X an L s -
+<9< i) RO L1, A2> (247) . [(9" 7 ) e } = (e-olae) E [e% }
VK = VK K

1
Ol —= 252
for some non-zero polynomial®(t), P (t), Px(t) in ¢ with * (\/K) (252)

g?ggggizg\%c?nefg;?:rfﬁgg with, () andym(z) gVen by oo we used in particula/ K —3tr A2 < 1/VK.
Proof: The proof is provided in Appendix_E}B. Combining [24P), [(248), and_{252) we finally obtain the
) . : . : dlfferentlal equatlon [(283) on the next page, wher®",
Applying Propositiori (i) and (¢i) to the first and second X" gz defined 4 o) f
terms of [24b), respectively, we obtain the result[in {248) o( ) » an | “n (')I are_th etine 'nt_E(E )%r.zf’ ) for sodme
the top of the next page, where for the last RHS term, wi n-zero polynomials with nonnegative coefficiefs¢) an

t).
usedf u2du < oo and P,, P, are non-zero polynomials * 2 2 (
with nonnegative coefficients, possibly different from sbaf Using Lemmd.P in AppendiIC and the definition-pf, d,

X"
Proposition[2. Note in passing the fundamental importanlﬂe Proposition(#, the expressions pff" and 3" can be

of maintaining1/u in the bigO term of Propositior12(:). simplified as:

The existence of the two integrals ih_(248) can be proved X' =vVnKC (257)
via bounds on the&);(u) and v (u), essentially relying on 1 1

their definitions in Propositiofl4 and on controls similar to 93}" — [92_ +(—tr AQ} (258)
Property[l (i) and (ii) in Appendikx]C. Nonetheless, a more K

immediate argument consists in remarking that, since th® Likvheref_ is defined in the statement of Theoréin 3 ane-

of (248) is finite, and so are all terms aside from the integrat-d,(c?)(1 + do(c?)) 1. Note that we have used the relation
on the RHS, so is the sum of the integrals. Taking 0 then §o(0?) = —d;(c?). Before we continue with the main proof,
justifies with the same argument that the first integral igdiniwe will show that¢2 > 0 and¢ > 0.

which, taking thert # 0, ensures the finiteness of the second For the former, first note that the logarithm term @f
integral. in (24) is well defined. Indeed, for > 1, the argument is
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nogn XU HT 1 — ¢+ 2udg(u) — u_250(u)2) AXHT
E |pX " e ZM{/ T (=t (i T 2oo(a))) du}E{e" }
o [ [ du(w) —o®hi(w) 71 (0%) Tt A2 | 7
K {/Uz 1—c—|—u(1 + 200(u)) + (1 + do(02))? E[ ]
+(9( K ) (248)
X" 2 X", H" n
ad’j% ® _ (ix —t(eff") )]E [e% ]+5§ (t) (253)
) ¢ (1= e+ 2udg(u) - Loo(w)?)
o :M{/ w(l—ctu(lt200w)) d“} (254)
O N Tt O B Y T LS A
9 K {/gz 1—c—|—u (14 260(uw)) (1+5o(0’2))2 + n ( o ))} (255)
X" o [ Pr(t) | tPa(2) 2
X (t)_(’)(\/?—k\/EKtA) (256)

clearly positive. For < 1, by Propertyl(iv) in AppendixC,

We now relatepX” (t) = E

[¢X"H"(t)] andE e

60(0%)2(1 + do(0?))"2 = (c — 0%60(0?))® < 2, with the with the help of the previously established results. Sigrti

inequality arising from Properfyl i) and(i¢) in AppendixC;
this then implies that the argument is greater thanc > 0.
Obviously, in both cases, as the argument of the logarithm
less than one, the logarithm itself is negative. This ingpireat

_ 1 bo(0?)? /
02 = —Blog (1 - —m> + (e +0%8y(c?))

(259)

W, )

2 T T T 02 (1100 (09)) + 020, (09) (260)

®,_ co® (140 (%))

kR (261)

c 0—2 ) 0.2

S <1 - C,Q(Jlr%(;((az))) ) (262)

=0 (263)

where (a) follows from the definition ofé(z) established
in Property[1 (vi) in Appendix[Q, (b) follows from Prop-
erty[d (si7) in Appendix[C, andc) is due to Properth]f(zz)
in Appendix[@ which implies that%T > o2

Concerning¢, we first show thatSl(o—z) = —56(0—2) > 0
(where this identity follows from Property] 1vi) in Ap-
pendix[@). Sincec~16y(0?) is the Stieltjes transform of the
Martenko-Pastur law,. taken in—c? (see, e.g.[[28, Chapter
3.2]), we can conclude that

51 (0’2

)= =0(*) = ¢ [ GamEeld) > 0. (264)

H(1 +

Since alsody(a?) > 0, it follows that( = —B8) (o
5o(02)) > 0.

from (220), one can easily show that

is XUH () —

‘ < Mt*n=2

(265)

for some constant/ independent oH, ¢, andn, from which

2 )~ o 0] [ o 1

or, equivalently,
E [evi‘"‘”"} = X" (1) + O (t*n7?) .
Replacing the last equation ih_(253) leads to
X" (t . xn A2\ xn
e (i G B A

ot
+ (iuff" —t (93}”)2) o (¢

One can verify from[{254) and (2b5) that
=0O(n)

-
(93}")2 -0 <1 + %trA2> .
nce

a¢nxn (t) _ s, X" X" 2 X xXn
ot = | Wy — t (en ) ¢n (t) + €n
wherecX" (t) satisfies

no P (t)
eX (t)_(’)<\/E +

tPhy(t) 1 9
Nice EtrA ) .

n*Q) + s‘f

(t)

n72)

(266)

(267)

()

(268)

(269)
(270)

(271)

(272)



Step 3:
Solving the differential equatiof (2I71), we arrive at

I

t ) noo.2 ny2 n
/ efmc,uff JrT(eff ) anx (I)dI) (273)
0

xn

= ettt = (0)" 4 Xy (274)
with £X7 (¢) = O (teX" (1)).
xmn Iui(n

“xn it (TF -
DenotepX" (t) = E [e e (7

)} . Then, from [[271),

o it (PX" X"
X" (t)=E [e Ao (T )} (275)
i "n:
= ¢X" (9;) o K (276)
i "nn
—e 7 4 X <9f@> T (277)

To conclude, we need to control the tegfh" (¢(6)X")").
This is where the precision arf~ (¢
t > 0 fixed. First, observe fronE(ZGjS) thaft" > 6_ > 0.

We then have

% (a)

(7= ()

O( (V(ﬁzx)+ ¢(i<n>
-o(4)

where, in the last equality, we uséd (£(6X")~1) (6X")~! <

P(t0=")0=", Py (¢(6X")~1) < P,(t6-"), both bounded for
t fixed, and

(278)

)1
= A?| (279

(280)

Litr A2 Ltr A2 1
K =K <-< 281
7 T Eacguar gt
We conclude that
xn (b *itﬁ_: _o( L
gy (035”) e =0 7z) (282)
Take now Px». € P(S2) for al n and let
u(t) 2 E [&f (t)}. Then, from [2717) and(282),
~ 2 1
W)= +0—]. 283
0 (=) (289)

Taking ¢ < 0, and using, (—t) = ¢, (t)*, the result above
generalizes tad € R.

This implies by Lévy’s continuity theorem that

1—‘ln_ n
T“:wv(o,l)

n

(284)

where we have defined,,
terminates the proof.

pX" and 6, = 6X". This

t) from (Z272) is used. Take
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APPENDIXE
ADDITIONAL RANDOM MATRIX RESULTS

A. Auxiliary results
Lemma 10:Let G € CM*L have i.i.d. entriesG;; ~
CN(0,1) and letS € CL*M and T € CM*M, Then,
(1) Var [tr SG] = trSSH
(ii) Var [tr TGG"] < 2Ltr TT".

(285)
(286)

Proof: The proof of part(i) is obvious. Part(ii) is
proved by a mere application of Lemrhh 7 and Lenirha 8 in
Appendix[C. [ ]

Lemma 11:Let G € CM*L have i.i.d. entriesG;; ~
CN(0,1). Let T € CM*M be a deterministic matrix and
be a function ofG. Then,

E [tr TGG"e”] = Lir TE [e*]

(287)

1)

Proof: This follows immediately from Lemm@l 6 in Ap-
pendix[C. [ |
Proposition 3:Let H € CY*K have iid. elements
H;; CN(0,1) and define the functional®)(z) =
(+HH" +:cIN)_1 and Q(z) = (%~H*~'H+xIK)_1 for
x > 0. Further, letC,D € CV*Y andC,D € CX*¥X . Then,
for u,v > 0 and any nonnegative integet, the following
holds:

(i) Var [%tr CQ(u)DQ(v)m}
I D

~

u2,02m+1 KS (288)
(i) Var [%trCQ(u)DQ(v)m]
m DI|[2 - -
(\1{;;; +1) ”2! trccH (289)
(#4¢) Var itl’Q(u)Q(u)m H(;(HH
(\/;ZH m) ﬁtrccH (290)
H
(iv) Var %tr@(u)@(v)m HCIJ(H
(2\/;;;;”11_ X FtrCCH m> 1.
(291)

Moreover, forC and C Hermitian,

(WE+m) 1, o

up2m+1 K3

(v) Var [%tr CQ(u)CQ(v m} <2t —
(292)

CWEm)® 1 o

up2m+1 K3

(vi) Var [%tr CQ(u)CQ(v) ]
(293)
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2
Proof: The results follow from the successive applications To continue, we will develop the term[ @], as

of LemmalT and Lemmia 4 in AppendiX C. B follows: oM
Proposition 4: Let {H"}>° ,, where H" € CY*K has 9 [Q(o?)™]
iid. elements H: ~ CN(0,1), and defineQ™(z) = $
(%H” =" +:z:IN)_1 for x > 0. Let {C"}2,, where 9002
C" ¢ CNV*N, Then, foru > ¢ > 0 and any nonnegative ZZ ) %(:I*)pq [Q(UQ)m*k]qi (303)
integerm, the following holds as: Q k=1 p.q &
1 m
nmn n\H =~ 7 [Q(Oz)k_l}s [Q(Uz)H] ;
(Z) E [%trQn(u)Qn(UQ)m%] K ;; p pJj
X Q(0?)ig [Q(a*)™ ] (304)
= (1) g1 €+ 0 W e O () ) @ LY Qe [, @09
1 1 h=t
(i) E {?tf Q"(U)Q"(UQ)m} =0 (u) + O ( ) (295)  Replacing[[305) in[{302), we arrive at
H
where, form > 1, E [%trQ(U)Q(UQ)m H(;(H }
Yo () = Sy () = 025, (1) (296) _ Lycr {itrw)@(aﬂ
2 K K
Sy (1t) = Om—1(u) [1 + do (0’ )} . JE—
l—c—|—02 [1+ 60 (02)] + udo(u) —-E {EtrQ( ) =% Et Qu)Q(o )m}

k 1 [6k 1( )—026k(u)} 5m—k (02)

+ 2 2 (297) - 1 r HCH" m—k+1
1—c+02[1+dp(0?)] + udo(u) —;E ?trQ(u)Q o?) e ?UQ( Zym=ktl|
and (306)
o (1) = ¢ — udo(u) (298) By Proposition[B in AppendiX_EJA and Remafk 7 in

Appendix G, we have
with dy(u) as defined in Theoref 4 in Appendix C. HCH" 1
Proof: In order to simplify the notations, we drop the E {?UQ( )% ?t Qu)Q(o )m}
dependence ofi, e.g., we writeH instead of H". We begin 1 HopH
by standard Gaussian calculus based on the integrationrtsy pa =F [—trQ( ) ] [—t Q(u)Q(o )m]
formula (Lemmdb in Appendik]C): K K

1
E [%tr@(u)Q(UQ)mHCHH] +0 <\/ 3KOtrCC”) (307)
1

K
1 HCH" 1
Z E [Hijcij:kQ(u)rs [Q(UQ)m] 51‘] (299) E |:EtrQ( )Qk I Ktr QM- k-l—l]
i,5,k,r,s B i kHCHH et
— Y. CiE (H7,Q(u éH[Q( Q)m}si)] (300) _E{KtrQ( xR }E{K e }
i,5,k,r,8 ) +0 ( /ﬁtr CCH> (308)
Z CikE | 6ir 051 Q(w)is [Q(0*)™]
i,5,k,r,8 a.nd, thUS,
1 * m H
- 7 QW H],; Q(u)is [Q(e%)™], E [%trczwcz(a?)mm;f }
+ H; Q(u)rsm 301) _ Llycm|Lt 2ym
rk OH, =% r {E rQ(uw)Q(c*) }
H
_ %tr CE {%tr@@)@(cﬂ)m} _E {%tr@(u}H(;{H ] E {itrQ(u)Q(UQ)m]
1 HCH" 1 i 1 HCH"
—E|=tr@ 7—t rQ(u)Q m _ = k il m—k+1
{K W% ()()} I;E[KtrQ(u) o?) = } [tr@() }

1
+ﬁZE

i,

9 [Q(Gz)m] st
[CHHQ(U)L,S Tf;] : (302) +0 <1 / ﬁtr CCH> . (309)



Define the following quantities

i (0.0 = B[ e Qu@e T =0,
(310)
5 (u) = E [%tr@(u)Q(cﬁ)m] Cm=—1,01,...
(311)
which satisfy the relations
5 (0*) =c (312)
i ki) = E [ 2w (o) | (313)

=E {%tr@(ﬁ)m} —uE [%tr@(u)@(ﬁ)m}
(314)
=00 _1(0%) —uds,(w), Vm. (315)
Form > 1, we also have from the relations in (152)
Vo (u, Ixc) = 6,y (w) — 0?07, (w).
Using these definitions, we can exprdss {309) as

(316)

o 1 o o o

1
(317)

=Y M (1,C) 65k (0®) + O <

k=1

Evaluating the last equation fon = 0 and collecting the

terms in~§ (u, C) on one side, leads to

dg(u) 1 1
IO \J——trccH ) .
ok CT O\ e

% (u, C) =
(318)

By Theoren{# in AppendikIC,

53(u) = So(u) + O (#) .

Thus, we can define

(319)

A 60 (u)

1+ d0(u) (320)

Yo (u)

such that

1 1
75 (1, C) = 7o (u) EtrC +0 (1/ mtrCCH> (321)

where we use the fact thig-tr C| < |/ z5tr CCH andu~* <
u~lob (sinceu > o?) to discard the tern®(u=4K ~3tr C).

For m > 1, we can gather the terms involving, (u, C)
in (317) on one side, replacg (u, C) by 7o (u) +tr C and
35 (u) by do(u), to obtain, iteratively onn,
Ltr GO, (u) — Yo (u) +tr g, (u)

1+ 60 (0?)
SR (.08 4 (0?)
1+ 60 (c?)

/1

T (u, C) =

(322)

25

From the last equation, we can obtain a recursive expression
of 4,,(u)° by letting C = Ix and using the relation§ (3115)
and [316):

52 () = 901 (u) [1 + dg (02)}

T T =4 021+ 6o (02)] + udo(u)

oy [0 (w) = 0207 (w)] 85, (0?)
1—c+02[1+do(0?)] + udo(u)

1
+0( =)

Note that the denominator of the RHS of the last equation is
strictly positive (see Properfyl i) — (ii7) in Appendix[C).
For m = 1, we obtain with the help of(319)

_|_

(323)

oo B [1+ 6 (o2)] :
0(u) = 1= c—F(;2 (L0 (02)] + ubo(u) 0 <UK2(3>’2 )
4

_ So [1+ do(u) (0%)] .
C 1—c+ 021460 (0?)] + udo(u) e <UK2(22'5)

Due to the recursive definition of;,(u), we can now
conclude that

52, (w) = () + O <#> (326)
where
S (11) = m—1(u) [14 6o (0?)]
T L — e 02 [14 60 (02)] + udo(u)
Yorsy [6k-1(u) — 020k(u)] 5 (o)
T P 500 fudew) 2T
(327)

Using [326) in[[32R), we have so far proved that,for> 1,
2tr Coy (1) — Yo (1) 211 Coyy, (u)

i (1, C) = 1+ 0o (02)
S R (4,C) S (0?)
1+ do (02)
1
+0 ( s CCH> (328)

where we have relied on the fact thaf (u,C) = <
LtrC = (’)( !

u2K3 w2 K5

we obtain

trCCH). In particular, form = 1,

01(u) =0 (u) 01 (u) 1
150,08 EK'C

/1

Iterating the recursiom: — 1 times, we have proved that

m (4, C) =

(329)

78 (1, C) = om () %trc +0 ( 0 trCCH> (330)
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where, form > 1, Q = Q(o?) for brevity,
S (1) (1= 70 (u) = Spy” b () Syt (0 " gn
() = o (oY T S X Sy
(331) i o nk?
n
+ QHAHYQH (340)
Using now the relation(u) = c—udo(u) (see Propertyliv) vnK>5 [ }
in Appendix[@), we write the last equation as _ 1 o+ 1 xXH
s [y + s (XX,
m (1) (14 8¢ (62)) = 6m () (1 — ¢ + udy(u n+1
= % (W) dmk (%) . (332)
k=1 Similarly,
Adding 6., (u)o? [1 + & (02)] to both sides, we can express )
6m(u) as Q(6X"H™)
o) + 228 (a] [1+ 0 )] o
Ym(u) + o 1) 1+ 50 2
Om,
(w) = 1—c+o? [1+50 (02)]+u50( ) = _2nt1) (QLHHH) QLH]
nkK K K L
1—c+02[1+50(02)] udo(u) n g als Il
+ e |Qp HH Q1 )
Equating [33B) and(327), we can see that«) must satisfy 202 [ 1 Hoh 1 :
the following relation -— Q—HXX H™Q —H]
nk K i
Y (0) = G2 (0) = 20 (w), M1 (334) L2 Q2 Hxx]
nkK .
ij
This terminates the proof. ] 202 [ HrrHA L
- _Q EHXX HYQ - H . (342)
- . 7202(71—1-1) 1 Hoo L
B. Proof of Propositio 2 in Appendix D-B = T {QEHH Q EH} ;
We want to derive asymptotically exact approx- 204 [ 51 H A~
imations of E [trQ( ) HEL ot (part (i)) and TR Q FHXXQ y
E trQ(O' )MTHS'Y" . :| (part (Z’L)) _ 2i QLHXXHHHQQLH] (343)
In the proofs below, we will often use the notatidh(t) K " Kn K1y

or P;(t) to refer to some non-zero polynomials inwith

nonnegative coefficients. These polynomials may takeraiffe where, in the last equality, we usdg —

values from one equation to the next.

Proof of part (i):
Lemmal6 and Lemmial 8 in AppendiX¥ C, we obtain the chain
of equations[(335)E(388) on the top of the next page.

Gathering the terms involving @(u)l’i’THH on the LHS
yields
EtrQ()HI]{H 124 L)) e
u u K u e

N X" H™
— Tn
= ZE [

+ —Z]E i HHQ(u)] e (339)

OH; Ji

Recall that o = QX H - £ (X" H")2 +

it X H" @3) From the standard der|vat|0n rules as pro-

3k

V|ded in Lemmd B and Corollafyl 1 in AppendiX C, denoting Using these results, the second term on the RHS of] (339)

Ik —
By the product rule of differentiation, derlvatlon we also have

KQHHH = o2Q,
LHYQH = 0%Q, andQH = HQ. Following the same

aﬁx’!l,Hn
OH};
30%(n+1) G |
—HH —H
n3K3 @ K @ K|
417
30t | ]
+ Q— HXXHHHQ3
vn3K3 | K | ij
364 1 ~
+ —HH"Q®— HXXHQ
V n3K3 L K d1ij
_ s [y HH"Q? = HXXHHHQ2 (344)
n3K3 | K ij
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H X" H™
[t Qe
0 (Hi, QuerX" ")
=E _ (335)
P

. X" H" H}j [Q(U)H]k Q(u)“ X" H" y (9’7,)1(71 H” X"

=E 72 < ik Q(u)rie” J e ] e’ + ijQ(u)kiaT;j@v )] (336)
_E V- o™y g + L 3 0 gy | e (337)
B K K K — OH}, ji

_e| (Y- —t O )HHH = o™ o + L PP P (338)

can be developed as follows:
oy
e T

1 1. HXXHpH n
@ gt <IE {—trQiQ(u)e'ﬁf ”]

HHQ(’UJ)]J e»yff" H"]

VaK\ LK C (n+ 1)K

+ [ o QI et ”])
+o () (345)
Q%%( [—t@ L Qe
o] o)
(346)

for some polynomial P(t), where (a) follows from the n+
derivative of yX"-H" as developed in[{3#1)=(344) and the +it
and

observations that all terms resulting fro(rt?ff"vw)2
KXHT are (9((uK)‘12I and O(u~

(b) follows from QZEL- = Iy — 0%Q (see [(I5R)) and the

definition of A = Ix — XXH

Based on Proposmdﬂ 3 in Appendix B-A and Lemma 5 in

Appendix[ @, we find the following estimations:

(1 HHAH X7, 5"
Tn
E_K e (u)e ]

[ 1 HHH X", H™ 1
) _—trQ(u)Q - ]E [e% ] +O (W) (347)
s [ 2o R goue |
o2 HAHY -
=E| QU w)Q? ] E [e% }

(348)

[ 1

By Propositio % in Appendik EZA,

H
E [%trcmczﬂﬁ ] — do(u) — 061 (u) + O (u}()
(349)
o? HAH"
B | Fraue
:Uzmu%tmo( P (350)
~o(erat). @5)

Combining [33D), [(346),[(347)[(348)_(349), ard (351), we

obtain
H
E {tr@(u)Hg <1+ % + %tr@(@) e ]

= T[] 40 <u\;_ (t )>

\/n_li (80(u) = %31 (w) E [ (352)
1K ~2), respectively, and = %IE {ewif" H"} I it\/g((s()(u) 026, (u)) E [eﬁ"ﬂ"}
+0 (u\}KP(t)> (353)

for some other polynomiaP(¢), where we used in partic-
ular VK -3trA? < 1/v/K and T (Oo(u) — 061 (u)) =
O((uK)~1) by Propertyrll in AppendikiC.

Next, we consider the LHS of (3B9). Let us first define the
following quantities:
H

- %tr@(u), & = tr Q(u) 2L (354)

Using these definitions, we can express the LH of](339) as
HHAH 1 1 X7, HT
_ _ Tn
E [trQ(u) <1 + " + trQ(u)) e }

_ (1 n %) E [@e%’f"‘H"} +E [@xyeﬁ"‘”"} . (355)




We can now develop the second term on the RHS of tlselving for E [fbeﬁn'H

last equation as follows:

xXm, H":|

E [d)\lle'yn

X" H™

—E[U]E [cbe%
(a)

| +E[o@-E@)e™ "] (356)
E[V]E [@e%’fn”“’n} _E[¢]E[V]E [e%’fn’H"}

+E[¢]E[(lﬂ_1it o )eﬁn H]

uK K

+0 (u21K> (357)
=E[WE[ec" "] ~E[@]E[¥)E [ "]

+ %%E[@]E [e%’fn‘H"} - %E [%@] E [cbe% "}

+0 (ﬁ) (358)
_E[cbe%’f o } <IE[\IJ]—%E [%@ >

~E@EWE[ ] + X[ ]

+0 (u21K> (359)
O [0 ] (sa(w) - 00w

— Ko (u) So(w)E [ "] + %cK% WE [

+0 (%) (360)
9 (200(w) - ) E [0 ]

+N (— — 200(u) + %50@)2) E [e%’f” ”"]

+0 (uz) (361)

o
where (a) follows from Remark[l7 and Propositionl 3 in
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} leads to
E [%%’fn H}
1 —c+ 2udp(u) — %6 (u)? -
- ( 1_c+u0(1+250(:)) )E{GW" ]
2 -
* t\/Z 1_52(+)u<f+5§§02 ne [ ]

+0 (mP(t)>

for some polynomialP(t).

This concludes the proof of paft).
Proof of part (i¢): We begin as in the proof of part).

From the derivative ofX"-#" in [@41)-[34%) and standard
Gaussian calculus, we have

[trQHAH Vxn,Hn]
_ E > E [ HiApHjQue™ | (364)
1,7,k
8(H Ql 6735 o )
1 Lkt
= _ ALE 365
K 2 A [ S (365)
i,9,k,1 %)
1 X" H" 1 HAHY _xnpgn
—_ Yn _ _ Tn
= KtrAIE {trQe } E [KterrQ e }
1 H aryn n)Hn X" H™
+ 2 Z;E l[AH Ql; aT;je% (366)
HAHY _xnun
:—]E{—tQtQ VXH}
HXXHAOH
+ it rQ?— -
WK K K KT
H X" H™
+ %U’Q <7QH£H ) )(37" ’ ]
Py (t) 1 2
% <1+KtrA (367)

AppendiXE=A, andV is expanded usind (152)%) follows by
Propositio ¥ in Appendik EJA and the fact th’aﬂn <

1, and in(c) we usedyy(u) = ¢ —udo(u) (see Propositionl4).
Thus, [35b) can be expressed as

E {@ <1+1+\11> e H]
u

for some polynomialP; (¢), where the last line follows from
the observation that & = 0 and that the terms in the
derivative ofyX"H" resulting from (6X"-H")? and xX"H"
are of orderO(L% (1 + LtrA?)) and O(4x (1 + +tr A2)),
respectively.

Rearranging the terms, one arrives at

H n pgn
nan <1+iw> ]

[tr Q

B ( : ;C ) ) . [%ﬁn Hn} QHXXHAHH
(£ = 2tu) + L) B[] TR

(362)

~ ().

Equating the RHS of[(362) and the RHS ¢f (853) and

HAHH ,an,Hn
? Q(Q ) )6" 1
Pi(t)
+(’)< I (1+—trA2>).

(368)
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. . . H . .
Using the identityA — A? = 2X- A, we obtain two terms in [3717) by

1 o HAH"
E{?trQ I ]

3 t o XX AT HXXHAHH
K K(n+1) = (0?) %trA +0 (\/ ];5 ) (378)
HAH" X", Hn
=@ (Q > )e% ] _ (L)
K @ Nic (379)
QHAHH 1, HA?H" 1. ,HA?HO"
\/> tQ - Qe E[Ew - }
E rQ (QHAHH> )a’”’] (369) = (0?) %trAQ +0 ( %trA‘l) (380)
— o ( )%trA2+(’)<\/_K > (381)

Note now that . . L
It remains to find an approximation of the term

0 2
E {%trQ (QHATH) ] By Lemmal® in Appendik L,

1 HAHM\?
o —trQ(Q K ) ] E |1t (QHAHH>2]
= Var Ftr Q? H;(H AQHHH } (370) . "k
. - . —IE[ ! trHAHHQQHAHHQ} (382)
= Var [—trQ (IK _ U2Q) A (IK B UgQ) A} (371)
= F Z E[H; [AHNQ*HAHNQ)] ] (383)

< <\/Var —tI’QA2 \/Var [%QtrQ?AQ]
5 ot
+/Var —tr ) ]+ Var [?trQ AQAD

(372)

2 HANH2 H
O(iw) B <i (iw) ) @73 0 [AHMQ*HAHYQ],
K aH;;.

(384)

HHQ2HAHHQ]JZ]

2 K3 Z [ OH},

The derivative further develops as

1
Ay [QQHAHHQ} i K [AHHQH]J‘]‘ [QQHAHHQ} i
where the inequality follows from Remafk 7 in Appen@ix C_ 1 [
and the last line follows from a direct application of Propos K

tion[3 in AppendiXE-A to each of the individual terms, along_ 1 [AHNQ*HAHNQH] .. Q. (385)
with tr A* < (tr A%)2. By Propositior[ B, K 9

AHNQ*H], [QHAH"Q],, + [AHNQ*HA] . Qi

Replacing [(38b) in[(384) and rearranging the resulting
terms, we arrive at

Var PtrQ2HA;(H”] _0 (%trﬁ) =0 (%) 1eo (QMY (1+ itrQ)}
(374) K K K
Var {%trQQ%QHH] -0 (%trA‘l) (375) —E [%trcf H‘;HH <Et rA— it QH‘;HH)]
=0 (% (%tmﬁ)z) . (376) ) l(%trQQH‘;HH) 1
+E [%tr@%trcf HA;HH} . (386)

Thus, by Lemmdl5 in Appendik]C, the RHS &f (369) can
be written as in [(347) on the top of the next page. By Applying Proposition[¥ in AppendiX_EJA together with
Propositior % in Appendik EJA, we can approximate the fir®ropositiorf B in AppendiK EJA and Lemrfid 5 in Appenfik C
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2
it /% <it QQHAH” B _t QQHAQHH %tr@ <QH?<HH) )eﬁn,m]
H 2r7H HA 2 -
=it\ [ F K—t (@A e AT %tr@(@ﬂ‘;ﬂ )) B[ ]m(f <1+—trA2)>

(377)

to the individual terms leads to

HA 2
#[reoe5) (1)

=y (0) 71 (0?) %trAQ +0 <\/%tr AQ) . (387)

Similarly, by Lemmdb, Propositionl 3, the variance bound = E [¥] E

in 373), and Propositionl 4,

H\ 2
#[reoe"5) (1)

1 HAHM? 1
E ?trQ(Q I )]E[lJr?trQ]

+0 (M%trA‘l) (388)
AHMN?
—5 | e (@) | (1 o)
+0 (\/2_5trA2>. (389)

We now need to find an alternative representation of the
term E [q)q;evff | in the LHS of the last equation. Fol-

lowing the same arguments as in_(B56)—(361), and using
VEK-3tr A2 < 1/v/K, we can write

E [we%’f ! ”"}
(e 4+ E [cp (¥ — E[¥]) e%’f"’H"] (394)
_E[E [ee "] £ E[0)E [(w—E[w) ™"
1
+0 (ﬁ) (395)
~E[WIE [0 " | ~E[@]E[Y]E [ "]
X", H" 1
Y E[O]E [\wn ] ) (\/—X) (396)
—E[V]E cbe%’f" " CE@)|E[W]E [evi‘ " }
+E[D]E K%% 0_12 ]1( Q—> x"’”"]

+0 (\%) (397)

Equating the RHSs of[ (387) and (389) and solving for = E [J]E [qnﬂif Hn}

E {%tr@ (Q%HH)Z] yields

1 HAHMN?| 6o (02) n (02) Ltr A2
o [1va(eTA]

K 1+ d0(02)

1
+0 (\/ﬁtr A2) . (390)

Similar to the proof of Part:), let us define

1
\Ifz—trQ
HAHH

(391)

d=trQ

Putting the results fronﬂB]SS]Z@69E377[ﬂB7Q):038ﬁ)d
(390) together, we conclude that

o [nomle?) 1
WETT s B

o <P1(t) L tR(t) 1

I O )
(393)

(392)

E[o(+w)e "] =

for two polynomialsP; (t) and P (t), where the term in front
of P»(t) arises from the pre-multiplication by at ledstof the
various estimators involved.

+ (% _ KE [\IJ]> E [%] E {e%’f”’"}

Se[g]e 5 o ) o

= §o(0?)E [@@3‘”’””} +O (\/LE) .

From the last result an@ (393), we have

E [@(H\I}) e%’f""’"}
J+o (%)

 JE ) 1 e
SR T s BT G
1(t) | th(t) 1 2)
+0 ( + —=-—=trA
VK = VK K
for some polynomiald? (t) and Px(t).
Solving [400) and[{401) foE [sz " } yields

n gn 2) L 2 n pgn
B o] = —apy (R T E Ay o]
K (1+d0(0?))

Pit) tPy(t) 1. .,
+(’)<\/E+ \/EEUA). (402)

X" H™

= (14 60(c%))E [cpe% (400)

(401)




This concludes the proof of pafti).
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