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Abstract The thinning of the crust and the exhumation of subcontinental mantle in magma-poor rifted
margins is accompanied by a series of extensional detachment faults. We show that exhumation along these
detachments is intimately related to migration of fluids leading to changes in mineralogy and chemistry of the
mantle, crustal, and sedimentary rocks. Using field observation and analytical methods, we investigate the role
of fluids in the fossil distal margins of the Alpine Tethys. Using Cr-Ni-V, Fe, and Mn as tracers, we show that
fluids used detachment faults as pathways and interacted with the overlying crust and sediments. These obser-
vations allow us to discuss when, where, and how this interaction happened during the formation of the rifted
margin. The results show that: (i) serpentinization of mantle rocks during their exhumation results in the deple-
tion of elements and migration of mantle-reacted fluids that are channeled along active detachment system,; (ii)
in earlier-stages, these fluids affected the overlying syntectonic sediments by direct migration from the under-
lying detachments;(iii) in later-stages, these fluids arrived at the seafloor, were introduced into, or “polluted”
the seawater and were absorbed by post tectonic sediments. We conclude that a significant amount of serpen-
tinization occurred underneath the hyperextended continental crust, and that the mantle-reacted fluids might
have modified the chemical composition of the sediments and seawater. We propose that the chemical signa-
ture of serpentinization related to mantle exhumation is recorded in the sediments and may serve as a proxy
to date serpentinization and mantle exhumation at present-day magma-poor rifted margins.

1. Introduction

While many studies investigated fluid-rock interactions in thrust systems, subduction zones, and Mid-Ocean
Ridges (MOR), only few focused in hyperextended rifted margins [Manatschal, 1999; Manatschal et al., 2000;
Engstrom et al., 2007]. In particular the origin of fluids, when they form, how they interact with different res-
ervoirs (mantle, crust, sedimentary basin, and seawater), and what are their migration pathways along distal
rifted margins remain poorly understood.

Fluids can have different origins and their occurrence can be found in a wide range of extensional settings.
In the Bohai basin in China, the occurrence of CO, and CH, accumulations in gas reservoirs has a character-
istic mantle or magmatic signature given by C and He isotopes [Jin et al., 2004]. Nevertheless, the interplay
of the widespread Cenozoic volcanism and the set of major normal faults [Jin et al., 2004] suggest that these
gases were formed by magmatic activity and migrated through faults. In the southeast Brazilian rifted mar-
gins, CO, with a mantle signature is also recognized by isotopic composition of C and He [Santos Neto et al.,
2011]. In the same margins, trace elements analyzed in petroleum accumulations in Cretaceous and Ceno-
zoic reservoirs suggest a mantle source for those elements [Szatmari et al., 2011]. Manatschal et al. [2000]
described an enrichment of likely mantle-derived trace elements in fault rocks from the Err detachment
located in the most distal domain of the fossil Adriatic margin exposed in the Central Alps. In contrast, Hay-
man [2006] described how the introduction of aqueous species by infiltration of shallow meteoric fluids
caused mineralogical changes along a western U.S. extensional detachment. In the Albian carbonate rocks
from the Cantabrian basin, northern Spain, a strong signature of fluids enriched in Pb-Zn-Fe is described
[Lépez-Horgue et al., 2010; Dewit et al., 2012]. These hydrothermal systems occurred over hyperextended
crust within a domain where magmatic rocks are found.

Some of the processes observed in hyperextended rifted margins may share many similarities with proc-
esses observed at oceanic domains. For example, hydrothermal vents along the Mid-Atlantic Ridge (MAR),
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related to magmatic systems, expel fluids enriched in CO,, H,S, CH,4, and metals such as Cu, Zn, Fe, and Au
[Douville et al., 2002; Fouquet et al., 2010; Kelley and Shank, 2010]. Hydrothermal vents related to serpentini-
zation [Kelley et al., 2001] expel fluids enriched in H,, CH,, and Ca, Mg, Si, Fe, Mn, and Ni [Delacour et al.,
2008; Edmonds, 2010; Fouquet et al., 2010; Kelley and Shank, 2010].

Sediments associated with mantle exhumation and/or magmatic systems in oceanic domains capture the sig-
nature of upwelling fluids, which can spread throughout long distances. These fluids can result in the transfor-
mation or neoformation of minerals, such as phyllosilicates, oxides, and carbonates recording the fluid
composition and/or the modified seawater chemistry [McKenzie et al., 1990; Buatier et al., 1995]. Recently, Saito
et al. [2013] presented a profile across the South Atlantic ocean from the Brazilian margin to the Namibia plat-
form showing a Fe-Mn plume that extends over more than 3000 km. They highlight that the amount of Fe-
Mn is much higher at slow-spreading systems than in fast-spreading systems, therefore serpentinization is
probably one of the major processes controlling the release of Fe-Mn. This is supported by observation of Fe
and Mn-rich hydrothermal vents related to serpentinization in the Saldanha field in the South Atlantic [Dias
et al, 2011]. In this field, low-temperature fluids escape from centimetric vent orifices that are broadly distrib-
uted. Fe and Mn oxyhydroxides precipitate from the seawater due to the cooling and gradually more oxidiz-
ing conditions and are easily trapped in the contemporaneous sediments [Dias et al., 2011].

It has also been shown at slow-spreading systems and Ocean Continent Transitions (OCT) that serpentiniza-
tion is intimately related to extensional detachment faults [Picazo et al., 2013; Rouméjon and Cannat, 2014
and references therein] and that fluids related to these tectonic settings have a characteristic signature
[Edmonds, 2010]. Detachment faults similar to those recognized in oceans [deMartin et al., 2007; Reston and
Ranero, 2011; Picazo, 2012; Whitney et al., 2013] have been described in the continental crust of rifted mar-
gins [Froitzheim and Eberli, 1990; Manatschal et al., 2001]. In these settings, fluid circulation seems to be
related to extensional events and they are responsible for the alteration of basement rocks leading to retro-
grade metamorphic reactions [Manatschal et al., 2000].

This study focuses on the well-preserved rift-related Err detachment system exposed in the Lower Austroal-
pine and Penninic nappes in the Alps in SE Switzerland. This detachment system is responsible for the final
exhumation of mantle rocks to the seafloor. Along the detachment system, a series of water-assisted retro-
grade metamorphic reactions associated with hydrothermal circulation can be observed. Serpentinization is
one of these reactions, which resulted in the leaching of elements (e.g., Ni, Cr, V, Fe, and Mn) and the enrich-
ment of fluids that posteriorly migrated along detachment faults into the overlying sedimentary basin. The
occurrence of elements, derived from the mantle, in the fault rocks of the Err detachment and the overlying
sediments enables us to link it to serpentinization and mantle exhumation during the final rifting. The aim
of this paper is to investigate how and when these mantle-reacted fluids formed and migrated along the
extensional detachment faults, and how they affected the crust and overlying sediments and seawater. We
will also show that the imprint of mantle-reacted fluids can only be observed in the most distal margins
along the final fault system associated with mantle exhumation, while earlier fault systems, located further
inboard (more proximal) do not show this signature.

2. The Alpine Tethyan Margins

2.1. Rift Domains and Rift Evolution

Remnants of the Mesozoic Alpine Tethyan margins were recognized and described in the Alps. Their differ-
ent paleogeographic domains (Figure 1) were defined based on the stratigraphic record [Triimpy, 1975;
Lemoine et al., 1986; Lemoine and Triimpy, 1987]. More recently, Mohn et al. [2010, 2012] proposed the fol-
lowing subdivision:

(i) a proximal domain developed over an isostatically compensated continental crust characterized by grabens
and half-grabens on a 25 km thick crust, (ii) a necking domain corresponding to a transitional zone between a
little extended (>25 km) and a highly extended (or thinned) continental crust (<10 km), (iii) a highly thinned
(~10 km), brittle continental crust characterized by extensional detachment faults and supradetachment
basins, (iv) a zone of exhumed continental mantle grading into (v) an embryonic oceanic domain.

Each of these rift domains shows a complex time/space evolution resulting in a complex 3-D rift architec-
ture. Despite the Alpine overprint, the local preservation of remnants of the former rifted margins enables
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Figure 1. Tectonic and paleogeographic maps, and cross section through the former Alpine Tethyan margins. The present-day tectonic map (modified from Schmid et al. [2004] and
Mohn et al. [2010]) shows a simplified subdivision of the main domains of the Alpine Tethyan margins. The paleogeographic map shows the continent and margin position at the Albian
times. Red squares in the paleogeographic map are the position of the studied areas in Adriatic margin (A) and the Briangonnais (B). The composite cross-section through the conjugate

margins of Adria and Europe/Briangonnais in a direction that the Valais domain is not present. The domains in the distal margin are referred as the Zone of Exhumed Continental Mantle
(ZECM) and Distal Continental Zone (DCZ). Dotted blue line is the Margna shear zone (MSZ).

the recognition of the rift-related structures and their relation to basement and sedimentary rocks [e.g.,
Manatschal, 2004]. This allowed the definition of different rift stages that include: (i) an early Hettangian to
Sinemurian rift event (stretching phase) linked to fault bounded basins filled by carbonate-bearing debris
flows and turbidites interleaved with hemipelagic sediments, and sealed by marls and limestones dated as
Pliensbachian/Toarcian [Lemoine et al., 1986; Eberli, 1988]; (ii) a late rift event (thinning and exhumation
phases) that affected the future distal part of the margin; and (iii) an embryonic oceanic stage.

Miintener et al. [2000] and Mohn et al. [2012] showed that in the lower Austroalpine nappes, upper crustal
rocks are locally juxtaposed against lower crustal rocks along a pre-Alpine shear zone (e.g.,, Margna shear
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zone). They suggested that the major crustal thinning was accommodated along this shear zone in the mid-
dle crust that thinned the crust to about 10km (Figure 1). These authors also demonstrated with thermo-
chronological data that the thinning/necking of the continental crust had to occur at about 190-185 Ma.
Furthermore, Desmurs et al. [2001] showed that when the Err detachment fault penetrated the mantle and
initiated mantle exhumation, the crust was already thinned to about 10km. The latter event, resulting in the
formation of the most distal margin, is well recorded in the Lower Austroalpine Err nappe and in the Upper
Penninic Platta nappe in Grisons in southeastern Switzerland (Figure 2) [Manatschal, 1995; Froitzheim and
Manatschal, 1996; Desmurs et al., 2001; Masini et al., 2011] and will be described in the following chapter.

2.2. The Continental Distal Zone (CDZ) and the Zone of Exhumed Continental Mantle (ZECM)

Exposed in the Err and Platta Nappes

Despite the Alpine deformation, remnants of the fossil Adriatic distal margin are well preserved in the Err
and Platta nappes. The metamorphic overprint in basement rocks from these nappes did not exceed 350°C
and the sediments of these units show in its northern part diagenetic to anchizonal conditions [Trommsdorff
and Evans, 1974; Manatschal, 1995; Ferreiro Mahlmann, 1996]. The fact that the basement and sedimentary
rocks are locally only weakly affected by Alpine overprint enables the recognition of Jurassic rift structures
and their contacts with sediments and basement. This makes the Err and Platta nappes one of the best
examples world-wide to study the structural and stratigraphic evolution of a magma-poor rifted margin.
Therefore, we used these sites to investigate the tectonic and fluid circulation history associated with the
final stage of rifting and mantle exhumation in a magma-poor rifted margin.

The remnants of the former distal margin exposed in the Err and Platta nappes can be considered as ana-
logues of present-day magma-poor distal rifted margins [Péron-Pinvidic and Manatschal, 2009; Sutra and
Manatschal, 2012]. The reconstruction of these nappes shows a former distal margin with at least 50km in
transport direction [Manatschal, 1995; Manatschal and Nievergelt, 1997; Desmurs et al., 2001; Masini et al.,
2012]. The distal margin (Figure 2) can be subdivided into two subdomains: the Continental Distal Zone
(CDZ; e.g., Err nappe) and the Zone of Exhumed Subcontinental Mantle (ZECM; e.g., Platta nappe). Both
zones are formed by the same extensional Err detachment system that is Early to Middle Jurassic in age as
indicated by its relationship with the syn and post tectonic sediments and magmatic systems [see Eberli,
1988; Desmurs et al., 2001; Masini et al., 2011 for more details].

The remnants of the ZECM are characterized by subcontinental serpentinized lherzolites with local occur-
rences of dunites and pyroxenites [Desmurs et al., 2001; Miintener et al., 2010]. The restoration of the Platta
nappe enabled to define two units, referred to as the Upper and Lower Serpentinite Units (USU and LSU),
representing, respectively, a more proximal and a more distal part of the ZECM [Desmurs et al, 2001;
Schaltegger et al., 2002; Muntener et al., 2010]. While in the USU magmatic rocks are rare, in the LSU MORB-
bearing magmatic rocks are observed and they testify the nature of the embryonic ocean [Manatschal and
Miintener, 2009].

Key structures and metamorphic reactions observed in the ZECM, record the exhumation path of the man-
tle rocks to the seafloor. In the USU, pyroxenite dykes parallel to the high-temperature spinel foliation [Des-
murs et al, 2001] indicate that they equilibrated in the spinel stability field [Klemme, 2004]. In the LSU,
Desmurs et al. [2001] described the occurrence of high-temperature (600-700°C) hornblende around clino-
pyroxene. Hornblende growth was followed by a widespread hydration at lower temperature expressed by
the crystallization of tremolite at the expense of clinopyroxene and Mg-hornblende. However, the horn-
blendes could not be dated and their relation to the Jurassic rifting cannot be demonstrated. In contrast,
the serpentinization predates the Alpine compression and it is related to the Jurassic rifting [Desmurs et al.,
2001; Picazo et al., 2013]. Serpentine often appears as a mesh-like structure and is associated with magne-
tite. Spinel is often altered to Cr-chlorite and magnetite, which marks a temperature between 200 and
300°C [Klein et al., 2013]. In general the serpentine minerals are partially replaced by calcite at or near sea-
floor, resulting in the so-called ophicalcites [Bernoulli and Weissert, 1985; Picazo et al., 2013]. Phlogopite Ar/
Ar ages (160 = 8Ma) from pyroxenite layers in the peridotites of other Penninic nappes close to the Platta
are interpreted as cooling ages documenting mantle exhumation [Peters and Stettler, 1987; Desmurs et al.,
2001].

Magmatic intrusive rocks also record a final deformation and mantle exhumation event, and some of the
extrusive magmatic rocks postdate the extension. Most gabbros intruded into the already serpentinized
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Figure 2. Tectonic map modified from Mohn et al. [2011] and cross section of the Err and Platta nappes. The Err nappe is part of the former DCZ and the Platta nappe is the former
ZECM. Notice the distribution of the sedimentary sequences in the ZoS (Zone of Samedan) and Murtirdl (small tectonic map at right). Localities abbreviations are: Fa: Fallota, Pa: Parset-
tens, PN: Piz Nair, VL: Val Lunga; FC: Fuorcla Cotschana; M: Alp Muntatsch; Mu: Murtirol; and Me: Mezzaum. The cross section passes through the subunits of the Err and the Platta nappes
(modified from Masini et al. [2012]). Colored dots represent the areas where samples were collected along the Err detachment fault (ED). The map is in Swiss grid (CH1903 in km).
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mantle at shallow level at high to moderate temperatures at 161 = 1Ma [Desmurs et al., 2001; Schaltegger
et al,, 2002].

2.3. The Syn to Post Tectonic Sedimentary Sequences in the Distal Margin

In the CDZ, the syn to post tectonic sedimentary sequences are developed in supradetachment basins
[Masini et al., 2012] and they are different from those described in the proximal margin [Mohn et al., 2010;
and references therein]. The sediments in the CDZ either overlie the Agnelli formation or are directly depos-
ited over an exhumed basement and are sealed by the postrift Radiolarian cherts. The syn to post tectonic
sequences are formed by the Bardella and Saluver formations, which were originally distinguished by their
clasts composition and grain size [Finger, 1978]. Masini et al. [2011] subdivided the Bardella and the Saluver
formations in three genetic sequences (basal, intermediate, and top-facies tracts) deposited in supradetach-
ment basins with deposition controlled by the evolution of the Err detachment fault. The basal facies tract
is made of the Bardella and Saluver A formations, the intermediate corresponds to the Saluver B formation,
and the top facies tract is referred to as the Saluver C formation (Figure 2).

The Bardella and Saluver A formations were deposited during the onset of detachment faulting and early exhu-
mation of the detachment footwall at the sea floor. Both formations correspond to sedimentary breccias and
are proximal relative to theirs sources. The Saluver B is best characterized by turbidite sequences. The Saluver C
contains interbedded shales and thin sandstone turbidites at the base, and predominantly shales at the top.

The Radiolarite formation overlies the Saluver C formation and is the first sedimentary sequence found over
exhumed mantle and basalts in the ZECM. Therefore, it is referred to as the first regional postrift sediments.
The Radiolarite formation is made of silica-rich radiolarian cherts and hydrothermal chert layers interbedded
with thin reddish shales dated as Bathonian to Callovian [Baumgartner, 1987; Cordey and Bailly, 2007]. These
sediments are overlain by the Tithonian to early Berriasian Calpionella Limestone formation (e.g., Aptychus
Limestone from Cornelius [1932]), comprising micritic limestones and thin carbonaceous shales [Bracciali
et al, 2007]. This sequence is overlain by early Berriasian to late Hauterivian-early Barremian Palombini
shales [Marroni et al.,, 2000] composed of black shales and levels of marls. The youngest sequence in this
domain is made of thin Cretaceous flysch sequences (Figure 2).

2.3.1. Time Markers and Correlation Levels

Two time markers (Figure 2) are essential to understand the evolution of the detachment system and of the
supradetachment basin exposed in Err and Platta nappes [Masini et al., 2011]. The first corresponds to the
Top of Agnelli Formation (TAF), dated at about 185Ma [Dommergues et al., 2012]. The Bardella and Saluver
formations unconformably overlie the TAF. This gives a maximum age for these formations. The second
time marker corresponds to the base of the Radiolarite formation (RAD), dated as 165Ma [Bill et al., 2001].
The Saluver and Bardella formations are unconformably overlain by the RAD. Thus, 165 Ma is a minimum
age for these formations. The Radiolarite formation also lies above the serpentinites, basalts, and exhumed
gabbros in the Platta nappe. Therefore, the RAD has to be Callovian (161Ma) or younger.

The observation that fault rocks of the Err detachment system can be found reworked in the Bardella and
Saluver A formations [Froitzheim and Eberli, 1990; Froitzheim and Manatschal, 1996], and that rocks of the
Agnelli Formation are truncated by the detachment fault, give maximum and minimum ages for the Err
detachment that is between 185 and 165Ma. Since stratigraphic ages are rare in the CDZ, the ages used in
this study are approximate ages for the activity of the Err detachment in the CDZ. Detachment faulting in
the ZECM had to have lasted at least until 161Ma, corresponding to the onset of magmatic activity and dep-
osition of radiolarian cherts.

2.4. Extensional Detachment Faults

2.4.1. Fault Rocks Related to Detachment Faults in the Mantle

Fault rocks related to extensional detachment faults in the serpentinized mantle in the ZECM (Platta nappe)
are characterized by low-temperature brittle structures formed under similar conditions from those in the
adjacent CDZ (Err nappe) [Manatschal, 1999]. They consist of foliated serpentinite cataclasites and gouges
(Figure 3g). The foliated serpentinite cataclasites contain clasts of highly serpentinized peridotites and veins
of serpentine and chlorite. Fractures, extensional veins, and open space filling veins (Figures 3i, 3j, and 3lI)
are common in these rocks. Gouges are made of rounded and sigmoidal clasts in a dark green matrix of ser-
pentines, chlorite, and calcite. They often occur at the top of the fault zone and highlight the localization of
deformation (Figures 3g and 3h). The gouges are overlain by tectonosedimentary breccias (~1.5m) consisting
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Figure 3. Extensional detachment fault profile and its main fault rocks in the exhumed mantle and in the continental crust. (a) Composite rock profile of detachment faults from Err,
Bernina, Grosina, and Chaberton. Some of the rock types are absent in the mentioned detachments, but cataclasites are always observed. White polygons are the most prominent quartz
veins and black lines are small secondary fault and fractures that, in most of the cases, are filled by quartz veins. (b) Black gouge with clast of Triassic dolomite. (c) Contact between
chlorite-schist and tabular quartz vein (Grosina). (d) Clast-rich chlorite-schist (Fuorcla Cotschana) showing fractured quartz veins. (e) Foliated cataclasite and different sets of quartz veins
(Fuorcla Cotschana). (f) Quartz veins parallel/subparallel to the foliation of cataclasites (Parsettens). (g) Rock profile from extensional detachment fault in the exhumed mantle at Platta
nappe. Light gray polygons are main calcite veins. Black lines are small secondary fault and fractures that, in most of the cases, are filled by chlorite, serpentine, and calcite veins. (h)
Gouges showing rounded clasts of serpentinites. (i) Ophicalcite with centimetric veins of calcite (light gray) parallel to the serpentinite foliation. (j) Ophicalcite with different orientations
of calcite veins cutting serpentinites. (I) Calcite veins (red arrows) cutting previous serpentinite foliation intensely fractured. Ophicaltization is more prominent in Figure 3i compared to
Figure 3.
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of clasts of reworked serpentinized peridotites within a serpentine-chlorite-calcite matrix that is often cut by
millimetric calcite veins. Ophicalcites are commonly related to these fault rocks and consist of partially calci-
fied serpentinites showing clasts of host-rock (serpentinites) cut by millimetric to centimetric calcite veins. Jig-
saw clasts highlight an in situ deformation of the ophicalcites. The formation of ophicalcites implies an
important fluid-rock interaction at a final stage of mantle exhumation at the seafloor (Figures 3i, 3j, and 3l)
[Bernoulli and Weissert, 1985; Picazo et al., 2013]. The importance of fluid flow is also shown by crack-seal proc-
esses and the remarkable quantity of Fe-oxides (Figures 4d-4f). Friih-Green et al. [1990] analyzed similar calcite
veins from the ophicalcites in the nearby Arosa unit. They determined a formation temperature lower than
about 100°C interpreting that those veins formed at the presence of hydrothermal activity.

2.4.2. Fault Rocks Related to Detachment Faults in the Continental Crust

2.4.2.1. Macrostructural Observations

The fault rocks of the extensional Err detachment system mainly consist of green cataclasites and, to a lesser
extent, black gouges (Figure 3a) [Manatschal, 1999]. The cataclasites contain a phyllosilicate-rich matrix of
predominantly chlorite and sericite surrounding dispersed angular clasts, in places forming a well-defined
foliation. The gouges (Figure 3b) contain millimetric to centimetric rounded clasts and a matrix of predomi-
nantly chlorite and illite. The gouges are found at the uppermost part of the fault zones, defining the local-
ization of deformation.

Between these layers, two other characteristic rocks, not previously described, have been observed in the
Err and in other Jurassic extensional detachment systems. The first one is a clast-rich chlorite-schist found
above the foliated cataclasite. This rock-type has a typical schistosity but they have brecciated structure
with abundant clasts, which allow us to differ them from foliated cataclasites. The second is a chlorite-schist
where clasts are rare or absent. Chlorite-schist likely defines the localization of deformation. Field and thin
section observations show that the fault-rock development was accompanied by retrograde metamorphic
reactions that became more intense toward the fault core, i.e., increased from bottom to top. As shown in
following sections, this reaction yields (i) a loss of SiO, resulting in the formation of quartz veins along the
fault zone, and (ii) chlorite-rich layers.

Quartz veins are common along these extensional detachment systems and their width can range from
meters to few millimeters. They usually appear parallel to subparallel to the fault rock foliation (Figure 3f), with
tabular shape (Figure 3c) but also without preferred orientation. They can be cut by fractures and small-
displacement faults (Figure 3e). Due to progressive cataclasis, quartz veins are often intensely fractured and
deformed, and both angular and rounded clasts of vein material can be found in the fault rocks. The recogni-
tion of several generations of veins, some of which are brecciated, shows that veining is a multistage process.

In the Err detachment, the fault zone can vary in thickness from more than 100 m (Piz Laviner area) to about
20 m (Alp Muntatsch). Cataclasites and foliated cataclasites are widespread as well as gouges, but chlorite-
schists can be absent. Along the Bernina detachment, the fault zone is up to 50m thick and is mainly com-
posed of cataclasites. Gouges are rare and chlorite-schists were not observed. The Grosina detachment con-
sists at least of two detachment faults. In our study, we investigated the lower one described by Mohn et al.
[2011, 2012]. This detachment fault zone has up to 15 m of cataclasites. While gouges are not observed at
its top, ultracataclasites and chlorite-schists are widespread. The brittle deformation affects a mylonitic zone
of unknown age [Mohn et al., 2012]. Another, yet less explored example is the Chaberton detachment (see
Figure 1 for location) belonging to a pre-Piemont units of the Western Alps, near Briangon. This detachment
system is made of cataclasites, gouges, and chlorite schists.

2.4.2.2. Microstructures and Mineralogical Characteristics of the Fault Rocks

In order to evaluate the deformational and fluid-rock reaction histories of the detachments, the fault rocks
were investigated using optical microscopic and powder X-ray diffraction (XRD) analyses.

The Albula granite, the protolith for most of the fault rocks along the Err detachment, has an original com-
position of 40%-60% plagioclase, 10%-30% K-feldspar, 25%-45% quartz, 5%-10% slightly chloritized bio-
tite, and rare amphibole. The Albula granite was slightly altered and contains weakly chloritized biotite and
sericite growth on K-Feldspar. It also contains fractures, some of which are filled by micrometric calcite
veins. Apart from the fractures, no brittle structure (i.e., cataclastic flow) is observed in the Albula granite.

In the fault zone, the rocks are strongly altered by saussuritization processes, which we take to include all
alteration processes of feldspar and other phases (e.g., chloritization of biotite) that result in the formation
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Figure 4. Physical evidence for imprint of fluids in fault rocks from Err Detachment. (a) Saussuritization affects mainly the plagioclase (pl) and produces a chlorite (chl) and illite-sericite-
calcite (il+ser+ca) rich-matrix that developed along the cataclastic foliation. The syntectonic clay minerals (phyllosilicates) enriched in Ni-Cr-V. (b) Evidence for fluid flow in the fault.
Quartz and calcite veins (yellow arrows) with the same orientation of the cataclastic foliation (red lines). (c) V1 and V2 are different types of blocky quartz veins. The red arrows point to
phyllosilicates developed in the matrix of the cataclastic foliation cutting the quartz veins, sometimes with different orientation (yellow arrow). From Figures 4D-4f Calcite veins cutting
the serpentinite foliation. Remarkable presence of Fe-oxides in the veins, showing that Fe-rich fluids flowed through fractures. Figures 4e and 4f calcite veins with Fe-oxides in the sealing

line (yellow arrows).

of albite, sericite, zoisite, calcite, epidote, chlorite, and quartz veins. The degree of saussuritization increases
with deformation. The cataclasites preserve a similar mineralogy to that of the granites. Nevertheless, K-
feldspars are altered to albite and to sericite. Plagioclases are also altered and quartz and calcite veins, and
dispersed epidote grains are common. The quartz/calcite veins are generally parallel to the cataclastic folia-
tion (Figure 4b), which is defined by the newly formed clay minerals.

Saussuritization leads to the formation of illite, chlorite, calcite, albite, and quartz forming the matrix of foli-
ated cataclasites and gouges (Figure 4a), and a chlorite-muscovite-rich matrix in the clast-rich chlorite-
schist. Usually Fe-rich chlorites (chamosite) are found in the rims of plagioclases (Figure 4a). Iron oxides are
widely found in the cataclastic foliation. Quartz veins in the fault rocks have blocky textures and, rarely,
directional growth textures [Bons et al., 2012]. Most of the veins were deformed by subsequent deformation,
in many cases overprinted by the cataclastic foliation (Figure 4c). Toward the core zone, the cataclastic
material forms millimetric bands preserving the original fabric at the borders, deformation progressively
affect the whole rock which may finally form ultracataclasite and gouges.

The quartz in the fault rocks show patchy extinction and in some samples undulose extinction. Quartz
grains also locally underwent bulging process forming subgrains. Gouge and chlorite-schists have an S-C
foliation and/or abundant sigma clasts, which were used as kinematic indicators showing a top-to-W and
top-to-NW transport direction along the Err detachment system [see also Froitzheim and Eberli, 1990;
Manatschal, 1995]. Similar structures are also found in the Bernina, Chaberton, and Grosina detachment sys-
tems. The microstructural characteristics of the studied detachment faults show that they formed at temper-
ature lower than about 300°C and less than 10km depth [Stipp et al., 2002].

3. Methods

3.1. Chemical and Mineralogical Analyses

Bulk-rock chemical and mineralogical analyses were performed on mantle, crustal basement, sedimentary,
and fault rocks. Chemical and mineralogical analyses were also made on clay fraction (<2 um) from fault
rocks. The clay fraction was extracted from a sieved <125 pm powder mixed with distilled water (~30 g/
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~50 mL H,0) via repeated centrifuge applications. Mineralogical compositions were obtained from X-ray
diffraction analyses (XRD) of nonoriented powders of bulk rocks and from four types of oriented aggregates
of the clay fractions (air-dried, ethylene glycol-treated, hydrazine-treated and after heating 4 h at 490°C).
The parameters of the D5000 RX Bruker® diffractometer, with a Brucker®DIFFRACP"“*-EVA determination pro-
gram, are: 0-20 mode, CuKo: radiation, 40 kV/30 mA, scan speed 0.02 s~ ' from 3° to 15° or 3° to 30° (LHyGesS,
CNRS-University of Strasbourg).

Chemical analyses are obtained on the samples which were digested using Li-tetraborate fusion followed
by dissolution in HNO3-glycerol and all concentration determinations of one sample were carried out from
the same fusion. The same method was applied in the three laboratories we used. The samples dried at
100°C, reweighed were ignited at 1000°C for Lost on Ignition (%LOI). Approximately 100 mg of the sample
was mixed with 750 mg of lithium tetraborate and melted at ~1000°C. The melt is dissolved in HNOs-glyc-
erol solution and analyzed by mass spectrometry. At LHyGeS (CNRS-University of Strasbourg), the concen-
trations were measured with a Thermo Scientific® ICAP 6500ICP-AES and a Thermo Scientific® X Series 2
ICP-MS equipped with collision/reaction cell technology. At SARM-Laboratory (CNRS-Nancy), data are from
an ICP-MS Agilent 7700X and ICP-OES Thermo Fischer® ICap 6500. Precision and accuracy of the method
were routinely controlled by replicate analyses of the international rock standards [Govindaraju, 1995] at
both LHyGeS and SARM laboratories. Similar procedures are run by Acme Laboratory (Vancouver, Canada).
Total carbon and sulfur were analyzed using Leco equipment (Acme). The achieving precisions for major
elements are <2% for concentrations >2%, <5% for the concentrations between 2 and 0.1%, and 10% for
the lowest concentrations <0.1%. The precisions for trace elements are <2% for concentrations >100 ppm,
<5% for concentrations between 100 and 10 ppm, and <10% for the low concentrations <10 ppm.
According to the trace element, the detection limits range from 1 to 0.1 ppm. The elements concentrations
given and used in the study are higher above the given detection limits. Some of the serpentinized perido-
tite data are from Muntener et al. [2010] and part of the ED fault rocks data are from Manatschal et al.
[20001].

3.2. Gain and Losses of Elements

The gain (enrichment) and loss (depletion) of elements during mantle serpentinization and fault rock
formation was performed using the modified Gresens [1967] approach proposed by Potdevin and Mar-
quer [1987], here referred to as P-M diagrams. Equation (1) allowed the estimation of concentration vari-
ation (AC) where ¢, and ¢, are the concentrations (referred to as mass by some workers, valid for some
reference volume) of the altered and the original rock (protolith), p, and p, are the specific gravity of
the altered and the original rock, and f treats changes in volume. However, the f-factor is not only
related to volume changes during a reaction but implicitly may also account for mass or density varia-
tion, as discussed in Grant [1986]. Thus, f can be estimated for any given element relative to an immo-
bile element [Gresens, 1967; Grant, 1986; Potdevin and Marquer, 1987; Manatschal et al., 2000] assuming
some elements are immobile (i.e, AC=0). MacLean and Barrett [1993] showed that elements such as Al,
Ti, and Zr can be used as immobile for many geological processes including hydrothermal alteration.
These elements show a good linear correlation between selected protolith and altered rocks (Figure 5),
and when plotted on the P-M diagram establish animmobile range (in green on Figures 6, 8,and 9). Therefore, for
each of those immobile elements, we have no concentration variation (AC=0) and a f value. For graphical pur-
poses, itisassumed a reference value of AC=—1 forall elements. Any protolith-altered rock pair of elements can
be plotted fortheirslope (g—a . I’j—o> andfoundtobe eitherenriched or depleted relative to theimmobile elements.

This approach avoids problems with linear regression posed by the Grant [1986] method, and also is rela-
tively insensitive to problems surrounding the closure rule [Ague and Van Haren, 1996]. This is because for
any AC=0 (immobile element), f is sensitive to both changes in concentration and density. The example
of serpentinization (Figure 6b), explored more fully in the following section, is illuminating in this respect
because treating Al,O; as immobile results in a f=1 whereas an immobile TiO, results in an f ~ 0.75.
Experiments and microstructural evidence show that the serpentinization leads to a volume increase and
density decrease [Evans et al., 2013; Kelemen and Hirth, 2012], but the P-M diagram shows a loss of most
mobile elements what is also supported by laboratory experiments on olivine and pyroxene [Gresen, 1967;
Ogasawara et al., 2013]. The magnitude of the volume or density change is thus reflected in the different
f-values for the immobile elements. Again, we use immobile elements based on the simple linear
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Figure 5. Immobile behavior of elements. Relationship between Al,O3, TiO,, and Zr of the samples from Platta, Malenco, and Err nappes in the Swiss Alps. The linear relationship
between these elements evidences their immobile behavior. (a) Al,O5 versus TiO, in the serpentinized peridotites ranging from 5 to 95% of serpentinization. The good linear correlation
is only displaced due three samples that are positioned at the extremities. Data from Miintener et al. [2010]. (b) Zr versus TiO, from the Albula granite and fault rocks from the Err detach-
ment. Own data from Table 2 and from Manatschal et al., [2000].

comparison on Figure 5, and define a band (green on Figures 6, 8, and 9) of immobility with which to
compare other elements.

Ca Pa
AC=—=."-9f—1 1
= (1)

o Po
This method was applied in the analyses of gains and losses of elements caused by alteration of mantle and
continental basement rocks during exhumation. A more descriptive detailed and assumption for each case
will be further explained in their respective section.

4. Element Losses During Serpentinization

Using our data (Table 1) and a set of data from Muntener et al. [2010], we were able to track the gains and
losses of major and trace elements during different stages of serpentinization using the P-M diagram. Petro-
graphical criteria based on thin section analysis and the Loss on Ignition (L.O.l) allowed the characterization
of the degree of serpentinization of peridotite from the Upper Penninic nappes (Malenco, Platta and Arosa
units), which are in the range of 5-90% (Figure 6a). The samples were grouped in three categories of ser-
pentinization (1) <10%, (2) 10-60%, and (3) >60%. The results of gains and losses are presented for the
group 1 to 2 (Figure 6B), from group 2 to 3 (Figure 6C), and from group 1 to 3 (Figure 6D).

Ni, Cr, and V are some of the main trace elements that mark element losses at incipient (Figure 6b) and
advanced (Figure 6¢) stages of serpentinization. As shown in Figure 7a, samples with low degrees of ser-
pentinization have elevated values while the samples with high degree of serpentinization have low val-
ues of Ni-Cr-V, indicating the depletion of these elements. Electron microprobe analyses by Miintener
et al. [2010] show the mineral controls on the losses of these elements (e.g., Ni and Cr) during serpenti-
nization (Figure 7b).

Apart from Ni-Cr-V, major elements such as Fe, Mn, Mg, Si, and Ca also show important losses, especially at
advanced stages of serpentinization (Figure 6c). These observations are supported by the presence of Fe-
oxides in late calcite veins (Figures 4d-4f) in ophicalcites and by the occurrence of Fe-oxides spots of about
few thousands of square meters and few meters thick in the serpentinites from the Platta nappe. In the
Platta nappe, quartz veins are rare and we assume that most of the Si-rich fluids escaped through faults
into the overlying seawater and sediments as evidenced by hydrothermal cherts overlying the exhumed
mantle.
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Figure 6. Mineralogical and chemical changes related to serpentinization. (a) The degree of serpentinization (i.e., percentage) is based on
petrological criteria and was mainly established by the (olivine +pyroxene)/serpentine ratio. Note that the increase of the degree of ser-
pentinization is accompanied by the decrease of (olivine+pyroxene)/serpentine ratio. According with this ratio, the samples was grouped
in three categories. Group 1: samples <10% serpentinized. Group 2: samples between the interval10-60%. Group 3: samples >60% ser-
pentinized. From Figures 6b-6d are the P-M diagrams. Data from Table 1 (this work), and Table 10 and 11 from Miintener et al. [2010].
Note the losses in Ni-Cr-V and other elements related to serpentinization. (b) Mass balance at incipient stage defined by weak (Group 1) to
moderate (Group 2) degree of serpentinization. (c) Advanced stage defined by moderate (Group 2) to strong (Group 3) degree of serpenti-
nization. Notice in Figure 6d the total losses of elements from weak (Group 1) to strong (Group 3) degree of serpentinization. The specific
gravity used for calculation (see equation (1)) are from Miller and Christensen [1997]; assumed to be 3.1 g/cc, 2.8 g/cc, and 2.6 g/cc for
Group 1, Group 2, and Group 3, respectively.

5. Fluid Signature in Fault Rocks From Extensional Detachment Faults

5.1. Gains and Losses in Fault Rocks From the Err Detachment (ED)

A systematic and elevated gain of elements such Ni, Cr, V, Co, and Cu (Figures 8a-8c and 9) is observed in
the fault rocks from the ED. It implies that from protolith to cataclasite to gouge the concentration of these
elements increases. Detailed analyses of the ED fault rocks allowed the mapping of the variation of these
elements along the footwall of the detachment relative to its distance from the former breakaway. Because
the concentration of these elements is higher in clay-rich fault rocks (gouges), the gain of Ni-Cr-V is plotted
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Table 1. Peridotite and Serpentinites®

Sample Lithology
Unit Place Serpent.
Degree

Lan-1 Peridotite
Lanzo Lanzo

2%

F3-01

Serpentinite Platta
Falotta 95%

F3-02

P-7

Serpentinite Platta Serpentinite
Falotta 90%

Platta Parsettens 95%

bsi0,
PALO;
Fe,0;
°MnO
®Mgo
bca0
®Na,0
K,0
5Tio,
.0
LOI
Sum
“Ba
Ce
bCo
ber
Cs
bcu
Dy

Er

Eu

Gd

Hf

Ho

La

Lu

Nb
Nd
ONi
Pb

Pr

Rb

S

Sc
Sm

Sr

Ta

Tb

Th
Tm

U

by

Y

Yb
57n
bzr
cd
Mo
Sb

Sn

W

38.81
0.96
10.72
0.15
46.38
0.10
0.02
0.02
0.03
0.02
1.50
98.71
4.00
0.40
140.80
5747.28
<0.1
166.30
0.07
0.04
<0.02
0.05
<0.1
<0.02
0.30
0.01
0.10
<03
3107.20
0.90
0.03
0.90
200.00
5.00
<0.05
0.90
<0.1
<0.01
<0.2
<0.01
<0.1
28.00
0.40
<0.05
34.00
1.20
<0.1
<0.1
<0.1
<1
<0.5

3270
2041
12.67
0.25
13.85
9.39
0.40
<0.01
1.76
0.12
8.20
99.75
7.00
17.50
57.20
383.15
<0.1
2,60
6.26
4.50
1.83
539
270
145
6.90
0.68
3.10
13.60
261.10
0.40
267
0.20
<0.02
49.00
4.26
68.30
0.10
0.98
0.30
0.70
0.20
156.00
35.90
4.58
71.00
119.10
<0.1
<0.1
<0.1
1.00
<05

39.58
2.08
8.00
0.12
36.57
0.21
<0.01
<0.01

0.06
<0.01

12.70

99.32
3.00
0.40

96.10

2415.23
1.10

10.40
0.20
0.09
0.04
0.18

<0.1
0.04
0.50
0.02
<0.1
0.30
2230.50
0.50
0.04
0.60
600.00
8.00
0.1
5.70
<0.1
0.03
<0.2
0.02
<0.1

46.00
1.20
0.10

20.00
2.30

<0.1
<0.1
<0.1
<1

<0.5

52.00
17.20
12.00
0.15
6.83
1.07
3.05
1.89
1.08
0.29
426
99.82
90600

41.90
22.30
98.80
0.70
125.20
4.06
255

c
474
5.94
0.89
17.89
0.35
15.80
19.73
168.00
28.90
475
66.50

c
15.28
537
4370.00
136
0.59
10.40
0.39
1.48
144.60
27.10
243
191.10
227.40
0.40

c
0.90
4.50
1.00

2Samples used as end-members. Major elements (oxides) and LOI are in %wt and trace elements are in ppm.

PResults from ICP-AES and the other are from ICP-MS, both analyzed in the LHyGeS-CNRS Strasbourg.

“Are elements not analyzed. Sample P-7 analyzed at LHyGeS-CNRS Strasbourg and the others at ACME Analytical Laboratories Ltd.
Sample P-7 shows exceptional high Ba concentration and correspond to a zone extremely rich in chlorite, quartz veins, and barite.

in Figure 10 in order to outline the variation along the ED as a function of its distance from the breakaway
parallel to transport direction.

Ni, Cr, and V were chosen because they are systematically present in all ED fault rocks and, as discussed
below, these elements are likely to have originated from the underlying serpentinized mantle. The results in
Figure 10 indicate that the more distant the location of the samples is relative to the breakaway of the fault,
the higher the concentration of Ni, Cr, and V. In order to test if other faults show the same trend, we also
analyzed samples from other detachment faults from the Alpine Tethys.
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Figure 7. Losses of Ni-Cr-V related to serpentinization. (a) Losses of Ni-Cr-V from bulk rock analyses. Data are from Table 1 (this work), and Table 10 and 11 from Miintener et al. [2010].
(b) Losses of NiO, Cr,03, and V in orthopyroxenes as function of serpentinization. The samples are LUM-400, LUM-216, LUM-112, To-7, MSP-1, FAP-6, and SUP-2 from Table 3 and 8 from
Miintener et al. [2010], which were measured using electron microprobe. Standard deviation (2¢) for TiO,, NiO, and CrO, is usually <0.05.

5.2. Gains and Losses From Detachment Fault Rocks Outside the Err Nappe

In order to evaluate gains and losses from the Chaberton detachment (Figure 8d), we used the average val-
ues from the Albula granite exposed under the ED as the protholite and the gouge (CHAB-2) as the altered
rock. The choice of ED-footwall Albula granite as a protolith is necessary because only fault rocks are pre-
served in the Chaberton area. We justify the extrapolation of ED protolith to the Chaberton detachment,

because both exhibit similar compositions and mineralogy.
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Figure 8. Gain and losses estimated with P-M diagram. From Figures 8a-8c are the result from Err detachment; we used average values
from all the Albula granite, cataclasites, and gouges (Table 2) together with averages values from Manatschal et al. [2000]. From Figures
8d-8f are the result from Chaberton, Bernina, and Grosina detachments; we used single values from representative samples of these
detachments (see text for discussion). The results from Err detachment (c) can be used to compare the differences between other detach-
ment faults (d-f). Observe that gains in Ni-Cr-V from ED are higher than the other detachments. Bernina detachment exhibits losses of Ni-
Cr-V and Grosina losses in V. All lines (elements) above the immobile area (in green) are related to element input from outside of the conti-
nental crust, which means they are not from the protolith (Albula granite). All lines below the immobile area are losses of elements, mean-
ing they migrated and precipitated elsewhere. Data resulted from ICP-AES/MS analyses (this work) and XRF analyses from Manatschal et al.

[2000].
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Figure 9. Gain and losses in clay fractions (<2um) from Err detachment fault rocks. The gain of Ni-Cr-V shows that these elements are likely retained in the neoformed clay minerals
instead of the quartz and feldspars of the Albula Granite. The samples used are L-9a for granite, L-7 for cataclasite, and calculated average values of gouges (see Table 3).

In the Bernina detachment (Figure 8e), the transformation from the gneissic protolith (BERN3-6) to a clay-
rich ultracataclasite (BERN3-9) shows no gain in Ni-Cr-V. On the contrary, these elements are lost in the fault
zone, which is an opposite trend to that observed along the ED.

In the Grosina detachment (Figure 8f), we used the mylonite (GROS3-5) as the protolith and the ultracata-
clasite (GROS-7) as the altered rock. However, the record of the fluid composition along the Grosina detach-
ment may be more complex by three main reasons: (i) the mineralogical composition, especially the clay
content, of the mylonitic protolith changes from place to place, causing different primary quantities of Ni-
Cr-V; (ii) the mylonite may have an earlier fluid imprint during mylonitization; and (iii) the interplay between
the different detachment systems in the necking zone is not fully understood and a fluid flow interaction
between them is possible. Nevertheless, Ni and Cr present minor gain, and V show losses what is opposite
to that observed along the ED.
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Figure 10. Gain percentage of Ni-Cr-V along detachment faults. To build these figures, we followed three steps. Step-1: we calculated the average values (AVG) of protoliths (e.g., granite)
and altered rocks (e.g., gouge) to estimate AC, as further explained. The average of the Albula Granite was calculated from our samples in Table 2 and the average from Manatschal et al.
[2000]. ERR (around Piz Err): samples 1-3 from Manatschal et al. [2000]: LAV (around Piz Laviner): our samples from Table 2 with samples 3-5 and 8-12 from Manatschal et al. [2000]. VL
(Val Lunga): samples in Table 2 with samples 13-19 from Manatschal et al. [2000]. FC (Fuorcla Cotschana) and MUNT (Alp Muntatsch) samples from Table 2. For other detachments, we
used single samples (see Table 2): GROS (Grosina), BERN (Bernina), and CHAB (Chaberton). The gneiss (BERN3-6) and the mylonite (GROS3-5) were used as protolith for Bernina and Gro-
sina detachment, respectively. For Chaberton, it was used the average value from Albula Granite as protolith. Step-2: assuming no concentration variation (AC=0) for Zr, Al, and Ti, we
calculated their correspondent f-factor. Due to the uncertainties associated with the f-factor (see text for explanation), we chose to use an average of f calculated as (fZr+fAl+fTi)/3.
Step-3: assuming the average of f, we calculated using equation (1) the AC for Ni, Cr, and V from different segments of the Err detachment as well as the Grosina, Bernina, and Chaberton
detachments. The result was multiplied by 100 to have the values in percentage (ordinate-y). In the figure, gouges are represented by dots and chlorite-schist by triangles. Note that the
sample from Bernina has loss of Ni-Cr-V and from Grosina has little gain of Ni-Cr and loss of V. Grosina detachment was used as background value due to the characteristics of the geo-
logical setting. See text for discussion.
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(path 2). These results were compared to other units from the Liguria-Piemont units as well as reference
values (NASC and PAAS).

As observed in SEM-BSE images, Fe and Mn are found as braunite (Mn-silicate) and oxides over recrystal-
lized quartz (Figures 13a and 13b), showing the cogenetic relationship between Fe, Mn, and Si. In fact, their
concentrations are relatively high in the Saluver C formation, which has variable Fe/Mn ratios and some
enrichment in Mn. For reference, we compare the Saluver C composition to similar values as found in Mn
and Fe-rich hydrothermally-sourced metalliferous deposits [in Karpoff et al., 1988; McKenzie et al., 1990], as
shown in Figure 13c.

7. Discussion

7.1. Tracing Fluids From the Mantle Through the Crust Into Sediments

As indicated on the P-M diagrams, gains of trace elements, such as Ni-Cr-V, in the fault rocks from ED indi-
cate that they should have their source outside the continental crust. These elements were lost during ser-
pentinization leading to their depletion in mantle rocks; other important elements that were mobile include
Si, Fe, and Mn. We suggest that serpentinization leads to the enrichment of fluids in the aforementioned
elements, and that Ni-Cr-V and Fe-Mn can be used as tracer of a large-scale fluid migration across the
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Figure 12. Increase in Fe and Mn from the post tectonic Saluver C sediments. The decrease in Fe and Mn is well marked from the Radiolar-
ite to the Calpionella and Palombini formation (both in Err and Platta nappes). The data of the Radiolarite formation are from this study
and Bracciali et al. [2013]. Data from Calpionella and Palombini formations are from Bracciali et al. [2013]. Reference data are: PAAS (Post-
Archean Australian Shale) and NASC (North American Shale Composite) from Condie [1993]; Internal Ligurian Units (ILU) and Toscan nappe
(TN) in Italy; and Balagne nappe in Corsiga from Bracciali et al. [2013] (see Figure 1 for location).

thinned crust, where fluids were channelized along detachment systems. Because these elements are also
found in the sedimentary rocks in the supradetachment basin, we suggest that these fluids can also be
traced into the overlying sedimentary basins. The fluids likely affected the syntectonic sediments by direct
migration and the post tectonic sediments via pollution due to a rising plume of mantle-reacted fluids in
the water column. In the following sections, we discuss the different parts of this large-scale hydrothermal
system that accompanied the mantle exhumation.

7.1.1. Evidence for Mass Transfer and Fluid Circulation Along Extensional Detachment Faults

Fossil fluid flow in the extensional detachment system can be shown by physical (Figures 3 and 4)
and chemical (Figures 8, 9, and 10) evidence. Physical evidence includes: (i) quartz and calcite veins;
(i) iron oxides precipitated in the cataclastic foliation; (iii) syntectonic phyllosilicate minerals trans-
formed or neoformed in the fault zone, which become more abundant toward the core zone of the
extensional detachment faults. Chemical evidence includes the products of water-assisted saussuritiza-
tion process in the extended crust. These processes are responsible for losses of Ca and Si (Figures
8b—8f) and enrichment of fluids in these elements that migrate through the fault zone and precipi-
tate as quartz and calcite veins along the detachment faults (Figures 3a, 3c—3f, and 4b and 4c). Iron
oxides found in the foliated cataclasites may be the by-product of alteration of biotite (Figure 8); how-
ever, the common occurrence of Fe-oxides and the strong gain of Fe in the gouges and in the cata-
clasites observed in distal segments of the ED points to an external source for iron. The same is true
for a strong redox control on Fe and Mn-oxide alteration [e.g., Hayman, 2006]. In addition, large-scale
fluid circulation can be demonstrated by the gain of Ni-Cr-V, in which the comparison between the
bulk rock (Figure 8) and the clay fraction (Figure 9) analyses, allows us to conclude that trace elements
are mainly hosted in syntectonic phyllosilicates (Figures 4a and 4c) from the fault rocks of the ED. As
these elements came from outside the surrounding continental basement, they had to be carried by
fluids through the active fault zone simultaneously to the formation of the syntectonic phyllosilicate
minerals (Figure 14a).
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Figure 13. Evidence for Fe and Mn. (a) and (b) SEM-BSE images from Saluver C at ZoS. (a) Braunite (br), Mn-oxide (MnO), and quartz (qz), highlighting the cogenetic relationship between
Mn and Si. (b) Iron oxides (Fe) marked by red arrows. (c) Comparison of geochemical data from Saluver C with Fe and Mn from oceanic deposits. Fields in Bonatti diagram from Karpoff
et al. [1988] and McKenzie et al. [1990]. (d) Continental allochthonous block in the ZECM (Parsettens at Platta). The surrounding mantle contains Fe-oxides and high concentration of
Barium (sample P7 in Table 1). Continental crust (cc); serpentinized mantle (sm).

7.1.2. Ni-Cr-V: Tracers for Mantle-Reacted Fluids Produced by Serpentinization

The seawater-mantle interaction leads to major serpentinization of olivine and pyroxene and an enrichment
of the involved seawater. Once the mantle is not 100% peridotite, and the products of other secondary
reactions such as chloritization are observed, we choose the term mantle-reacted fluids to designate fluids
that show a chemical relation with the mantle rocks. As shown in this study, Ni-Cr-V resulted from losses
associated to serpentinization. Their use as tracers for mantle-reacted fluids is justified by: (i) the much
higher concentrations in mantle than continental rocks, (ii) the high gains in fault rocks of detachment
faults that exhume crustal and mantle rocks (e.g. ED); and (iii) the observation that their concentration is
unusually high in the sediments of the distal margin (CDZ).

The elevated gain of Ni-Cr-V in the continental fault rocks along the ED cannot be explained by dissolution/
precipitation processes in the surrounding continental basement. Therefore, such enrichment leads to the
question about the origin, and how and when the elements were released and migrated upward into the
continental crust. These elements show high concentrations in serpentinized peridotites (2000ppm of Ni,
2500ppm of Cr, and 100ppm of V; total of 4600ppm) and even higher in fresh peridotites (Table 1), while
they are low in the continental crust. The Albula granite, which represents the main protolith for the fault
rocks of the ED, shows very low concentrations (Ni~6ppm, Cr~20ppm, V~45ppm; total of 71ppm, Table 2).
Another key observation is that Ni-Cr-V depletion in the mantle (losses) is a function of increasing
serpentinization.

Since the deposition of syn to post tectonic sedimentary sequences (Saluver and Radiolarite formations) are
contemporaneous with mantle exhumation and they are enriched in Ni-Cr-V (Figure 11), a direct link can be
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made between the losses of these elements due to serpentinization and the migration of mantle-reacted
fluids toward the basin in the distal margin.

Although Ni-Cr-V are good proxies due to their presence and behavior in all studied systems (i.e., mantle,
continental fault zone, and sedimentary sequences), other trace elements such as Cu, Sc, and Co exhibit
similar behavior.

Fe and Mn enrichment, as distinct oxides, are also found in the post tectonic sediments (Saluver C) and in
the mantle (Figures 4d—4f and 13d). They also suggest a close relationship between serpentinization, man-
tle exhumation, and fluid transfer.

7.1.3. Formation and Migration of Mantle-Reacted Fluids

Extensional detachment faults in the distal margins cut through a previously thinned, less than 10km thick
continental crust and root in the underlying mantle. This triggers a seawater-mantle interaction resulting in
the leaching of elements from the mantle during serpentinization, creating a mantle-reacted fluid that
migrates through extensional detachment faults. Our observations suggest that serpentinization initiated
below the previously thinned crust. This is evidenced by the gain/enrichment in Ni-Cr-V along the ED (Fig-
ure 10) and the overlying syntectonic sediments (see following discussion).

The details of how seawater migrates downward into the mantle are not fully understood. But the observa-
tion that the signature of the mantle-reacted fluids is registered along the Err detachment fault shows that
the seawater somehow migrated downward. Two possibilities, or a combination of the two can be envis-
aged: (i) seawater flowed downward through synthetic and antithetic high-angle normal faults that are
formed in the hanging wall of the detachment; (ii) seawater flowed downward only along detachment faults.

We interpret that the high-angle normal faults also acted as conduits for seawater downward migration as
illustrated in the Figures 14a-14d and 15. The progressive downward migration of seawater and serpentini-
zation were intimately linked to the activity of extensional detachment. The serpentinization caused by sea-
water is evidenced by isotopic work [Frith-Green et al., 1990]. The interaction between seawater and mantle
rocks had to occur at relatively shallow depths and low temperatures according to the observations dis-
cussed in section 4. Nevertheless, considering the stability field of serpentine minerals [e.g., Moody, 1976],
the temperature, and depth of the fluid-rock interaction and related serpentinization (hydration and chemi-
cal exchange) probably were not higher than 420°C. The depth is difficult to estimate, but assuming a ther-
mal gradient of 30°C/km, what may be low for an extending lithosphere, would give 14 km. From refraction
seismic data in present-day rifted margins, the thickness of a serpentinization front is up to 6 km [Dean and
Minshull, 2000]. As the serpentinite layer is exposed to the seafloor at final rifting and the thickness of sedi-
mentary layer is negligible, this would result in a thermal gradient of 70°C/km. Such high thermal gradients
may be linked to the thinning of the lithosphere, hydrothermal advection (Figure 14b), and exothermic ser-
pentinization reaction [Schuiling, 1964]. Hydrothermal chemical exchange is supported by spots of Fe-oxide
crusts (Figure 13d) that are often observed in the serpentinized mantle of the ZECM and by high content of
Ba (9%) and barite (see sample P-7 in Table 1, in standard serpentinite Ba=5ppm).

The upwelling of mantle-reacted fluids along the detachment fault record the progressive development of
serpentinization that happens when faults were able to cut through the brittle and thinned crust reaching
the subcontinental mantle. It is important to emphasize that is unlikely that this upward migration occurred
only at a final stage, when the mantle is exhumed to the seafloor. In this context, two major points have to
be considered:

1. when a segment of the footwall of the detachment fault is exhumed to the seafloor, it starts to become
tectonically inactive and therefore the fluid circulation may decrease due to the healing of fractures
(Figure 15) [Tenthorey and Fitzgerald, 2006; Mitchell and Faulkner, 2012]. In this case, fluids would escape
directly to the seawater in the ZECM and it would not be registered all along the ED fault rocks as it was
showed in the Figure 10;

2. since fault gouges have low permeability [Morrow et al., 1984; Evans et al., 1997], fluid migration toward
the breakaway throughout the gouge layer seems highly improbable.

However, during fault activity, the permeability can be enhanced [Tenthorey and Fitzgerald, 2006]. This is
because the fault movement enables fracture opening, especially in the fault zone characterized by cata-
clastic rocks. The increase of permeability by fracture opening is evidenced by the common occurrence of
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Figure 14. Conceptual processes of fluid migration. (a) Flow of mantle-reacted fluids along the active segment of ED. At the point x, the
detachment is active and probably with undeveloped gouges. At the point y, the detachment is active and gouge are well-developed. At
the point z, the detachment is inactive. Fluid migration is recorded at the points x and y but not at z. (b) Maximum depth for serpentiniza-
tion is limited around the 400°C isotherm. The high geothermal gradient may play an important role in the remobilization of elements by
controlling convective cells. (c) Direct migration of mantle-reacted fluids toward syntectonic sediments in the supradetachment basin. (d)
Seawater Pollution by the rising plume of mantle-reacted fluids spreading in the seawater and interacting with the post tectonic sedi-
ments, which is contemporaneous with serpentinization and mantle-exhumation. Note that the segment of detachment fault is active in
the ZECM but inactive below the supradetachment basin.

quartz and calcite veins (Si- and Ca-rich fluids) parallel to the brittle foliation in the cataclasites and the
observation of polyphase cataclasis suggesting crack sealing mechanisms along the fault.

7.1.4. Fluid Migration Toward the Sedimentary Basin

Direct fluid migration through the ED toward the sedimentary basin is evidenced by Ni-Cr-V enrichments
(Figure 11) in the syntectonic sediments (Figures 14c and 16). The flow path in the sedimentary sequences
may be very complex due to the porosity-permeability control of the sedimentary rocks. In addition, the
sediments, particularly the oldest deposit lying directly on top of the exhumed fault surface, may have been
continuously reworked during movements along the underlying detachment fault. Therefore, they may
have been affected by small increments of fluid pulses during upward fluid migration. This may explain
the spikes of Cr-Ni-V values in the syntectonic Saluver A and Bardella formations (Figure 11). In addition, the
rocks were sampled in different places (along strike) in the Zone of Samedan and Murtirdl areas. Within this
basal syntectonic sequence, clasts of fault rocks are locally found. But, values of Ni, Cr, and V in these fault
rocks are always lower than in the overlying sediments and as the percentage of fault rock clasts in the
basal sedimentary sequences is never high, the values measured in these sequences cannot be explained
by reworking of fault rocks alone. Thus, a direct contribution of external, mantle-reacted fluids needs to be
envisaged to explain the high Cr-Ni-V values in the basal syntectonic sedimentary sequences.

7.1.5. The Pollution of Seawater by the Rising Plume of Mantle-Reacted Fluids: A Record of Mantle
Exhumation in Post Tectonic Sediments

The deposition of the Saluver C and Radiolarite formations occurred at the end of activity of Err detachment
in the CDZ [Masini et al., 2011]. This implies that fluids enriched in Ni-Cr-V and Fe-Mn no longer came from
the underlying segment of the ED (Figures 15 and 16). Indeed, the data show that the progressive enrich-
ment persisted even after the end of extension in the distal margin and continued during mantle exhuma-
tion in the ZECM. This is supported by elevated Ni-Cr-V values in the Radiolarite formation as well as the
occurrence of Ni-Co-Cu and botryoidal Mn-silicates formed under hydrothermal activity in the ZECM [Perseil
and Latouche, 1989].
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Table 3. Composition of Clay Fraction From Err Detachment Fault Rocks®

L-07 FC2-1 Gouge
Sample L-9b Granite Cataclasite L-18 Gouge MUNTA-2 Gouge MUNTA-3 Gouge VL-06 Gouge VL-07 Gouge Middle Err AVE-GO
Lithology Middle Err Middle Err Middle Err Middle Err Middle Err Middle Err Middle Err Fuorcla Gouge Middle
Unit Place Laviner Laviner Laviner Alp Muntatsch Alp Muntatsch Val Lunga Val Lunga Cotschana Err -
SiO, 55.11 58.05 46.39 49.22 46.33 51.11 47.51 46.99 47.93
Al,O3 21.68 17.41 24.50 21.21 23.83 21.20 26.38 26.84 23.99
Fe,02 4.92 747 8.23 7.48 77 8.71 6.00 7.35 7.59
MnO 0.08 0.13 0.09 0.10 0.06 0.11 0.04 0.06 0.08
MgO 2.14 4.05 4.75 5.34 .20 5.57 4.06 3.70 4.77
CaO 1.89 0.89 0.31 0.39 0.52 0.40 043 0.18 0.37
Na,O 3.38 3.15 0.33 0.74 0.36 1.92 0.36 0.21 0.65
K0 5.51 434 7.59 6.82 7.05 4.56 8.11 8.03 7.03
TiO, 0.49 0.61 40 0.59 0.41 0.55 0.48 0.35 0.46
P,0s 0.17 0.25 0.17 0.18 0.09 0.12 0.07 <0.04 0.13
LO.I 433 4.28 6.40 6.43 6.91 573 6.24 5.99 6.28
Sum 99.70 100.63 99.16 98.50 98.53 99.98 99.68 99.70 99.28
As 9.92 7.51 240.90 29.24 120.50 6.12 6.61 50.03 75.57
Ba 734.40 492.90 848.50 513.20 688.70 385.20 923.00 532.40 648.50
Be 4.61 2.74 8.05 6.06 6.47 3.54 5.70 5.28 5.85
Bi <0.1 0.11 1.49 1.10 1.07 0.26 0.52 0.54 0.83
Ccd 0.28 0.14 0.25 0.88 0.42 <0.12 0.12 0.12 0.36
Ce 56.24 28.40 46.59 65.29 74.75 98.97 125.30 49.36 76.71
Co 13.73 31.24 26.22 28.13 25.46 19.23 16.61 25.44 23.52
Cr 29.68 75.57 128.00 9133 119.90 3341 99.41 127.40 99.91
Cs 6.43 3.23 30.08 29.62 45.41 9.95 18.21 15.11 2473
Cu 8.12 52.90 65.78 58.63 65.99 10.82 39.30 5133 48.64
Dy 2.66 574 6.22 8.04 6.45 4.59 6.11 2.70 5.69
Er 1.14 3.03 3.68 453 3,51 213 3.03 1.48 3.06
Eu 133 1.10 0.92 1.20 1.20 1.69 1.59 0.71 1.22
Ga 36.50 32.90 36.07 3445 34.75 28.88 37.58 36.67 3473
Gd 3.44 5.40 6.06 7.19 6.19 6.07 7.26 291 5.95
Ge 1.60 1.51 323 2.64 2.25 2.51 345 2.56 2.77
Hf 0.76 0.90 1.08 1.88 1.15 0.82 0.75 1.87 1.26
Ho 0.45 1.10 1.28 1.59 1.26 0.81 1.1 0.52 1.10
In <0.07 0.18 0.17 0.15 0.16 0.1 0.13 0.12 0.14
La 28.53 14.30 21.92 31.59 37.95 48.16 65.43 27.18 38.71
Lu 0.14 0.42 0.55 0.64 0.50 0.30 0.39 0.24 0.44
Mo 0.57 9.00 1.46 <05 1.56 292 0.61 <0.5. 1.64
Nb 16.62 18.80 9.07 11.64 8.04 9.25 12.23 8.09 9.72
Nd 2291 17.39 2241 30.55 33.17 39.47 54.67 19.60 3331
Ni 16.27 26.09 128.00 36.71 52.03 19.78 3236 46.88 52.63
Pb 46.77 19.35 109.09 80.68 32.74 14.55 36.47 47.70 53.54
Pr 6.21 3.99 5.59 7.97 8.96 10.99 14.91 5.50 8.99
Rb 241.10 135.10 351.10 322.80 343.00 215.00 349.00 367.00 324.65
Sc 12.60 26.07 23.06 2345 2471 2143 2343 2493 23.50
Sb 0.42 045 2.10 0.76 3.06 0.39 0.48 1.29 1.35
Sm 4.22 4.99 5.61 7.01 6.66 7.98 10.06 3.61 6.82
Sn 2.04 6.44 8.40 9.19 8.81 5.77 6.94 5.58 7.45
Sr 168.50 39.54 38.12 2478 38.79 34.63 41.40 27.83 34.26
Ta 1.96 2.60 0.76 1.27 0.70 1.25 0.99 0.65 0.94
Tb 0.51 0.94 0.99 1.28 1.06 0.88 1.09 0.47 0.96
Th 25.20 1543 28.34 18.84 19.32 15.16 23.53 10.89 19.35
Tm 0.16 0.45 0.56 0.68 0.53 0.32 043 0.22 0.46
u 2.25 7.52 10.69 5.30 4.98 237 6.77 231 5.40
Vv 56.55 130.00 141.90 112.20 146.20 123.10 116.20 143.80 130.57
w 0.96 11.65 2.87 3.98 4.67 134 3.55 3.55 333
Y 13.17 31.40 36.29 45.78 36.17 2439 29.11 14.44 31.03
Yb 0.99 295 3.66 445 349 2.03 2.71 157 2.99
Zn 95.39 140.40 173.50 215.70 188.80 116.50 112.70 130.10 156.22
Zr 27.34 28.34 38.38 62.29 38.62 24.88 22.62 63.44 4171

“Granite is related to Albula granite. AVE-GO refers to the average of gouges samples. The clay fraction separation (<2 pm) were carried at LHyGeS-CNRS Strasbourg using centrifu-
gation technic. Elemental analyses results from ICP-MS and ICP-AES (see Table 1) at SARM-CNRS-CRPG at Nancy (see Table 1). Major elements (oxides) and LOI are in %wt and trace
elements are in ppm.

It is important to mention that the concentrations of Ni-Cr-V and Fe-Mn in the Saluver C are higher
than in the shales from the Radiolarite formation that is in direct contact with the serpentinites and
seals the exhumed mantle in the ZECM (Figure 16). This may suggest that when the Radiolarite forma-
tion was deposited, mantle exhumation was diminishing (or ended) and that the mantle was more
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Figure 15. Progressive gain of Ni-Cr-V in different segments of the Err detachment fault. The figures show the concept of the progressive
increase of serpentinized area and degree of serpentinization that are linked to the detachment fault evolution. This increase is registered
in different segments of the ED (colored dots) according to the results from Figure 10. The light blue zone is the downward migration of
the seawater along normal faults in the hanging wall. Seawater reaches the mantle triggering serpentinization producing the mantle-
reacted fluids that migrate upward, as illustrated by the dark green zone. In t1 stage, the deformation is distributed along a high angle
normal fault and a set of fractures. From t2 to t5, the deformation is localized along the detachment fault.

depleted in Ni-Cr-V and Fe-Mn compared to the stage registered by the Saluver C. It is worthwhile to
mention that the Fe- and Mn-oxides content in the Saluver C is comparable to the hydrothermal miner-
alization observed in oceanic domains (Figure 13c). Therefore, it can be envisaged that hydrothermal
plumes of Fe-Mn escaped through vents spreading over wide areas into the seawater, in a similar way
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Figure 16. The link between fluid migration and the evolution of supradetachment basins in the Err and Platta nappes. The stage t7 starts with a listric normal fault system that cuts
through the thinned continental crust (<10 km). When the ED becomes active (t2), the mantle-reacted fluids migrate along the fault zone toward the overlying syntectonic sediments
(t2 and t3). At t3 the ED became convex up due the upwarping of the footwall along the zone of deformation. When the deformation starts to move toward the future ZECM (from t4),
the ED segment below the ZoS and Murtirol become inactive. The continuous deposition of the post tectonic Saluver C (t5) records the Seawater Pollution by the rising plume of
mantle-reacted fluids. During the deposition of the Radiolarite Formation, the hydrothermal system starts to become less active until a moment that the process stops, as observed by
the data from Calpionella and Palombini formations (t6). Geological evolution after Masini et al. [2012].

to what has been reported in the South Atlantic Ocean (see Figure 1 from Saito et al. [2013]). Thus, in
contrast to the Ni-Cr-V enrichment in the syntectonic sequence, the observed enrichment of these met-
als, including Fe and Mn, in the post tectonic sequence may be due to pollution of seawater and their
contemporaneous absorption by the clay minerals (Figures 16). The coeval deposited clays in the Saluver
C and Radiolarite formations may therefore record the modified seawater signature, similar to clays in
present oceanic settings [e.g., Torfstein, 2012].

From the Calpionella to the Palombini formations, the system registered a progressive decrease of Ni-Cr-V
and Fe-Mn, which values are comparable to those from the Post-Archean Australian Shale (PAAS). This
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decrease suggests either the end of the hydrothermal activity or a progressive moving of the source (hydro-
thermal system) away from the study area. Therefore, the measured Ni-Cr-V and Fe-Mn trends may be used
as proxies for mantle exhumation and related serpentinization in hyperextended rifted margins (Figure 16).

7.2. Similarities With Exhumed Mantle at MAR

A number of observations made at MAR favor our interpretation. They are mainly: (1) Ultramafic-hosted
hydrothermal fluids expel fluids containing Si, Mg, Fe Ca, Mg, Si, Fe, Mn, and Ni [Delacour et al., 2008;
Edmonds, 2010; Fouquet et al., 2010; Kelley and Shank, 2010]. This is in agreement with our element loss
caused by serpentinization. (2) Fe and Mn oxides are observed in the sedimentary layer around this type of
hydrothermal vents [Dias and Barriga, 2006]. We also observed an enrichment in the post tectonic Saluver
C, which deposition is contemporaneous to mantle exhumation and serpentinization. (3) Late-stage quartz
veins are found in oceanic core complexes [Jons et al., 2013]. This shows that Si-rich fluids may be originated
during serpentinization evidenced by the occurrence of hydrothermal cherts over the ZECM and the local
occurrence of silicified layers in Saluver C over the CDZ. All these observations favor our model in which the
enrichment of fluid in elements such as Ni, Cr, V, Si, Fe, and Mn occurs during serpentinization and mantle
exhumation under the influence of hydrothermal activity, migrating from the mantle along detachment
faults and finally into the sedimentary section. In addition, it supports that elements (especially Ni-Cr-V) can
be used as a proxy to trace mantle-reacted fluid along present-day margins.

We are aware that the mobility and solubility/precipitation of these elements can be complex, and usu-
ally depend on temperature, salinity, pH and concentration. For example, Cr is assumed to be immobile
during serpentinization. However, Klein-BenDavid et al. [2011] highlighted that saline hydrous fluids are
an important and an efficient agent in Cr mobility in the mantle. In addition, the observed losses of Cr
in the orthopyroxene can be one of the explanations for the observed depletion. The detailed analysis
of mobility and solubility/precipitation is beyond the scope of this work. But, the fact that these ele-
ments are discharged through ultramafic-hosted hydrothermal vents in present-day MAR sites shows
that conditions like temperature, pH, and salinity can be favorable for element mobility during
serpentinization.

Although fluid inclusions were not investigated, it is well known from MAR studies that serpentinization
produces strongly reduced H,-rich fluids with lower CH, content formed under relatively low temperature
and higher pH. We think that these gases and conditions probably made part of such mantle-reacted fluids.
However, in order to better constrain the conditions at which the fluid-rock reactions took place, more
detailed mineralogical and chemical analyses and phase equilibrium modeling would be necessary [e.g.,
Destrigneville et al., 1998].

7.3. Composition of Mantle-Reacted Fluids

It is difficult to reassemble the composition of the mantle-reacted fluids only from chemical analyses of
mantle, fault, and sedimentary rocks. However, a first-order composition can be envisaged by the observa-
tions that syntectonic phyllosilicates can register partially the fluid flow in the fault rocks and that these flu-
ids also interact with sediments.

As the serpentinization results in fluids enriched in mantle elements, which are found in fault rocks from
the ED and in the overlying sediments, and in line with ultramafic-hosted hydrothermal systems at MAR, we
conclude that these fluids are composed by Si, Mg, Mn, Fe, Ni, Cr, V, Co, and Sc as well as H, and CH, gases.
As the water-rock interaction involves Jurassic seawater, its chemistry has also to be taken into account.

Although the overall concentration of these elements in the fluid may not be determined, our observations
suggest that mantle exhumation and related serpentinization had a significant impact on the chemical
budget of the seawater during final rifting in narrow Alpine Tethyan basins.

7.4. Temporal and Spatial Relationships Between Mantle Exhumation, Serpentinization, and the
Formation-Migration of the Mantle-Reacted Fluids During the Tectonic Evolution of the Margin

All the aforementioned result allowed us to propose a model of the temporal and spatial distribution of
fluids during the evolution of the margin.

As previously discussed (see also Figure 2), the Agnelli formation and the Radiolarite formation constrain
the age of the supradetachment basin in the CDZ. This basin was developed in a time interval of
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Figure 17. The link between the tectonic evolution and fluid migration along the Alpine Tethyan margin. The Grosina and Bernina detachments record a fluid with a continental compo-
sition (about 190-185 Ma). Between 185 and 165 Ma, the ED fault rocks and the supradetachment basin record mantle-reacted fluids that are produced by serpentinization under
thinned continental crust. Serpentinization and fluid flow evolve with the progressive mantle exhumation toward the seafloor. During this process, not only the sedimentary basin is
affected by fluids but also the sea/ocean reservoir. After late Jurassic, the hydrothermal system at the Platta nappe becomes inactive. Geological evolution after Mohn et al. [2011] and
Masini et al. [2013].
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approximately 20 myr, between Pliensbachian and Bathonian. The reworked fault rocks in the sediments
show that the ED was also active between 185 and 165 Ma. Because fluid flow is registered in the fault
rocks, fluid migration along the ED had to happen during this time interval. The progressive enrichment in
Ni-Cr-V registered along the ED and in the syntectonic sediments suggests that this gain had to occur at
early stages between 185 and 165 Ma due to the stratigraphic position of the syntectonic sequences and
the fault segment of ED (e.g. Alp Muntatsch and Fuorcla Cotschana; for location see Figure 2).

When the segment of the ED under the Zone of Samedan was no longer active and deformation moved
oceanward, the fault rocks in this active segment continued to register the increasing serpentinization
(e.g., samples from Laviner and Err, Figures 10 and 16). From this moment onward, the post tectonic Sal-
uver C registered an elevated enrichment in Ni-Cr-V and Fe-Mn by the pollution of the seawater that is
linked to the ongoing serpentinization and mantle exhumation oceanward. Due to the stratigraphic posi-
tion of Saluver C, we interpret that this may have happened at a final stage of rifting between 185 and 165
Ma.

It is important to note that the flow of mantle-reacted fluid was not recorded during the formation of the
Grosina detachment at about 190Ma and the Bernina detachment at about 185 Ma. It means that these
detachments, both older than the ED, may not yet have been connected to the mantle or if they were, ser-
pentinization was not yet significant. However, these detachments record the fluids that interacted with
continental rocks what is evidenced by quartz and calcite veins, product of the saussuritization processes
along the fault zone.

These observations enable us to outline when and where fluids were active along the evolving Alpine
Tethyan margin (Figure 17):

1. Around 190-185Ma: occurrence of first fluid with a signature of the continental crust along the Grosina
and Bernina detachments.

2. Early stages between 185 and 165 Ma: serpentinization initiated first under thinned continental crust
leading to progressive enrichment of Ni-Cr-V from the breakaway to the end-most segment of ED and
resulting in direct migration of mantle-reacted fluids to the sedimentary basin registered in the syntec-
tonic sequences.

3. Late stage between 185 and 165 Ma: important serpentinization stage and mantle exhumation probably
accompanied by hydrothermal activity that reached its peak as indicated by the strong enrichment of Ni-
Cr-V, Fe, and Mn in the Saluver C.

4. After 165Ma: decreasing influence of the hydrothermal activity in the CDZ as indicated by the decreasing
values of Ni-Cr-V and Fe-Mn in the Radiolarite formation and its disappearance in the overlying Calpio-
nella and Palombini formations.

8. Conclusions

In this study, we presented a set of data from the Err and Platta nappes that expose remnants of a CDZ and
ZECM that record a large-scale fluid-flow system. The fluid-rock interaction between seawater and mantle
leads to serpentinization resulting in the mantle-reacted fluids that is best depicted by enrichment in Ni, Cr,
V, Fe, and Mn.

Mantle-reacted fluids migrated through detachment faults and interacted with syn to post tectonic
sediments of the distal margin. This is evidenced by the enrichment (gain) of Ni-Cr-V and other ele-
ments in the fault and sedimentary rocks, which enables us to trace and date serpentinization, and con-
sequently to understand when and where mantle-reacted fluids circulated in the distal margin. In
addition, we suggest that the sedimentary sequence can be used to date the main serpentinization
stage and also mantle exhumation in present-day magma-poor rifted margins (e.g., South Atlantic
margins).

The determined link between the margin evolution and fluid flow history enables us to establish the impor-
tance of the coupling of different reservoirs (mantle, crust, and seawater) during final rifting, which may
have a considerable impact on the chemical budget of the seawater and on diagenetic processes during
final stages of rifting.
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