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Abstract. In this project, we created an agent-based model of music
group playing under four di↵erent interaction mechanisms. Based on real
music data, added randomness and simplifying assumptions, we examine
how agents synchronize and deviate from the original score. We find that
while music can make synchronization complex, it also helps reducing the
total deviation. By studying the simulation process, several conclusions
on the relationship between di↵erent growing speeds of total deviations
and di↵erent interaction schemes are drawn. With interpretation from
a musical point of view, we find that, in a music ensemble, listening to
neighbors helps the players end up in sync. However, if people do not
listen carefully enough, the deviation becomes larger than when people
do not listen at all. On the issue of whom one should listen to, the
results show no significant di↵erences between listening to the immediate
neighbors and to the whole group. Finally, we also observe that large
deviations can be reduced by making the musicians move while playing.

Keywords: synchronization, collective behavior, agent-based modeling,
deviation, music playing

1 Introduction

Many questions have been asked about the rhythmic complexity of music. Is it
more di�cult to synchronize over a melodic rhythm or a drum beat? Is it better
to listen to people around you or just play as written in a music ensemble? How
can we obtain better synchronization? Several research papers and books have
addressed synchronization problems in biological and social/human interaction
systems [1–5], but few have answered this line of questions. In this project, we
simulate music ensembles using agent-based models, a method known for its abil-
ity to produce complex behaviors from simple rules. Although it is not possible
for simple models to accurately represent every interaction among musicians, it
is still possible to gain valuable insights from abstractly simulated music ensem-
bles.

Two important concepts embedded in this project are derived from the well-
known “firefly” model of synchronization [5]. Like this model, we define phase
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Fig. 1. Initial configuration of the music group program, with a conductor symbolized
in red and four di↵erent groups of musicians in “white”, “green”, “yellow”, and “blue”.

and frequency variables to characterize the system. Herre, the frequency of each
agent will be called “tempo” and the phase lag, the “the waiting time”. Im-
portant di↵erences with the firefly model are the incorporation of actual music
data and conditional interactions between musicians. Another important con-
cept is the unavoidable deviation of the played stream from the written music,
which has been investigated in [6–8] and experimentally proven. Although we do
not have such a small time resolution, the implementation can be justified with
amateur music players.

2 Model

In this model, we use real music data in the form of duration datasets (without
pitch), extracted from Beethoven’s quartets. The players follow these durations
and di↵erent interaction schemes among themselves. We simulate music ensem-
bles consisting of four sections, “white”, “green”, “yellow”, and “blue” (Fig. 1),
so that we can observe the di↵erences between schemes applied inside each sec-
tion. Musical interactions between two sections are ignored for simplicity. Some
amount of spatial interaction between players will be introduced at a later stage.

2.1 Parameters

The parameters of the model are the following (Table 1):

– Number of agents: how many agents there are in one musical section.
– Music sheet: 10 di↵erent music datasets (rhythmic parts only, no pitch); 1-

8 are the Beethoven string quartets Nr. 1-8; 0 and 9 are drum beats with
intervals of 1 and 3 seconds.

– Avg freedom: mean of the freedom of agents (with default standard devia-
tion, modifiable from the program itself).

– Tempi std: standard deviation of the tempi of agents (with default mean
value, modifiable from the program itself).
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Synchronization in Music Group Playing 3

Parameter Range Notation
Number of agents 1-28 x

Music sheet 0-9 N/A
Avg freedom 1-100 F

Tempi std 0-20 ↵

Max reaction 0-100 R

Confidence 0-8 C

Waiting resolution 1-1000 N

With/Without Conductor true/false –
Move/No move true/false –

Table 1. Table of model parameters with the range of acceptable values and mathe-
matical notations

– Max reaction: maximum value of the reaction skills of agents (where actual
skill is a random integer number under this cap, modifiable from the program
itself).

– Confidence: how many actively playing neighbors one musician must have,
in order to be confident that s/he is playing at the right time.

– Waiting resolution: a normalizing factor controlling in part how much time
resolution a musician has.

– With/without conductor: this is just for the yellow group; the tempo will be
set uniformly to 100 if this is on and the players became aware that they are
playing “wrongly”.

– Move/no move: agents will move randomly if this is on, as shown in Fig. 2.
Their neighbors will therefore also change.

To have a concrete view of the e↵ect of these parameters, we explain the dy-
namics of the model in the next section.

2.2 Dynamics

The mechanism used to synchronize the musicians is based on the music. For
every note duration in the dataset, we approach it using a timer, which is reset
at the beginning of every step. The value of the timer is denoted by t(i), where
i is the step number in the process, which is equal to the number of duration
values in the dataset. Then, once the timer’s value and the note’s duration m(i)
are su�ciently close, we ask the agents, which are by default in color gray, to
change to the color belonging to their group (white, green, yellow, blue), hence
achieve an e↵ect of “playing” the event. We will also use the word “recoloring” to
denote music playing. We denote each agent by x, as mentioned in the parameter
table. For describing the relation between a parameter and the turtles-owned
value controlled by it, we use a functional notation. For example, each turtle’s
reaction skill will be denoted by R(x). Considering all the parameters we used
above, this part of the dynamics can be expressed as:

if m(i) �

↵(x)

100
⇥ t(i) >

F (x)

N
, wait for R(x)/N, and set color := gray, t(i) := 0
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Fig. 2. Typical motion dynamics.

otherwise, recolor. The next time the agent becomes gray can happen at the
next step, when the timer discovers that there is still a certain amount of time
until the end of the next duration.

Finally, we add interactions among players to the process, asking agents to
“look” whether there are enough players around them who are playing. If that
number is larger than the confidence level of a player, C, then s/he must change
the tempo according to the mean of the active neighbors, denoted by {xk}k2[0,28]

(explained in detail in the next paragraph). We denote the number of the gray
linked-neighbors by nx, and write this part of the dynamics:

if nx � C, tempo(x) := tempo(xk)

After all this decision making, we record the actual di↵erence between the
waiting time and the duration, and plot this deviation. Di↵erences between the
four group reside in how they react to other players’ tempi, i.e. the di↵erences
between the {xk}:

– Players in the white group listen to other neighboring white players and take
the mean tempo from them.

– Players in the green group listen to other neighboring green players, but
follow a normal distribution whose mean is equal to the average tempo of
the neighbors.

– Players in the yellow group have two choices: when the conductor option is
on, they sync to the conductor, i.e. adopt a uniform tempo; otherwise, they
listen to all other players in all groups.

– Players in the blue group listen to all other blue players and take the mean
tempo from them.

We also introduce a motion dynamics, while the “Move” option is on, we ask
the players to move randomly, including changes in their links; that is, their
neighbor will change according to where they are.
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Synchronization in Music Group Playing 5

(a) Time series of the total deviations
of the white (shown in black), green,
yellow and blue groups, featuring the
large deviation of the green group. Other
groups have similar lower total devia-
tions. The “conductor switch” for the
yellow group is on. Other di↵erent grow-
ing patterns between the white, yellow
and blue groups are caused by the speci-
ficties of the music at hand.

(b) Time series of the total deviations of
the four groups when musicians are mov-
ing. Here, the blue group is strongly in-
fluenced by the bad tempi of the green
players. In other runs, the group that
gets most influenced might change. In
general, however, there is no outlier
curve of total deviation like the green one
in (a).

Fig. 3. Time series of total deviations: (a) static players; (b) moving players.

2.3 Statistics

The following statistics are used to measure the outcome of our model:

– Each group’s total deviation from the music, called “total deviation 1”, etc.
– Each player’s deviation from the music (because the total deviation loses the

information about whether individual players are lagging or leading).
– The tempo distribution of the players over each group; synchronization

among players can be observed when these distributions converge.
– The deviation distribution of the players; most are centered around zero, oth-

ers account for the cumulative deviation that we show in the total deviation
window.

3 Results

In the beginning of the simulation, tempi are scattered in all four groups, and
total deviations grow with time in a similar manner. We can also see the conver-
gence of tempi in certain groups. After observing the process for a while, we find
di↵erent growing speeds of the total deviation between di↵erent groups. The
green group exhibits a particularly big deviation as shown in Fig. 3(a). After
running for a period of time, the program slows down. This should not matter
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(a) Time series of the total deviations
of the white group for di↵erent music
pieces. Real music is adding complex-
ity to the drum-beat music. Listening to
neighbors results in larger deviation than
the group with the conductor for drum-
beat music, but smaller deviation for real
music.

(b) Time series of the total deviations
of the green group for di↵erent music
pieces. Compared to the Beethoven mu-
sic, the drum-beat music leads to fast
growth in deviation. The complexity of
music prevents the generation of devi-
ation upon deviation. The curve with
larger curvature is the drum beat of 3-
second intervals.

(c) Time series of the total deviations
of the yellow group for di↵erent music
pieces. Real music is adding complex-
ity to the drum-beat music. With the
conductor, the drum-beat music has the
least deviation. The linear growth rates
are close, also resulting from having a
conductor in lead.

(d) Time series of the total deviations of
the blue group for di↵erent music pieces.
The linear growth of the drum-beat mu-
sic is at around the same level of the
Beethoven music. The linear growth with
larger slope is the drum beat of 3-second
intervals.

Fig. 4. Total deviation time series of all four groups with di↵erent music pieces

much for the project because when deviations become large, the ensemble usu-
ally stops playing. However, there are cases when musicians sight-reading new
music are not able to know for a while whether they are playing out of step or
not. So it is also useful to look at the dynamics for a longer period of time, and
record observations of large deviations.

One way to improve on large deviations is by actually making the players
move (Fig. 3(b)). By “improve”, we mean that the slopes of total deviations in
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the four groups are more or less similar, so there is no more single large deviation
(as the green curve in Fig. 3(a)), which is the most disruptive to music group
playing. This can happen because, as the completely o↵-beat players encounter
the right players, they can exchange information, not through tempo, but just
by looking at whether their linked neighbors are playing or not. However, this
method has an obvious flip side, which is that bad influence can be proliferating,
too, as can be seen in Fig. 3(b).

Given the above results and diagrams, we can already draw musical conclu-
sions such as: listening to your neighbors helps the ensemble end up in sync;
furthermore, if people do not listen carefully (as in the green group) the results
can be a disaster. In the case of the yellow group, it is safe to say that they
should not listen to people who do not listen; instead, they should look at the
conductor. Finally, for the blue group, the lesson we can learn is that listening
to the whole group or only to your neighbor does not make much di↵erence,
therefore it is su�cient to listen to a small number of people around you.

Besides running the simulation and observing statistics under a given set
of parameter values, we also explored the “music” parameter axis. The total
deviation time series of all four groups with di↵erent music pieces are shown in
Fig. 4(a)-4(d). There are two regular-looking curves in each graph, because music
Nr. 0 and music Nr. 9 are drum-beat intervals of 1 second (the line corresponding
to the group color) and 3 seconds (the red line), not music. In the green group
case, the growth is fast in comparison with the other linear growth of deviation.
We can also see one common feature out of the drum-beat cases: the smaller the
intervals are, the easier they are to sync.

Excluding Fig. 4(b), in most of the cases, we can see that music definitely
makes it harder for people to minimize their deviation, especially as shown in
Fig. 4(c). However, in Fig. 4(b), it is actually helping with a reduction of the
total deviation. If we recall the phenomenon of many people trying to clap in a
certain tempo but unavoidably just getting faster and faster, this fast-growing
curve may bear some resemblance to that phenomenon. A plausible explanation
of the seemingly helpful function of music would be that the varying interval
lengths are suppressing further growth of the deviation during the process.

4 Conclusion and Future Work

We have presented a model consisting of di↵erent mechanisms of synchronization,
which was able to tell us some non-trivial facts about music group playing.
In future work, we can implement minor modifications such as changing the
distribution of di↵erent parameters in addition to their values; di↵erent neighbor
selection strategies can be used, since musicians are not necessarily just listening
to their immediate neighbors in the ensemble.

However, the most important factors omitted here are the many musicological
nuances which are no doubt used by individual musicians; for instance, the fact
that a certain amount of rest in the music will help synchronization, or that o↵-
beat notes are harder to sync, etc., are not considered. Moreover, the model did
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not account for musical interactions across the four groups, although they clearly
influence musical interpretation and synchronization, too. Therefore, we will take
introducing musical rules in the agent behavior as a priority in future work.
While such projects are mostly based on subjective observation and rather non-
exhaustive, they also open the door for more critical inquiry and opportunities
for interesting discoveries at the same time.
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