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Abstract

In this paper, we consider Fisher-KPP reaction-diffusion models in periodic environ-
ments. We review some results on the questions of species persistence and propagation
of pulsating traveling waves. We study the role of the heterogeneities and the fragmen-
tation of the environment on the persistence and on the propagation speeds.

1 Introduction

This paper is concerned with the study of the qualitative properties and propagation phe-
nomena for solutions of reaction-diffusion equations of the type

∂u

∂t
−∇ · (D(x)∇u) = f(x, u), t > 0, x ∈ RN (1.1)

in the whole space RN with periodic coefficients. Such equations arise in various population
dynamics models in biology, ecology and genetics, see e.g. [9, 33, 44]. The unknown function u
stands for the density of a species and is always assumed to be nonnegative.

Throughout the paper, the matrix field D : RN →MN×N(R) is assumed to be symmetric,
of class C1,α(RN) with α > 0, and uniformly elliptic in the sense that

∃ ν > 0, ∀x ∈ RN , ∀ ξ ∈ RN ,
∑

1≤i,j≤N

Di,j(x) ξi ξj ≥ ν
∑

1≤i≤N

ξ2i . (1.2)

∗This work has been carried out in the framework of the Labex Archimède (ANR-11-LABX-0033) and
of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Gov-
ernment program managed by the French National Research Agency (ANR). The research leading to these
results has received funding from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP/2007-2013) / ERC Grant Agreement n.321186 - ReaDi - Reaction-Diffusion Equations,
Propagation and Modelling.
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The term ∇ · (D(x)∇u) corresponds to a diffusion term, which may be anisotropic. The
reaction term f : RN × [0,+∞) → R is assumed to be of class C0,α with respect to x ∈ RN

locally uniformly in u ∈ [0,+∞), and of class C1 with respect to u ∈ [0,+∞). Moreover, we
assume that the state 0 is a steady state, that large constants are supersolutions and that the
per capita growth rate is decreasing with respect to the density u, in the sense that{

f(x, 0) = 0 for all x ∈ RN ,

∃M > 0, f(x, u) ≤ 0 for all x ∈ RN and u ≥M
(1.3)

and

u 7→ f(x, u)

u
is decreasing in (0,+∞) for all x ∈ RN . (1.4)

We focus in this paper on the influence of periodic heterogeneities on the properties of the
solutions u of (1.1). Namely, the functions D and f(·, u) (for every u ≥ 0), are assumed to
be L-periodic with respect to x in the sense that there exists L = (L1, · · · , LN) ∈ (0,+∞)N

such that
D(·+ Liei) = D and f(·+ Liei, u) = f(·, u) in RN

for all 1 ≤ i ≤ N , where (ei)1≤i≤N denotes the canonical basis of RN .
The particular case N = 1, D(x) constant and f(x, u) = u(1−u) correspond to the logistic

model of Fisher [16] and Kolmogorov, Petrovsky and Piskunov [28]. Shigesada, Kawasaki and
Teramoto [44, 45] have considered the particular case f(x, u) = u (r(x)−γ(x)u) where r and γ
are C0,α(RN) periodic functions with minRN γ > 0.

2 Persistence

In this section, we study the asymptotic behavior at large time of the solutions of (1.1) with
bounded nonnegative initial conditions u0 which are not identically equal to zero. These con-
ditions on u0 are assumed throughout the paper. It follows then from the maximum principle
and the assumptions on f that, given such a u0, there exists a unique, classical, solution u in
(0,+∞) × RN , with 0 < u(t, x) ≤ max

(
M, ‖u0‖L∞(RN )

)
for all t > 0 and x ∈ RN . We are

interested in the asymptotic persistence or extinction of the population, in the following sense.
We say that a solution u of (1.1) tends to extinction if u(t, x) → 0 as t → +∞ uniformly
in x ∈ RN , and we say that u is asymptotically persistent if lim inft→+∞ ‖u(t, ·)‖L∞(RN ) > 0.
Actually, it will turn out (see Theorem 2.1 below) that, under the assumptions of Section 1, u
is asymptotically persistent if and only if it does not tend to extinction, that is if and only if
lim supt→+∞ ‖u(t, ·)‖L∞(RN ) > 0. In the case of persistence, an important question is to de-
termine the limit of u(t, x), if any, as t→ +∞. We will in particular focus on the influence of
the heterogeneities of the medium, that is the diffusion and reaction coefficients D(x), f(x, ·)
and the period L, on the extinction or persistence.

2.1 An analytic criterion for the persistence

The extinction or the persistence of the population turns out to depend strongly on the
stability of the steady state 0. The question of the stability of 0 is expressed in terms of
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the principal eigenvalue of the linearized equation around the state 0. Namely, it follows
from Krein-Rutman theory that there is a unique real number λ[D, r], called the principal
eigenvalue, for which there exists a (unique up to multiplication) function φ ∈ C2,α(RN),
called principal eigenfunction, solving{

−∇ · (D(x)∇φ)− r(x)φ = λ[D, r]φ in RN ,

φ is L-periodic, φ > 0 in RN ,
(2.1)

with r(x) = ∂f
∂u

(x, 0) denotes the derivative of f with respect to u at u = 0. Notice in
particular that, if r is equal to a constant r0, then φ is constant and λ[D, r0] = −r0. It turns
out that the extinction vs. persistence only depends on the sign of λ[D, r], as the following
result shows:

Theorem 2.1 [6] Assume that the diffusion matrix D satisfies (1.2) and that the function f
satisfies (1.3) and (1.4).

(i) (Persistence) If λ[D, r] < 0, then there exists a unique, classical, solution p of the
stationary problem

∇ · (D(x)∇p) + f(x, p(x)) = 0 in RN , p > 0 in RN , (2.2)

and this solution is actually L-periodic. Furthermore, the solutions u(t, x) of (1.1)
converge to p(x) as t→ +∞ locally uniformly in RN .

(ii) (Extinction) If λ[D, r] ≥ 0, then 0 is the only nonnegative stationary solution of (1.1)
and any solution u(t, x) of (1.1) converges to 0 as t→ +∞ uniformly in x ∈ RN .

This result gives a necessary and sufficient condition for the persistence, that is the nega-
tivity of the principal eigenvalue λ[D, r]. Roughly speaking, if the state 0 (where the species
is absent) is unstable (in the sense that λ[D, r] < 0), then the solution u cannot converge
to 0 at large time, and the converse also holds, whatever the (bounded) initial condition may
be. Furthermore, in the case of persistence, all solutions u of (1.1) converge locally uniformly
in x ∈ RN as t → +∞ to the same limiting state p(x), which turns out to periodic and
separated from 0. Actually, one of the difficult points in the proof of the uniqueness of p is to
show, by unsing some estimates on the principal eigenvalues of the linearized operator in large
balls with Dirichlet boundary conditions, that, if λ[D, r] < 0, any steady state p of (2.2) is
actually bounded from below by a positive constant (this point is not present in the proof of
similar results in bounded domains with various boundary conditions [1, 9]). This remarkably
simple criterion for persistence vs. extinction involves the spatial features of the environment
and the biological features of the species, but it is important to notice that the growth rate
only appears through its per capita limit r(x) at u = 0. Lastly, we mention that similar
results as in Theorem 2.1 have been obtained with formal arguments in periodic media with
piecewise constant coefficients [44].
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2.2 Effect of the heterogeneity and the fragmentation of the
medium

In this section, we use the criterion mentioned in Theorem 2.1 to study the role of the spatial
structure of the environment on species persistence. For the sake of simplicity, we assume
here that the diffusion matrix D is constant and equal to the identity matrix D = I and we
therefore only focus on the role of the intrinsic growth rate coefficient r. We set λ[r] = λ[I, r]
and we also point out that the variational formulation

λ[r] = min
φ∈H1

loc(RN )\{0}, φ is L-periodic

∫
C

|∇φ|2 − r φ2∫
C

φ2

(2.3)

holds as well for L∞(RN) L-periodic functions r, where C = [0, L1]×· · ·× [0, LN ] denotes the
periodicity cell.

Let us first compare an arbitrary medium with a homogeneous one where the growth rate
coefficient has the same average.

Theorem 2.2 There holds λ[r] ≤ λ[r] = −r, where r denotes the average of r:

r =
1

L1 × · · · × LN

∫
C

r(x) dx.

The proof is immediate, since on the one hand λ[r] ≤ −r by taking φ = 1 in (2.3) and,
on the other hand, λ[r] = −r as already noticed before Theorem 2.1. Despite its simplicity,
Theorem 2.2 has an interesting meaning: a heterogeneous environment gives better chance
for persistence than a homogeneous one with the same average. Furthermore, the chances for
persistence are all the higher as the repartition of the resources is unbalanced, in the following
sense.

Theorem 2.3 [6] If r ≥ 0 and r is not identically equal to 0, then λ[Ar] < 0 for all A > 0,
the map [0,+∞) 3 A 7→ λ[Ar] is decreasing and λ[Ar]→ −∞ as A→ +∞.

As an application, consider the case r = r + Ar1, where r1 has zero average and is not
constant. One has λ[r] = λ[r + Ar1] = −r + λ[Ar1]. If r < 0 and A = 0 (homogeneous
medium with a negative intrinsic growth rate), then λ[r] = −r > 0 and the population
tends to extinction. But Theorem 2.3 implies that λ[Ar1] → −∞ as A → +∞, whence
λ[r] = λ[r + Ar1] = −r + λ[Ar1] → −∞ as A → +∞. In other words, if the heterogeneities
have a large enough amplitude, then the population persists, even though the medium is
unfavorable in the average sense.

Remark 2.4 When r < 0, the map [0,+∞) 3 A 7→ λ[Ar] may or may not be monotone,
according to the profile of r. For instance, if r is equal to a negative constant r = r0 < 0,
then λ[Ar] = −Ar0 is increasing with respect to A. Consider now the case where r < 0
and maxRN r > 0. Then there exist δ > 0 and a non-empty ball B ⊂ C such that r ≥
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δ > 0 in B, whence λ[Ar] ≤ λD(−∆ − Ar,B) ≤ λD(−∆, B) − Aδ → −∞ as A → +∞,
where λD(−∆ − Ar,B) and λD(−∆, B) denote respectively the principal eigenvalues of the
operators −∆ − Ar and −∆ in B with Dirichlet boundary conditions on ∂B. But λ[0] = 0
(with constant eigenfunctions) and λ[Ar]/A→ −r > 0 as A→ 0+, after integration of (2.1)
with D = I and Ar instead of r. Therefore, the map A 7→ λ[Ar] is not monotone on [0,+∞)
if r < 0 and maxRN r > 0. Notice also that the map A 7→ λ[Ar] is always concave, due to the
variational formula (2.3).

Let us now study the influence of the location of the heterogeneities of the medium, when
they have a given average and even a given distribution. More precisely, for any L-periodic
function r ∈ L∞(RN), we denote µr : R→ [0,+∞) the distribution function of r, defined by

µr(t) =
∣∣∣{x ∈ C, r(x) > t

}∣∣∣,
where

∣∣E∣∣ denotes the Lebesgue measure of a measurable set E ⊂ RN . If two functions r
and r̃ have the same distribution functions µr = µr̃, then they have the same average and
equimeasurable superlevel sets, but the locations of these sets may be different. The goal of
the last part of this section is to see that if the resources are arranged in a special way, then the
chances for species persistence are better. More precisely, given any measurable bounded L-
periodic function r, the periodic symmetric decreasing Steiner rearrangement of r with respect
to the variable xi (with 1 ≤ i ≤ N) is the unique L-periodic measurable bounded function r∗i

which is symmetric with respect to the hyperplane {xi = Li/2}, nonincreasing with respect
to xi for Li/2 ≤ xi ≤ Li and such that, for almost every (x1, . . . , xi−1, xi+1, . . . , xN) ∈ RN−1

and for every t ∈ R, the sets {xi ∈ [0, Li], r(x) > t} and {xi ∈ [0, Li], r
∗i(x) > t} have the

same measure.

Theorem 2.5 [6] Under the above notations, one has λ[r∗i] ≤ λ[r].

The proof of this result mainly follows from the variational formula (2.3) and from stan-
dard Hardy-Littlewood and Polya-Szegö rearrangement inequalities. By performing several
consecutive Steiner rearrangements with respect to any variables, the principal eigenvalue
always decreases, in the sense that

λ[r∗i,∗j] ≤ λ[r∗i] ≤ λ[r].

Notice that, in general, r∗i,∗j 6= r∗j,∗i and λ[r∗i,∗j] 6= λ[r∗j,∗i].
As a particular example of these general properties, consider the case where the environ-

ment is binary in the sense that r takes only two values. More precisely, let us assume here
that there exists a measurable set C+ = C+(r) ⊂ C and two constants r− < r+ such that{

r(x) = r+ if x ∈ C+,

r(x) = r− if x ∈ C− = C \ C+,

and r is L-periodic. The set C+ corresponds to the favorable regions and the set C− to the
unfavorable ones. The distribution function of such a binary function r depends only on r± and
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on the proportion h = |C+|/|C| of favorable environment. For given r− < r+ and h ∈ (0, 1), it
is a natural question to look for an optimal habitat configuration, that is a binary L-periodic
function r taking values r±, having the given proportion h of favorable environment and
minimizing the principal eigenvalue λ[r] in this class. In dimension N = 1, the answer is
immediate and the optimal configuration is the one for which, up to shifts, C+ is an interval
of size hL1 (included in [0, L1]). The simple looking problem in higher dimensions N ≥ 2 is
actually quite intricate and it is still open. However, it is possible to prove that there exist
optimal configurations. Furthermore, up to shifts in space, these optimal configurations are
equal to their Steiner symmetrizations with respect to all variables xi and the favorable region
is connected and convex in all variables xi. Lastly, the optimal shapes for the optimal favorable
and unfavorable regions C± strongly depend on the amplitude r+− r− of the heterogeneities
of the growth rate r, and they are not always balls or slabs even if they look like balls or slabs:
we refer to [40] for further results in this direction and for enlightening numerical simulations.

Remark 2.6 For a diffusion matrix D and a function f satisfying the general assumptions
of Section 1, with r = ∂f

∂u
(·, 0), the formula (2.3) is replaced by

λ[D, r] = min
φ∈H1

loc(RN )\{0}, φ is L-periodic

∫
C

D∇φ · ∇φ− r φ2∫
C

φ2

.

In particular, the map B 7→ λ[BD, r] is nondecreasing on (0,+∞) and, for every B > 0,
there holds −maxRN r ≤ λ[BD, r] ≤ −r (by choosing φ = 1 for the upper inequality). It is
also easy to see that λ[BD, r] → −r as B → +∞. Indeed, consider any sequence (Bn)n∈N
of positive real numbers converging to +∞ and let φn be the principal eigenfunctions of the
operators −∇ · (BnD∇)− r with periodicity conditions, that is

−∇ · (BnD(x)∇φn)− r(x)φn = λ[BnD, r]φn in RN (2.4)

with φn > 0 in RN and φn is L-periodic. Up to normalization, one can assume without
loss of generality that ‖φn‖L2(C) =

√
|C| for all n ∈ N. By multiplying (2.4) by φn and

integrating over C, it follows that Bn

∫
C
D(x)∇φn · ∇φn −

∫
C
r(x)φ2

n = λ[BnD, r] |C|. Since
the sequences (λ[BnD, r])n∈N and (‖φn‖L2(C))n∈N are bounded and since Bn → +∞, one infers
from (1.2) that ‖∇φn‖L2(C) → 0 as n → +∞, whence φn → 1 as n → +∞ in L2(C) (and
thus in L1(C)) by Poincaré-Wirtinger inequality. Integrating (2.4) over C and passing to the
limit as n→ +∞ implies that λ[BnD, r]→ −r as n→ +∞.

3 Propagation

In this section, we go back to the reaction-diffusion equation (1.1) with periodic diffusion and
reaction coefficients D and f satisfying (1.2), (1.3) and (1.4), and we assume that λ[D, r] < 0.
In other words, from Theorem 2.1, there is a unique positive L-periodic solution p of (2.2)
and the solutions u(t, x) of (1.1) converge to p(x) locally uniformly in x ∈ RN as t → +∞.
We focus here on how and at which speed the steady state p(x) invades the unstable steady
state 0. We will study the influence of the heterogeneities and the fragmentation of the
medium on the propagation speeds of the pulsating fronts connecting 0 and p.
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3.1 Pulsating fronts

For a homogeneous equation of the type ut = D0uxx + f(u) with D0 > 0 being a positive
constant and f satisfying (1.3) and (1.4), a traveling front (moving to the right) is a solution
of the type u(t, x) = φ(x − ct) with φ(−∞) = M0 > φ > 0 = φ(+∞), where M0 denotes
the unique positive zero of f . In the moving frame with speed c to the right, a traveling
front u(t, x) = φ(x − ct) is invariant in time. Such fronts are known to exist if and only
if c ≥ 2

√
D0f ′(0) and they are stable with respect to some natural classes of perturbations,

see e.g. [8, 28, 29, 42, 46]. For heterogeneous equations such as (1.1) in periodic media,
standard traveling fronts do not exist in general and the notion of fronts is replaced by
the more general one of pulsating fronts [45]. For (1.1), in the case of the existence (and
uniqueness) of a periodic positive steady state p(x) of (2.2), a pulsating front connecting 0
and p is a solution of the type u(t, x) = φ(x ·e−ct, x) with c 6= 0, e is a unit vector (e ∈ SN−1),
and the function φ : R× RN → R satisfies{

φ(−∞, x) = p(x), φ(+∞, x) = 0 uniformly in x ∈ RN ,

φ(s, ·) is L-periodic in RN , for all s ∈ R.

Notice that, if u(t, x) = φ(x · e − ct, x) is a pulsating front, then, for every x ∈ RN , the
function t 7→ u(t, x+ cte) is in general quasi-periodic.

The following result states the existence and uniqueness of the pulsating fronts.

Theorem 3.1 [7, 24] Under the assumptions of Theorem 2.1 with λ[D, r] < 0, for every
unit vector e of RN , there exists a real number c∗D,r,e > 0 such that the pulsating fronts
u(t, x) = φc(x · e − ct, x) connecting 0 and p for (1.1) exist if and only if c ≥ c∗D,r,e. The
minimal speed c∗D,r,e is characterized by the formula

c∗D,r,e = min
λ>0

−kD,r,e,λ
λ

,

where kD,r,e,λ denotes the principal eigenvalue of the operator

LD,r,e,λψ = −∇·(D(x)∇ψ) + 2λ eD(x)∇ψ + [λ∇·(D(x)e)− λ2eD(x)e− r(x)]ψ

with L-periodicity conditions. Furthermore, for each fixed speed c ≥ c∗D,r,e, the pulsating
fronts u(t, x) = φc(x · e− ct, x) are increasing in time and unique up to shifts in time.

Notice in particular that, if D = D0 and r = r0 are constant, then, by uniqueness of the
principal eigenvalue, one has kD,r,e,λ = kD0,r0,e,λ = −λ2eD0e − r0 and c∗D,r,e = 2

√
(eD0e)r0.

We also refer to [2, 5, 20, 27, 31, 32, 47] for further existence, uniqueness and qualitative
results, to [34, 37, 38] for some results in space-time periodic media and [2, 5, 10, 15, 19, 26,
43, 48, 49, 50] for some existence and qualitative results with other types of nonlinearities or
various boundary conditions in periodic domains.

In the following stability result, for every speed c ≥ c∗D,r,e, we denote λD,r,e,c the smallest
root of the equation kD,r,e,λ + cλ = 0 and ψD,r,e,c a principal eigenfunction of the opera-
tor LD,r,e,λD,r,e,c

under L-periodicity conditions.
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Theorem 3.2 [24] Under the assumptions of Theorem 3.1, for each fixed speed c ≥ c∗D,r,e, the
pulsating fronts φc(x · e− ct, x) are stable in the following sense: there exists ε > 0 such that,
if the initial condition u0 of (1.1) satisfies 0 ≤ u0 ≤ p in RN ,

lim inf
σ→−∞

inf
x∈RN , x·e≤σ

(u0(x)− p(x)) > −ε

and u0(x) ∼ Ae−λD,r,e,cx·e ψD,r,e,c(x) (resp. u0(x) ∼ A (x · e) e−λD,r,e,cx·e ψD,r,e,c(x)) for
some A > 0 as x · e → +∞ in the case c > c∗D,r,e (resp. in the case c = c∗D,r,e), then
there is a real number τ such that the solution u of (1.1) with initial condition u0 satisfies

u(t, x)− φc(x · e− ct+ τ, x)→ 0 as t→ +∞ uniformly in x ∈ RN .

Actually, this result is equivalent to the fact that, if the initial condition u0 is sufficiently
close to p as x · e → −∞ and has the same exponential decay as a pulsating front with
speed c ≥ c∗D,r,e, then the solution u of (1.1) will converge to this front as t→ +∞ uniformly
in space. For further stability results and attractivity of the fronts with minimal speeds, we
refer to [10, 18, 23].

3.2 Speed of propagation: effect of the underlying medium

In this section, we analyze the effect of the environment on the propagation speeds c∗D,r,e, as
defined in the previous section. These minimal speeds are of great importance from the point
of view of the applications. Indeed, under the assumptions of Theorem 3.1, it is known [3,
17, 47] that, if u(t, x) solves (1.1) with a bounded compactly supported and nonzero initial
condition u0, then u spreads with a speed w∗D,r,e > 0 in every direction e ∈ SN−1, in the sense
that u(t, x + cte) → p(x) locally uniformly in x ∈ RN as t → +∞ for every 0 ≤ c < w∗D,r,e,
while u(t, x + cte) → 0 locally uniformly in x ∈ RN as t → +∞ for every c > w∗D,r,e,
where w∗D,r,e is given by

w∗D,r,e = min
e′∈SN−1, e′·e>0

c∗D,r,e′

e′ · e
.

In particular, in dimension 1, the spreading speeds w∗D,r,±1 coincide with the minimal
speeds c∗D,r,±1, which are equal since, for every λ, the operator LD,r,−1,λ is the adjoint of
the operator LD,r,1,λ.

In the following statements, we focus on the dependence of the minimal speeds c∗D,r,e with
respect to the diffusion and reaction rates, and similar statements can be obtained for the
spreading speeds w∗D,r,e. Let us first study the positive effect of the heterogeneities on the
propagation speeds, as a consequence of Theorems 2.2 and 3.1.

Theorem 3.3 [7] Assume that the diffusion D is the identity matrix I. Under the notations
of Theorem 2.2, if r > 0, then c∗I,r,e ≥ c∗I,r,e for every direction e ∈ SN−1. Furthermore, if r ≥ 0
and r 6≡ 0, then the speeds c∗I,Br,e are increasing with respect to B > 0, for every e ∈ SN−1.

Furthermore, the more aggregated the medium, the larger the speed, in the sense of the
following result.
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Theorem 3.4 [35] Under the assumptions of the previous theorem, in dimension N = 1,
there holds c∗I,r∗,±1 ≥ c∗I,r,±1, where r∗ denotes the periodic symmetric decreasing Steiner rear-
rangement of the function r.

We point out that the same statement does not hold in general in higher dimensions N ≥ 2,
see [35]. In dimension N = 1, another way to study the dependence of the propagation speeds
on the fragmentation of the medium is to analyze the role of the spatial period L = L1. We will
in particular consider the homogenization limit L → 0+ and the large scale limit L → +∞.
To do so, we fix some functions D and f satisfying the general assumptions of Section 1 and
being 1-periodic with respect to x ∈ R. For L > 0, we define

DL(x) = D
(x
L

)
and fL(x, u) = f

(x
L
, u
)

for all (x, u) ∈ R× [0,+∞).

We also set r(x) = ∂f
∂u

(x, 0) and rL(x) = r(x/L) = ∂fL
∂u

(x, 0). When L increases, the medium
becomes somehow less fragmented and, following the general observations mentioned in Sec-
tion 2.2 on the effect of fragmentation on species persistence, the pulsating fronts are expected
to move faster in less fragmented media.

Theorem 3.5 [12, 21, 22, 35] In dimension N = 1, if r > 0, then the function L 7→ c∗DL,rL,±1
is nondecreasing and bounded on (0,+∞). Furthermore,

c∗DL,rL,±1 → c∗0 := 2
√
DHr as L→ 0+,

where DH = 1/
(
1/D

)
is the harmonic mean of the diffusion coefficient D. Lastly,

c∗DL,rL,±1 → c∗∞ := min
λ≥F (R), λ>0

F−1(λ)

λ
as L→ +∞,

where F−1 is the reciprocal of the function F : [R,∞)→ [F (R),∞) defined by:

F (s) =

∫ 1

0

√
s− r(x)

D(x)
dx for all s ≥ R := max

x∈[0,1]
r(x).

These results show the different roles of the diffusion and growth rate coefficients in
heterogeneous media and they provide some quantitative estimates of the influence of the
spatial period, which can be measured by the ratio c∗∞/c

∗
0 ≥ 1. For instance, if D = D0

is constant and r(x) = r+ > 0 on (0, 1/2) and r(x) = 0 on (1/2, 1) (the function r is
not continuous in this case, but such a profile can be approximated by smooth functions,
for which the limiting speeds c∗0 and c∗∞ are close to the ones obtained in Theorem 3.5),
then c∗0 =

√
2D0r+, while c∗∞ = (8/9)

√
3D0r+, whence c∗∞ = (4

√
6/9) × c∗0, independently

of D0 and r+. Let us consider another example: if r = r0 > 0 is constant, then c∗0 = 2
√
DHr0

and c∗∞ = 2(
√
D)H
√
r0, where (

√
D)H denotes the harmonic mean of

√
D. In this case, the

ratio c∗∞/c
∗
0 = (

√
D)H/

√
DH ≥ 1 measures the relative increase of the propagation speeds

between a homogenized medium and a slowly oscillating one. It can also be seen from Theo-
rem 3.5 (see [22]) that, in some sense, the minimal speeds are much more sensitive to small
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perturbations (in the L1(0, 1) sense) of the diffusion coefficients than to small perturbations
of the growth rate. Another interesting consequence of Theorem 3.5 is the derivation of an
equivalent of the propagation speed for large reaction terms: namely, under the assumptions
and notations of Theorem 3.5, one has, for each fixed L > 0, c∗DL,BrL,±1 ∼ c∗0×

√
B as B → 0+

and c∗DL,BrL,±1 ∼ c∗∞ ×
√
B as B → +∞. We also point out that more general results hold in

higher dimensions, see e.g. [11, 22, 35].
For further dependence results and optimal bounds for the propagation speeds in terms

of the diffusion and growth rate coefficients in periodic media, we refer to [5, 11, 30, 36].
Lastly, we mention that much work has been devoted to the study of the asymptotics of
propagation speeds for reaction-diffusion equations with large advection terms in periodic
media, see e.g. [4, 13, 14, 25, 39, 41, 51, 52].
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de la quantité de matière et son application à un problème biologique, Bull. Univ. Etat Moscou, Série
Intern. A 1 (1937), 1-26.

[29] K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov, J. Diff.
Eq. 59 (1985), 44-70.

[30] X. Liang, X. Lin, H. Matano, A variational problem associated with the minimal speed of travelling
waves for spatially periodic reaction-diffusion equations, Trans. Amer. Math. Soc. 362 (2010), 5605-
5633.

[31] X. Liang, X.Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with
applications, Comm. Pure Appl. Math. 60 (2007), 1-40.

[32] X. Liang, X.Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,
J. Funct. Anal. 259 (2010), 857-903.

11



[33] J.D. Murray, Mathematical Biology, Springer-Verlag, 2003.

[34] G. Nadin, Travelling fronts in space-time periodic media, J. Math. Pures Appl. 92 (2009), 232-262.

[35] G. Nadin, The effect of Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric
operator, SIAM J. Math. Anal. 41 (2010), 2388-2406.

[36] G. Nadin, Some dependence results between the spreading speed and the coefficients of the space-time
periodic Fisher-KPP equation, Europ. J. Appl. Math. 22 (2011), 169-185.

[37] J. Nolen, M. Rudd, J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and
variational principle for propagation speeds, Dyn. Part. Diff. Eq. 2 (2005), 1-24.

[38] J. Nolen, J. Xin, Existence of KPP type fronts in space-time periodic shear flows and a study of
minimal speeds based on variational principle, Disc. Cont. Dyn. Syst. 13 (2005), 1217-1234.

[39] A. Novikov, L. Ryzhik, Boundary layers and KPP fronts in a cellular flow, Arch. Ration. Mech.
Anal. 184 (2007), 23-48.

[40] L. Roques, F. Hamel, Mathematical analysis of the optimal habitat configurations for species persis-
tence, Math. Biosciences 210 (2007), 34-59.
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