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I) Introduction

Introduction
Using previous works on the second geometrization, we can now submit a
method to use xTAN formalisme in order to study theoretically networks
(xTAN means extended tensorial analysis of networks). A first application
consists in the identification of risk in electromagnetic compatibility. But
on this example, many others can be developed in various jobs including
multiphysic ones. We detail the methodology through each of its steps :
network graphs, equations, jacobian matrix and Kron’s metric, linked pa-
rametrized surface, metric and sources, susceptibility spectrum, excitation
spectrum and finally analysis.



I) Introduction
Introduction
First tests to use geometry in network analysis was stopped. Due to formu-
lation too much far from the available geometry theory, the Kron’s initial
equations do not give solution for this objective. Second geometrization
encloses Kron’s equations in standard differential geometry. As a conse-
quence, it becomes possible to study networks under a general topological
approach. We present here how to reach this kind of system of equations.
After what we can submit a methodology that can be applied for all kind of
problems. Finally we give some first simple examples in order to show how
the technique can be used to analyse theoretically networks. In conclusion
we speak of future works.
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II) Basic mechanism to go from Kron’s relations to xTAN
Graphs and equations
We won’t develop here the Kron’s method. Many publications are today
available, including its specialization for EMC (MKME method : modified
Kron’s method for EMC which enclosed generalized interactions as chords).
We suppose known the formalism. It leads, once the problem defined using
graphs, to a group of equations giving the system behaviors.

Function Ψ
This system has the form :

Ψ = {ψk(x1, x2, ..., xk) = ek} (1)

Variables of this function, are generalized variables in multiphysics, like
currents, locations, speeds, temperatures. ek are sources of energy that can
be included in the functions. These equations are established from graphs.
When various physics are involved, each graph is usually associated with
variables notations like In for electrical currents, Ti for temperatures, etc.
All are grouped in an unique vector leading to system (1).
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II) Basic mechanism to go from Kron’s relations to xTAN
Parametrized hupersurface
We can see system (1) as a parametrized surface. A jacobian matrix can
be construct based on :

J = [Jkµ] = [∂ψk
∂xµ ] (2)

The jacobian matrix can be seen as a covector of the basic vector associated
with the plane TpS locally tangent to the hypersurface J .

C. Writing ψ with J
In order to obtain equations of ψ using J , we must add at least derivative
components . More, J can include components that doesn’t appear directly
in ψ . If ψ can be writen :

Rµνxν + Lµνxν = eµ (3)

Let J = R + ζ, we can obtain ψ through :
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G coming from J
We can introduce metric tensor by tangent vectors b to hypersurface
ψ :Gµν = (bµ, bν) With (2) this leads to :

G = JT J (7)

This is the fundamental result giving the key to write ? with G (4) become :

Gσνxmu = JT
σν − (Lµν − ζµν)xν (8)

L is the metric in the Kron’s formalism and G the one in the last evolution
of xTAN formalism. This last one is always symetric and in compliance with
riemanian’s concept. To study theoretically the network means to study G
and its variation depending on time parameter and x values.
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Manifold representation
Each ψ can be seen as a manifold (or sub-manifold) if associated with
domains giving the limit values for x . If G is fixed whatever x values, it
means that the abstract space of variables(including currents) is flat and to
study its frontiers, it’s only necessary to study the extreme values. If the
abstract space of variables is curved, the situation becomes more complex.

Flat space
If the abstract space of variables x is flat, the tangent plane TpS stills the
same whatever x values. So if we look to some vector projection on TpS
given by :

a = ak .bk (9)

As there is a single plane for all the variables space, it means that we can
consider it as an image of the space. The scalar product :

〈a, bk〉 = akGkq (10)

is the source covector
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Flat space
Our problem in system reliability is to detect if the system states x can
reach values where the system can break down (or is simply be disturbed
in electromagnetic compatibility). Major one comes from the fact that to
external excitation, the system has its own inertia given by matrix L for
which amplitudes depends on time variation. To evaluate the domains
covered by the system functions, a solution can be to consider particular
waveforms : the most severe that the system can accept. These are both
fast rise time waveform and long time durations to combine high dynamic
and high power signals. Another method can be to make a statistic on
all the signals used by the system. At each time step, the mean value can
be assign to each variable x or the mean value plus the deviation one.Finally
a third technique previously submit could be to give each x a value
taken from a set of possible ones recorded in all the functional life of the
system.



Curved Space
A curved space is characterized by the fact that the metric G is not
constant. Computing derivative give two terms :

∂xk (Gkqaq) = Gkqaq + Gkq∂xk aq (11)

The metric variations are defined using first :

bµν = ∂xµbν (12)

For example if : (b1 = (2x1, 0, 0) we obtain b11 = (2, 0, 0) so : G11 = 4(x1)2

We have Christoffel’s coefficients given by the metric and with : Γ11,1 = 4x1

we obtain :
∂

∂x1 G11 = 2Γ11,1 (13)

which can be generalized. This allows to compute to study the system va-
riation for various domains of x variables.
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IV) Some applications :I
covariant derivative, riemmannian connection
To better explain our approaches we use a simple circuit made of three
branches. Whatever the real components of the circuit considered, the
graph presented figure 1 stills the same This single network (R) has two
nodes (N), three branches (B) and the number of meshes (M) is given
by : M = B − N + R. In this case, the number of meshes is 2.

Figure: Simple example



IV) Some applications : I
A. Kron method
The Krons method consists in solving the circuit in the mesh space, using
his formalism. Using the circuit described figure 1, we can construct through
Krons formalism [2] the impedance matrix in themesh space given by :

Z =
(

A + B −B
−B B + C

)
(14)

Staying without current source (no use of the spaning tree) but only with
a mesh source on mash one,the circuit is now represented by the system of
equations with k = 1, 2 :

Ek =
∑

q
Ziq iq (15)

To complete these two equations we can define a transfer function through
V3 = Bi2. The parametrized surface can be link with the function
(E1,E2,V3), each function depending on i1, i2. The base vectors can be
defined by :



IV) Some applications : I
A. Kron method
The Krons method consists in solving the circuit in the mesh space, using
his formalism. Using the circuit described figure 1, we can construct through
Krons formalism [2] the impedance matrix in themesh space given by :

Z =
(

A + B −B
−B B + C

)
(14)

Staying without current source (no use of the spaning tree) but only with
a mesh source on mash one,the circuit is now represented by the system of
equations with k = 1, 2 :

Ek =
∑

q
Ziq iq (15)

To complete these two equations we can define a transfer function through
V3 = Bi2. The parametrized surface can be link with the function
(E1,E2,V3), each function depending on i1, i2. The base vectors can be
defined by :



IV) Some applications : I

First fundamental form
To complete these two equations we can define a transfer function through
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(E1,E2,V3), each function depending on i1, i2. The base vectors can be
defined by :

b1 = (A + B,−B, 0)
b2 = (−B,B + C ,BC)
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With this, the metric Gij is given by :
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A2 + 2B2 + 2AB −2B2 + AB + BC
−(2B2 + AB + BC) 3B2 + C2 + BC

)
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IV) Some applications : I
Second fundamental form
The two vectors b1 and b2 allow to define a normal vector to the mobile
tangential surface TpS. Its defined by :

n = b1 × b2
‖b1 × b2‖

n = (−B2,B(A + B), (A + B(B + C)− B2

B4 + (B(A + B)2 + ((A + B)(A + C)− B2)2

(18)

With n we can compute the second fundamental form. First step is to
compute the vectors bqk with :

bqk =
∂bq

∂ik
(19)

but until b1 or b2 depends on i1 or i2, all bqk are equal to zero. It means that
only circuits using the Krons formalism for the mesh space where the currents
are involved in the impedance function can create a second fundamental
form and as a consequence, a curvature of the space.
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Some applications : II
Current depending impedance functions
If the impedance depends on the currents, something like z = ai , the
product zi has for derivative 2ai, and so, the b11 vector may have for value
a which is different from zero. To generalize the approach we start from a
simple graph made of one mesh but with two sources : one electromotive
force on the mesh and one current source applied on the two nodes of
the mesh. By this graph, we study a complete space as KRON consi-
der it [2]. Figure 2 shows this circuit and both mesh and nodes pair currents.

Figure: Mesh
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Some applications : II
example
The connexion between edges 1 and 2 and the mesh and nodes pair currents
Q and J is defined by the direction choosen for the currents. It gives the
connection :

C =
(

1 1
1 0

)
(20)

The direct summation of the edge impedances gives the matrix :

Z =
(

a 0
0 b

)
(21)

In the mesh space we can define :

U = CT ZC =
(

a + b a
a a

)
(22)
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Some applications : II
Mesh
It stills to define z(Q, J). We can define a general function z(Q, J) =
f (Q, J) : In this case we can define a new basis for tangent plane given
by :

b1 = (a + b, a, ∂f
∂Q )

b2 = (a + b, a, ∂f
∂J )

(23)

The metric is immediately given by :

G =
(

(a + b)2 + a2 + ( ∂f
∂Q )2 a(a + b) + a2 + ∂f

∂Q
∂f
∂J

a(a + b) + a2 + ∂f
∂Q

∂f
∂J 2a2 + ( ∂f

∂J )2

)
(24)

by this way we can introduce the curvature by the non vanishing com-
ponent of the second fundamental form :
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Some applications : II
By this way we can introduce the curvature by the non vanishing com-
ponent of the second fundamental form :

b11 = (0, 0, ∂
2f

∂Q2 )

b12 = (0, 0, ∂2f
∂Q∂J )

b21 = (0, 0, ∂2f
∂Q∂J )

b22 = (0, 0, ∂
2f
∂J2 )

(25)

Due to the bqk components, the second fundamental form h is defined by :

hqk = 〈bqk , n〉 = b2
√
〈bqk , bqk〉 (26)
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Conclusion

Future works will consist in studying the various manifolds obtained under
each kind of system and associated networks. Understanding their geo-
metry, we may find global approach to demonstrate in which cases they are
stable or unstable, when the risk is raised, etc. About the evolution aspect,
the work consists in understanding how the manifolds change depending on
the human factors, and how the risk can appear after some steps of evo-
lution. Global idea and approach is to go further in geometrization compare
to previous works.
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