
HAL Id: hal-01257524
https://hal.science/hal-01257524v1

Submitted on 17 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First steps toward embedding real-time audio computing
in Antescofo

Nicolás Schmidt Gubbins, Arshia Cont, Jean-Louis Giavitto

To cite this version:
Nicolás Schmidt Gubbins, Arshia Cont, Jean-Louis Giavitto. First steps toward embedding real-time
audio computing in Antescofo. Journal de Investigacion de Pregado (Investigacion, Interdisciplina,
Innovacion), 2016, 6. �hal-01257524�

https://hal.science/hal-01257524v1
https://hal.archives-ouvertes.fr

 Journal I3

 Investigación, Interdisciplina, Innovación

1

FIRST STEPS TOWARDS EMBEDDING REAL-TIME AUDIO 1

COMPUTING IN ANTESCOFO 2

Nicolás Schmidt Gubbins
1
, Arshia Cont

2
, Jean-Louis Giavitto

3
3

 4
1 Pontificia Universidad Católica de Chile. Escuela de Ingeniería, Departamento de Ciencia de la Computación. 6to año. 5
nschmid1@uc.cl 6
2 IRCAM UMR STMS. INRIA - MUTANT TEam-project. Arshia.Cont@ircam.fr 7
3 IRCAM UMR STMS. CNRS. INRIA - MUTANT TEam-project. Jean-Louis.Giavitto@ircam.fr 8
 9

 10
Abstract 11

 12
The develop of Antescofo software has allowed contemporary musicians to create 13
interactive music pieces in a more precise way in terms of the synchronization between 14

human and machine. INRIA’s MUTANT team has been developing a version of Antescofo 15
that changes the DSP computation paradigm and translates the responsibility to the 16
software and no longer to the host environment. Thus, the composer gets more freedom to 17

create his own effects. Plus, it allows the composer to change the sound link network in 18
execution time. Also, the computational power required for the DSP is optimized. Lastly, 19

this new version creates the possibility of generating a self-contained score for UDOO 20
platform, creating this way the first steps toward the preservation of interactive musical 21

pieces through time. 22

In this article the context of the new version of Antescofo is presented, as well as the 23

benefits of it. The methodology of compilation of the Faust DSP tool in Antescofo is 24
described and a comparison of the profiling tests between the old and new versions is 25

detailed. The results shows an improvement of about 46% in terms of the computational 26
power needed to process the signals and they represent clear indicators of optimization that 27

can be extended to the compilation of the Antescofo software for the UDOO platform. 28

 29

 30
Key words: Antescofo, UDOO, Faust, Real-time Audio Interaction, Interactive Music. 31

 32

 33
1. Introduction 34
 35

a) Antescofo and Interactive Music. 36
There is a field in contemporary music called interactive music. Interactive music is about 37
the execution of a musical piece that has been written for both human and also electronics 38
parts. In this kind of compositions, the electronic system responds to the music interpreted 39

mailto:nschmid1@uc.cl
mailto:Arshia.Cont@ircam.fr

2

by the musicians and a mutual feedback grows between machine and human. Since the 40

beginning of this field, the problem of synchronization between this two agents has always 41

been present. 42

Antescofo is a software created by Arshia Cont and the composer Marco Stroppa in the 43

year 2007, and it is development has been continued by the INRIA’s MUTANT team as a 44
common project between INRIA, IRCAM and the CNRS since 2012. The main goal of this 45
software is aid with the synchronization between the electronic system and the musician in 46

an interactive music composition. 47

Antescofo has mainly two components: one machine listening compound and a reactive 48
engine system [1]. The machine listening is responsible of everything related to the score 49
following: identifying where exactly in the score is the musician at any instant. It also has 50

functions of pitch and beat tracking. The reactive engine system is responsible of 51

triggering the actions specified in the score as a response to certain events produced by the 52

musicians. 53

 54

 55

Figure 1.- Schema of Antescofo working system 56

 57

The current Antescofo augmented score language has been mainly developed by Jean-58
Louis Giavitto and José Echeveste since 2012, and it is highly inspired by Synchronous 59

Reactive languages such as ESTEREL and Cyber-Physical systems. It allows the composer 60
to write both, musician and electronic parts in the same score, with a very intuitive 61
language based on actions triggered by the musician. Antescofo also allows the composer 62
to program different actions, variables, operations, error handling, function declaration, etc. 63

3

Antescofo was developed as a C++ software compiled as a patch for PureData and Max 64

MSP host environments. 65

With Antescofo, the problem of synchronization between the musician and the electronic 66
parts of an interactive music piece is solved. The way that the sounds are processed and all 67

the effects are generated is done in the following way. The score is loaded to Antescofo and 68
the listening machine compound waits for the musician. When the musical events are 69
identified, the reactive engine triggers the actions specified in the score. Then, Antescofo 70
communicates with the host environment (Max MSP or Puredata) via messages, so the 71
sounds and effects are processed and generated in an external patch inside the host 72

environment and controlled by the messages. 73

 74

Figure 2.- Antescofo Synchronization 75

 76

This current DSP computational chain presents the following problems: 77

 Non – optimal performance 78

 Host environment dependencies 79

 Preservation through time 80

 81

As the DSP chain depends on the host environment, all the DSP processes performance 82
depends on how the platform manages the system resources. Max MSP and Puredata do 83
not manage resources the in the most optimal way. The scheduling of these platforms is 84
flat and they are not aware of the musical context, so if the patch is not good or needs a lot 85
of resources for the DSP processing, it will not be able to process all the buffers and 86

maintain a real time performance. 87

Antescofo Program

Environment

Dynamics Automata

Action Dynamics

Automata

Listening

Machine

Scheduling

Machine

Max / Pd / Others

e(t), ė(t)

Triggered Act ions

4

As the DSP processes are computed by the host environment, there are a lot of 88

dependencies to the platform. This means that if the host environment change from one 89
version to another, the whole musical piece could lose some parts of the electronic 90

compounds. This causes a distributed score that could cause problems of preservation of all 91

the dependencies. 92

The final problem is the preservation of interactive music pieces. As we know, technology, 93
platforms and protocols of communication of the applications are continuously changing. In 94
the technology and informatics field there are a lot of examples of platforms, formats and 95
protocols that had become deprecated and obsolete. This means that there is no guaranty 96

that one interactive musical piece composed today is going to be able to be played in the 97
future, and this is a big problem for contemporary musicians and the transcendence of their 98

art. 99

 100
2. Metodology 101

 102
a) Modular DSP Tools. 103

As a solution for the potential problems with the current version of Antescofo, Mutant 104

started developing a version that has different modular DSP tools embedded. The main goal 105
of this is to change the DSP chain process so the responsibility of generating the sounds 106

and processing the effects relays on the Antescofo patch and not in the host environment. 107
This way, all the sounds and effects can be processed in a more optimal way than the way 108

done by Max or PureData. 109

 110

 111

Figure 3.- Antescofo – Faust DSP chain 112

The integration of the modular DSP tools gives also the possibility to the composer to write 113
his own effects and DSP inside the Antescofo score. Also, the use of the different DSP 114
tools makes the Antescofo score much more self-contained, because it does not depend on 115

the host environment to generate the effects and sounds. This means that the effects and 116
sounds will remain exactly the same as in the moment that the piece was created regardless 117

of any changes applied by the host environment from one version to another. 118

5

Another advantage of this new version is the possibility of changing in real time the DSP 119

network. This means that using the Antescofo control variables, different effects can be 120
redirected from one link to another creating an infinity of dynamic possibilities on the 121

routing of the different effects, just like plugging inputs and outputs from and to each 122
effect. This was possible with the host environments but once again it depends on the way 123

that the platform implements the different signal routing through the different patches. 124

The different tools that Mutant wants to implement on Antescofo are Faust, Fluidsynth, 125
Csound and SuperCollider. Faust is already embedded in a new version of Antescofo and it 126

is already working. 127

Faust is a functional programming language for real-time signal processing that has been 128
developed by Grame since 2012. It allows programming signal processing software and 129

compile them as plugins or standalone applications [3]. Faust translates a high-level 130

description of a signal transformation to a C++ program that has been optimized by a 131

lambda-abstraction-based mechanism. The fact that Faust produces a C++ program, allows 132

the user to compile it to generate plugins and standalone applications such as MAX/MSP or 133

PureData patches, VST plugins, ALSA or Coreaudio applications. 134

Faust effects are written in Faust language inside the Antescofo score. These effects are 135
compiled with an on-the-fly compilator when the score is loaded to Antescofo. Thus 136
Antescofo calls the Faust functions already compiled only when they are needed, so the 137

performance of the application is much better than passing messages to external Max 138

patches to do the signal processing. 139

 140

b) Preserving art Through Time. 141
MUTANT has decided to implement a version of Antescofo for the UDOO platform in 142

order to preserve interactive music pieces through time. The high speed developing in 143
technology, and the permanent changes in the paradigms of storage and reading digital 144

information, could produce that an interactive music piece composed today could not be 145
able to be played in the future. The goal of preserving one hardware with Antescofo 146
embedded is to create a piece of art that can be preserved over time despite all the 147

technological changes. 148

UDOO is a mini computer developed by Aidilab srl and SECO USA Inc. Its hardware 149
includes an ARM Cortex A9 processor (corresponding to two CPU Freescale i.MX 6), 1 150

GB of RAM memory and one Arduino interface. The biggest advantage of this device is its 151
small size, great performance and versatility, because it allows the developing of 152

applications that integrates Arduino sensors and devices, in a high performance mini-153
computer. This platform is one of the most powerful mini computers that are currently in 154
the market, so the challenge of being able to run in an efficient mode Antescofo in this 155
platform, and also perform a score such as Anthèmes 2 are the first steps towards the 156

computation of real-time audio on this kind of platforms. 157

After compiling a PureData version for UDOO and Antescofo for PureData in a Linux 158
operative system, we tried the Anthèmes 2 example patch for PureData to test the 159
performance of the old version of Antescofo. The results were the expected: The 160

6

performance of Antescofo in terms of the score following system and the reactive engine 161

worked fine, but after passing the messages to PureData, the system got too slow to 162
perform correctly the signal processing (i.e. with the adequate timing), so a lot of clicks 163

were generated. 164

Antescofo manages the electronic compounds of the score (such as sounds and effects) by a 165
message passing system to the host environment. Thus, the responsibility of the DSP relies 166
on the host environment and it is not managed directly by Antescofo. The problem with this 167
is that host environments such as Max MSP and PureData, do not manage the resources in 168
an efficient way. Because of this, the CPU usage and the time used to compute the effects 169

in real time can make the whole process too slow. Taking in consideration that this kind of 170
software is made to be used in real-time, every non optimal computation can generate a 171
poor real-time performance. In the case of UDOO, the system resources are fewer than in a 172

computer, so this system is very sensitive to the optimization of all the DSP chain. 173

As the new version of Antescofo uses the integrated modular DSP tools, the performance in 174

the UDOO platform should be much better than the old one. Improving the performance of 175
the signal processing processes and optimize the whole system would solve the resource 176

managing problems of Puredata. That is why we compiled this new version for UDOO. 177

 178

c) Anthèmes 2 And Faust 179
Anthèmes 2 is an interactive music piece composed in 1997 by Pierre Boulez, founder of 180

the IRCAM. It is an 18 minutes piece for violin and live electronics, that was created based 181
on Anthèmes 1, which is a piece composed by the same Boulez in the year 1991 for violin 182
solo. Part of the live electronics compounds of Anthèmes 2 are samplers, frequency 183

shifters, harmonizers, reverbs and spatialization compounds. 184

MUTANT wrote an adaptation of the Anthèmes 2 score for Antescofo, and created a patch 185
in PureData and Max MSP that includes all the live electronics effects, and that are 186

controlled by the message passing system embedded in Antescofo to interact with Max or 187
PureData. This piece of music is used to show all the potentiality of Antescofo in live 188
performances, because it works as an example score in which the user can see different 189

examples of the Antescofo programing tools and interaction with real-time input. This 190
patch uses as input a 1 minute length part of the human part of the score for violin. This 191

sound file works as the real time input of Antescofo, so the results are always the same. 192

To benchmark the two versions of Antescofo, with and without the modular DSP tools 193
(Faust), an Anthèmes 2 score adaptation for Faust was written. This score had to implement 194

in Faust the 5 effects that originally were implemented in an external Max patch. The 195

effects are a 4 channel harmonizer, a Frequency shifter, a Sampler a Reverb and Panners. 196

 197

7

 198

Figure 4.- Anthèmes 2 effects patch in Max MSP. 199

 200

The implementation of the Faust effects used in Anthèmes 2 is the following: 201

 Harmonizer: was originally taken from the source code of the pitch shifter 202
implemented by Grame in the examples of the Faust repository. The code was 203
modified in order to have a method that receives the same parameters than the 204
Anthèmes 2 score, i.e. semitones. The values of the 4 channels must be integers 205

expressing semitones that represent the amount of semitones from the original 206

frequency that the harmonizer have to reproduce. The harmonizer also receives an 207
amplitude parameter that goes from 0 to 1 to control the amplitude. 208

 Frequency shifter: As the harmonizer, this effect was also modified from the source 209
of the pitch shifter code, developed by Grame on the Faust repository. It receives as 210
parameters the value in hertz of the frequency to be shifted from (integer), the value 211

of the Antescofo variable $PITCH for computing the frequency ratio, and the value 212
of the out amplitude (from 0 to 1). 213

 Reverb: this effect is the “freeverb” made by Grame and it was taken from the 214
examples folder in the Faust repository. The parameters this effect receives, are the 215
damp value, the size of the room, the wet of the signal and the out amplitude. All 216
those values goes from 0 to 1. 217

 Panner: The two panners are the same. They receive the values of amplitude of each 218

of the 6 channels. The audio input is divided into 6 channels and each output 219

channel is multiplied by the corresponding control parameters (from 0 to 1). With 220
this system it is possible to control the amplitude of the audio input for any channel, 221
and using Antescofo elements such as curves, it is possible to generate panner 222
effects. 223

 Mixer: additionally a Faust mixer was implemented to be able to mix down all the 224
audio effects to the corresponding channels. The only parameters are the audio 225
signals, and the outputs are the 6 final audio signals. 226

8

 227

The sampler could not be implemented with Faust because it does not works in the spectral 228
domain, only makes transformations in the domain of time. It is going to be implemented 229

when the Fluidsynth tool is embedded to Antescofo. 230

 231

3. Results and Discussion. 232
 233
After de implementation of the Faust effects, the Anthèmes 2 score was adapted to respond 234
to these new tools. The Anthèmes 2 patch example from the Max MSP host environment 235
was modified, deleting the message passing system and the external patches 236
implementation. The main idea of this was comparing the performance of the two versions 237

of Anthèmes 2: the one with the effects implemented in the host environment, and the one 238

with the effects implemented in Faust language embedded inside Antescofo. Also, the 239

sampler of the original score was removed so it can be compared with the new one. 240

For the profiling tests between the two versions of Antescofo we used the Time Profiler 241
tool from the Xcode developer tools. The Time Profiler allows the user to “record” a 242

sequence of usage of a specific software and it allows him to see in detail how much 243
computer time it takes for any computation or process in the program in real time. The 244
choice of using Xcode Time Profiler is because it allows to see in detail the computational 245

power needed to achieve the signal processing and all the processes involved in the 246
performance of the software. The different calls to all the processes are represented in a 247

tree-like diagram, and all the details including the CPU usage and time needed to achieve 248
the process is detailed. In this special case, the function of interest between the two 249
Anthèmes 2 scores was “dspchain_tick”. This function, written by MUTANT, is the 250

Antescofo function that is in charge of all the DSP processes and sound generation. 251

As Antescofo is a real-time audio application, it was very difficult to measure performance 252
between two versions. This is because the main objective of a real-time audio application is 253

to finish the computation processes before the deadline of the entrance of the next audio 254
buffer, and not to run as fast as possible. For this purpose, the Max MSP mode selected was 255
the Non – Real - Time mode, which allows the program to run as fast as possible, reading 256

the audio input from an audio file. This function allowed us to simulate a real time 257
interaction between a musician and the electronic part through the Antescofo score. The 258
performance of this mode and the time needed to achieve with the end of the 259

“dspchain_tick” function is a real indicator of the optimization between the two versions of 260

the Antescofo software with or without the Faust DSP tool embedded. 261

At the first try, the Antescofo - Faust version of Anthèmes 2 was not better than the one 262
without Faust. The main reason of this was the compilation flags of the Faust compiler 263
inside Antescofo, the size of the vector was 32 samples and the size of the vector on Max 264

host environment was 64 samples. This difference causes a non-optimal performance, so 265
we added the proper Antescofo compilation flags (flags –vec –vec-size 64) to the Faust 266
compiler. Doing this, the size block of the buffers were the same and the performance was 267

much better. 268

9

After this change, the respective time of computing the dspchain_tick function were 269

5900ms in the case of the Anthèmes 2 score using the effects in external patches, and 270
3150ms in the case of the Antescofo-Faust version of the score. This number represents the 271

sum of the time from all the times that the “dspchain_tick” was called during the non-real-272
time performance. This numbers represents an improvement of the performance of 46%, 273
which is significant thinking on the improvement of the UDOO platform. As the UDOO 274
computational resources are way fewer than the Mac computer used on this tests, we can 275
say that the improvement of 46.5% will allow Antescofo to work on the mini - computer 276

much faster and with better performance. 277

 278

 279

Figure 5.- Time profiler for the Anthèmes 2 score without Faust 280

 281

 282

Figure 6.- Time profiler for the Anthèmes 2 using Faust 283

10

 284

As the tests were run in a Mac platform, the part depending on the audio architecture could 285
not be compared. Because of this the profiling tests in the UDOO platform are still pendent 286
for the porpoise of profiling the real performance of the software with the DSP tools 287

embedded. However, the present results are valuable and represents a guaranty that using 288
Faust as DSP instead of using a message passing system in Max and PureData hosts 289
environments is better in terms of the computational power needed to achieve the signal 290

processing. 291

With these results, MUTANT started to develop a new version of the Antescofo scheduling 292
algorithm optimized exclusively for the UDOO platform. The results of this article showed 293
that the UDOO platform is powerful enough to run a standalone version of Antescofo, but 294

the scheduling algorithms were not optimal for this platform. With the integration of the 295

new scheduling algorithm and the DSP tools in Antescofo, the potential of the software 296

grows and reaches a new platform, which also allows, for its size and potentiality, to 297

preserve the interactive musical pieces through time. 298

 299
4. Conclusions 300
 301

As a conclusion of the work presented in this article, it can be said that the use of modular 302
DSP tools embedded in Antescofo optimizes the performance of the signal processing in 303

terms of computational power needed in about 46%. This result can be used as a part of the 304
optimization for the version that MUTANT team is going to develop for the UDOO 305
platform. This improvement will allow Antescofo software to run in a standalone version, 306

creating this way a new developing platform for composers of interactive music. 307

Also, the use of modular DSP tools in Antescofo, allows the composer to create his own 308
effects and sounds, having also the freedom to change the link network dynamically during 309

performance. This can be done inside the very Antescofo score and it integrates pre-310
existing popular DSP tools such as Faust, Fluidsynth, Csound and Supercollider. These 311
DSP tools creates the possibility to the composer to write sophisticated effects in real time, 312

but most important: maintaining the same language and the same score. 313

Another benefit of using this new version of Antescofo is the fact that it will allow the 314
musical community and contemporary musicians to preserve their pieces through time. The 315

UDOO platform is small, independent and powerful enough to be loaded with a standalone 316
version of Antescofo and the scores and be saved for years. It creates the unique possibility 317

to play the pieces just plugging in a microphone and playing the human part of the score. 318

Finally, the profiling tests of the performance of the different Faust effects in the Anthèmes 319
2 score in a Mac environment shows a first approach to the optimization of the UDOO 320
platform and the Antescofo software. However, when the other DSP tools were 321
implemented and the re-scheduling process of Antescofo for UDOO is done, more profiling 322

tests must be done to show more accurate results on the UDOO platform optimization. 323

 324

11

Acknowledgments 325
 326
I would like to thank to all the people that in one way or another contributed to earn the 327

scholarship that allowed me to go to the IRCAM, for this internship. In particular to my 328
family, for all the support; Pierre Donat-Bouillud, for all the help and patience; everyone in 329
MUTANT Team, for the amazing experience; and all my friends. 330

 331

References 332
 333
1. CONT, Arshia. GIAVITTO, Jean-Louis. ECHEVESTE, José. 2015. Antescofo, a not-so-334
short introduction to version 0.x. Available at 335
http://support.ircam.fr/docs/Antescofo/AntescofoReference.pdf 336
2. PUCKETTE, Miller. Pd Documentation. Available at 337

http://puredata.info/docs/manuals/pd 338
3. GAUDRAIN, Etienne. ORLAREY, Yann. 2003. A Faust Tutorial. Available at 339

http://faust.grame.fr/images/faust-doc/Faust_tutorial.pdf 340

4. FRIGO, Matteo. JOHNSON, Steven. 2012. FFTW. Available at 341

http://www.fftw.org/fftw3.pdf 342

 343

Glossary 344
 345

Machine Listening: Technique to obtain meaningful information from audio signals using 346

software and hardware. 347

Pitch Tracking: Technique to obtain the pitch or the value in frequency or tones of the 348

fundamental sound reproduced at every moment in an audio signal. 349

Beat Tracking: Technique to obtain the tempo in beats per minute at every moment in an 350
audio signal. 351

Score: The file that contains all the musical events and actions of a musical piece. 352

Patch: A sub-program used in software like PureData or Max MSP. 353

DSP: Digital signal processor. 354

System resources: Any physical or virtual component of limited availability within a 355

computer system. 356

Scheduling: Method by which work specified by some means is assigned to resources that 357

complete the work. 358

Click: Sound produced by a sound card when a process is not able to be processed in real 359

time. 360

 361

Scientific principle 362

http://support.ircam.fr/docs/Antescofo/AntescofoReference.pdf
http://puredata.info/docs/manuals/pd
http://faust.grame.fr/images/faust-doc/Faust_tutorial.pdf

12

 363

The scientific principle used for this article is based on increasing efficiency for both, 364
resource use and decrease of the execution time of methods and functions used to process 365

the sounds and effects. The change in the DSP chain architecture of Antescofo, from a 366
software in which the signals were processed in external patches by a message passing 367
system, to the integration of specialized modular DSP tools within the software allowed a 368
substantial increase in the runtime efficiency. The main argument for this is that by 369
integrating modular DSP tools, the architecture changed and the system became more 370

efficient in compiling, comparing to the previous message passing architecture. The use of 371
Faust and its on-the-fly compiler, allows the functions to be compiled at the time the score 372
is loaded into the system, and not at runtime. This increases the efficiency considerably. 373
 374
 375

 376

