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Abstract. Most imperative languages only offer arrays as “first-class” data structures.

Other data structures, especially recursive data structures such as trees, have to be ma-

nipulated through explicitly management of memory. On the other hand, recursion in

the flow of control also is an open problem in automatic parallelization. To help and

solve this problem, this paper proposes a data flow analysis for both data and control

recursive structures.
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1 Introduction

Data structures in imperative languages are in general of little variety. In most cases, such

structures are arrays, records and unions of basic types. The advantage of such restrictions

is that the the compiler can construct a finite representation of data structures. When pos-

sibly infinite data structures are to be used, most imperative languages rely on pointers and

dynamic memory allocation. For instance, a binary tree can be expressed and manipulated us-

ing a record of one datum and two pointers. This record has finite size, easing the work of the

compiler (and of the compiler writer). Of course, there are languages which offer recursive

data structures without explicit manipulation of memory. Most logic or functional languages

do so. As an example of imperative language, see for instance CLU [1]. However, we be-

lieve most languages do not provide this feature because of the lack of suitable compile-time

analyses. The aim of this paper is to report preliminary results on the data flow analysis of

imperative languages offering both recursive control and recursive data structures. Section 2

defines our program model and introduce a small toy language. Section 3 describes our data

flow analysis. Section 4 gives two extended examples.

2 The Source Language

We present below a subset of LEGS [2], a toy language that allows to cleanly define data

and control recursive structures. It is enough here to say that LEGS embodies restrictions and

assumptions we have had to make on the way recursive structures are defined and handled.

(See Section3.1.)

2.1 Defining Recursive Data Structures

Let E by a finite alphabet and ε the empty word. To each word in the language corresponds an

element of the data structure. In this paper, we only consider two classes of languages on E:



those where concatenation is the usual one, and those where concatenation is commutative.

(We will say that the data structure itself is commutative or not.) For instance, if E = {l,r},

then a non commutative concatenation labels the nodes of a binary tree. Otherwise, if l.r = r.l,
then an “array” is described.

2.2 Recursive Control Structure

Recursive control is expressed by (possibly nested) explore constructs, each consisting of

three parts: labels to recursive calls, a predicate P controlling the recursion, and a body. State-

ments in the body are of two kinds: recursive calls and “regular” statements (assignments, I/O,

etc.). Statements of both kind may be arbitrarily mixed and are separated by a semicolon. All

statements are labeled. Recursive calls are done by key word recurse.

The main benefit of this construction, when compared to guarded recursive calls, is that

the execution of the body occurs if and only if the predicate of the explore holds. (Consider a

simple recursive function, say f (x) = if x = 0 then 0else f (x−2). Deriving that f is defined

for even integers already needs some semantical analysis: an issue we wanted to avoid here.)

Definitions The set of assignment labels {S1, . . . ,Sn} is denoted by STMTS. The set of labels

of recursive calls in all explore constructs is denoted by LABELS (= {C1, . . . ,Cn}). We also

define UP = {C1
−1, . . . ,Cn

−1}, i.e., the set of inverses of recursive call labels. Any execution

of an assignment can thus be uniquely labeled by a word in LABELS
∗.STMTS. Such a word is

called a control word.

Since a statement is a static object (a “line” in the program), we call operations the (run-

time) instances of statements. Statements are labeled in the program text. Labeling operations

can be done using a pair 〈S,w〉, where w is the control word.

The textual order on labels is denoted by ✁. For instance b✁S✁f in Figure 2. The order in

which statements are executed is thus simply given by the usual lexicographic order, denoted

≪, on LABELS
∗.STMTS. Let w,w′ be two words labelling instances of Statements S and S′,

respectively. (So, w ∈ LABELS
∗.S and w′ ∈ LABELS

∗.S′4.) Thus: 〈S′,w′〉 ≺ 〈S,w〉 ≡ w′ ≪ w.

A formal definition of the order is:

w′ ≪ w ≡ ∃u ∈ LABELS
∗, (1)

((∃x ∈ LABELS and ∃v ∈ LABELS
∗.S) or (x = S and v = ε)) ,

((

∃x′ ∈ LABELS and ∃v′ ∈ LABELS
∗.S′
)

or
(

x′ = S′ and v′ = ε
))

,

w = u.x.v, w′ = u.x′.v′, and x′✁ x

2.3 Accessing Elements of Data Structures

To access an element of a data structure, the name of the structure is followed, between brack-

ets, by a word in the language of the data structure: structure [ access word ]. access word

has to be the image of the current control word, say w, by a substitution σ. This image is

denoted by wσ. A substitution has the intuitive usual syntax, i.e. {x/a,y/ab} is written as

{x/a,y/ab}. Notice that letters which do not appear in the substitution are implicitly re-

placed by ε, since the letters in the “subscripting” word have to belong to the language de-

scribing the data structure. Figures 1 and 2 give two examples whose data flow analyses will

4 Note that there is some redundancy in this notation since the control word of S includes exactly one

S, at the very last position. The definition of order is still valid when S = S′.



be derived in following sections. The former is an exploration of a binary tree. The latter is a

recursive program over an array-like data structure (and actually an excerpt from a program

to recursive sort an array).

explore L while P(#L) {

explore R while #R < q {

S: tree[{L/l}.{R/r}] := tree[{L/l}.lˆ-1.{R/r}];

R: recurse; }

L: recurse; }

Fig. 1. Example LEGS program. tree is a binary tree-shaped data structure described by the language

on {l,r}. P is some affine predicate.

explore f, b while #f + #b < N { int A[ K ] ;

b : recurse ; F(g,p) begin

S: A[{ f/u, b/uˆ(-1)}] := if(p<N) then F(g-1,p+1) ;

A[{ f/u, b/uˆ(-1)} . uˆ(-1)]; A[g] := A[g-1] ;

f : recurse ; if(p<N) then F(g+1,p+1)

} end

A is a one-dimensional, possibly infinite, data structure, defined on alphabet {u} (so, it is a list). The

LEGS program above on the left is equivalent to the pseudo-Pascal program on the right (where the

initial call is F(0,0)), the difference being that parameter K has to be given a value in Pascal.

Fig. 2. Example LEGS program.

3 Data Flow Analysis

The purpose of data flow analysis is to find, for any read in a given operation, which previous

write produced the read value.

Let S (S′) be a statement reading (writing into) data structure A using substitution σ (σ′),

and whose control word is w (w′). The fact that memory cells accessed by 〈S,w〉 and 〈S′,w′〉
are the same is denoted by A[ wσ ]:=:A[ w′σ′ ].

So, for any instance 〈S,w〉 of Statement S, we are looking for the last instance w′ of S′

that wrote into A[ wσ ], i.e, such that:

A[ wσ ]:=:A[ w′σ′ ] ⇔ wσ = w′σ′ (2)

〈S′,w′〉 is then called the source of the read in 〈S,w〉.
Our framework for data flow analysis, first developed by Feautrier[3], consists in two

steps. For a given statement S:



– Construct the set of instances of S′ that are possible sources of 〈S,w〉. This set QS′S(w)
5

is built from all operations 〈S′,w′〉 such that: (1) 〈S′,w′〉 is actually executed (2) 〈S′,w′〉
writes into the memory cell that 〈S,w〉 reads, and (3) 〈S′,w′〉 executes before 〈S,w〉,
written 〈S′,w′〉 ≺ 〈S,w〉. I.e., QS′S(w) = {w′ | P (w′),(2),w′ ≪ w}.

– The source is KS′S(w) = max≪(QS′S(w)).

It may be the case that the source does not exist. KS′S(w) is then by definition equal to the

undefined operation ⊥. By convention, ⊥ is the earliest operation in the program, i.e.,

∀S,∀w, ⊥≺ 〈S,w〉 ∨ 〈S,w〉=⊥. (3)

For technical reasons, we cannot handle directly the disjunction in the definition (1) of

w′ ≪ w. So, we “split” QS′S(w) into n subsets of possible sources Q1
S′S(w), . . . ,Q

n
S′S(w) ac-

cording to each disjunct. We solve them in turn, the results being K1
S′S

(w),..,Kn
S′S

(w). Each

Ki
S′S

(w), 1 ≤ i ≤ n, is a nested conditional whose predicates depend on w and whose leaves

include the maximum element according to order ≺. Notice that this order is strict.

We then combine the intermediate results in any order, using rules similar to those given

in [3]: two intermediate results are merged by plugging one of them at the other’s leaves.

Leaves are equal to the lexicographical maximum of the two corresponding leaves. Leaves

governed by contradictory predicates are dismissed. Obviously, this phase has to be repeated

for all possible statements S′, and the intermediate results have to be combined.

3.1 Program Model: Restrictions on Input Programs

Let #l(w) denote the number of occurrences of letter l in word w. In this preliminary study

of data flow analyses for regular structures, we assume the following restriction on the input

program:

Recursion Predicate Let w be a control word on {C1, . . . ,Cn}. Then, we restrict ourselves

to predicates P of explore that are conjunctions of affine (in)equalities in the number of

occurrences of labels of LABELS in control words. Notice that predicate P does not have

to be a function of recursion depth.

Substitutions Substitutions are restricted to mappings from one letter (of the language of

control words) to a word (in the language of the data structure).

The Word Problem Finding the elements in QS′S(w) requires to check that A[ wσ ]:=:A[

w′σ′ ], i.e. that wσ = w′σ′. Checking that two words are equal, known as “the word

problem”, is undecidable. We thus restricted ourselves to words for which a normal form

can be defined.

3.2 Numbered Occurrence Languages

The pumping [ei1
1 , . . . ,e

id
d ] of an alphabet Σ = {e1, . . . ,ed} by a mapping of Σ into Z which

maps e j into i j is the language built of all words containing exactly i j occurrences of e j, for

all j. An affine parametrized pumpings, denoted by

[ei1
1 , . . . ,e

id
d ]

A(i1, . . . , id)

5 When clear from the context, both S and S′ will be dropped.



, is the union of all pumpings such that parameters i1, . . . , id satisfy the system A of affine

(in)equalities. The inverse of a pumping P has no sense by itself but we define the notation

w.P−1, where w is a word as the set of prefixes of w which corresponding suffixes are elements

of P. P−1 can be seen either as a “selective” back space over w, or as a back space “recording”

what has been erased.

A pumping is finite if the corresponding language is finite. This can be checked statically

by checking that upper bounds on all parameters exist.

More generally, a numbered occurrence language, NOL, is given by p words M1..Mp

(possibly empty), p− 1 pumpings (or pumping inverses) P1..Pp−1, and a conjunction A of

affine (in)equalities. An NOL is denoted by

L =
M1.P1. · · · .Mp−1.Pp−1.Mp

A
.

(Notice that several pumpings in an NOL may share integer parameters that are constrained

by A.) A simple NOL has no pumping inverses.

Lemma 1. If predicate P controlling the explore is affine (cf Section3.1) and if the data

structure is commutative, then any subset of possible sources Q
j

S′S
(for any j) is a NOL.

Proof. Let wσ and w′σ′ be the two words defined in (2). Since the structure is commutative,

both words have a normal form, which are wσ= e
#e1

(wσ)

1 . . .e
#ed

(wσ)

d and w′σ′= e
#e1

(w′σ′)

1 . . .e
#ed

(w′σ′)

d ,

respectively. These normal forms are equal iff:

d∧

i=1

#ei
(wσ) = #ei

(w′σ′) (4)

Thus, due to (1), we have Q
j

S′S
= w.v−1.x−1.x′.v′

P (w′) ∧ (4) , hence the lemma.

In the case of non commutative structures, sets of possible sources will be approximated

using NOLs. This clearly implies that our data flow analysis may yield imprecise (but always

correct) results.

Computing Lexicographical Maxima on Simple NOLs Given a word M and a pumping P

on alphabet {C1, ..Cn}, computing the lexicographical maximum of the words M.P is done as

follows:

– Change of variables: let x1, ..xn be the parameters of letter of the alphabet in P. Each xi

may be an (affine) function of the original parameters. (These new variables are ordered

in the same order as letters of the alphabet.)

– Compute the lexicographical maximum (un,un−1, ...u1) of (xn,xn−1, ...x1), under the (affine)

constraints A. This is exactly what a software such as PIP[4] was crafted for.

– The lexicographical maximum in M.P is Cun
n .C

un−1

n−1 ....C
u1
1

Example: What is the lexicographical maximum of
[an+i− j,b j ]

0≤i≤n,0≤ j≤n
? x1 = n+ i− j,x2 = j ⇒

lexmax(x2,x1) = (n,n)⇒ lexmax(M.P) = bn.an.



Lexicographical Order in the Presence of Pumping Inverses We believe that deciding the

order of two words w.P−1,w′.P′−1 is impossible in general, because the answer depends on

the actual values of w and w′, even when w = w′. However, some restricted results happened

to be sufficient in practice for most (simple) programs. In the case of binary recursion, we

have the following lemma:

Lemma 2. If C1 ✁S✁C2 (i.e., the recursion is inorder) then, for all w, φ > φ′ and β ≥ β′:

w.S−1.[C
φ
1 ,C

β
2 ]

−1
.C−1

1 .S ≪ w.S−1.[C
φ′

1 ,C
β′

2 ]
−1
.C−1

1 .S (5)

Proof. For both words to be defined, w must be such that

w = x.C1.[C
φ−φ′

1 ,C
β−β′

2 ].[C
φ′

1 ,C
β′

2 ].S,

which is equal to x.C1.[C
φ−φ′−1
1 ,C

β−β′

2 ].C1.[C
φ′

1 ,C
β′

2 ].S. Then x.S is the left-hand side expres-

sion in (5), and x.C1.[C
φ−φ′−1
1 ,C

β−β′

2 ].S the right-hand side. The first letters after the common

prefix are S and C1, respectively. Moreover, S✁C1, hence the lemma.

Similar lemmas for binary preorder and postorder recursion can easily be found.

Hard and Soft Bottoms As we said, QS′S(w) is split into subsets Q1
S′S, . . . ,Q

4
S′S in the course

of the computation. Each Q
j

S′S
may be empty for two reasons:

– P (w′) and (2) cannot (perhaps simultaneously) be satisfied. Then, all others Qi
S′S, i 6= j,

are empty too. We then know that the source of 〈S,w〉 cannot be an instance of S′, and all

the K
j

S′S
can be set to a hard bottom value, denoted by ⊥.

– The current disjunct of (1) is not compatible with P (w′) and/or (2). Even though Q
j

S′S
is

then empty, other subsets Qi
S′S may not. So, the maximal element K

j

S′S
of Q

j

S′S
should be

set to a soft bottom value, denoted by ⊥.

Notice that distinguishing hard bottoms from soft bottoms is not semantical, but speeds up

computations since this allows to prune impossible cases in other conditionals.

4 Examples

4.1 First Example

The set Q(w) of all previous instances w′ of S that wrote in the memory cell read by w is:

Q(w) = {w′ | P(#L(w
′)) ,#R(w

′)< q, (6)

w′{L/l}.{R/r}= w{L/l}.l−1.{R/r}, (7)

w′ ≪ w} (8)

(8) boils down to:

w′ ≪ w ⇔ #L(w
′)< #L(w) ∨ (#L(w

′) = #L(w)∧#R(w
′)< #R(w))

We split Q(w) into Q1(w) and Q2(w) according to the two disjuncts: Q1(w) = {w′ | (6)∧
(7)∧ #L(w

′) < #L(w)}. From (7), we learn that #R(w
′) has to be equal to #R(w). (And since



w exists, this proves that #R(w
′) < q holds.) Moreover, #L(w

′) has to be equal to #L(w)− 1,

implying #L(w) ≥ 1. (Otherwise, we get a hard bottom since this property does not depend

on the execution order.) Thus, the first intermediate result is:

K1(w) = if w = Li≥1.R j≥0 then Li−1.R j else ⊥ (9)

In a second step, Q2(w) = {w′ | (6)∧ (7)∧#L(w
′) = #L(w)∧#R(w

′)< #R(w)}. Equations (7)

and #L(w
′) = #L(w) cannot simultaneously be satisfied, so K2(w) = ⊥. Merging it with (9)

yields the final result:

max(K1(w),K2(w)) =

∣

∣

∣

∣

∣

∣

if w = Li≥1.R j≥0

then max
(

Li−1.R j,⊥
)

else max(⊥,⊥)
=

∣

∣

∣

∣

∣

∣

if w = Li≥1.R j≥0

then Li−1.R j

else ⊥

4.2 Second Example

We now study the program in Figure 2. Its simulated execution is given in Figure 4.2 so as to

give the reader an intuitive feeling of how the flow of data behaves. Let P(x) = # f (x)+#b(x).

Instance write read source source

(absolute addr) (relative address)

bbbS u−3 u−4 ⊥ ⊥
bbS u−2 u−3 bbbS w.b.S
bb f S u−1 u−2 bbS w. f−1.S
bS u−1 u−2 bbS w.b.S
b f bS u−1 u−2 bbS w.b−1. f−1.b.S
b f S ε u−1 b f bS w.b.S
b f f S u ε b f S w. f−1.S
S ε u−1 b f bS w.b f b.S
f bbS u−1 u−2 bbS w.b−2. f−1.b2.S
f bS ε u−1 f bbS w.b.S
f b f S u ε f bS w. f−1.S
f S u ε f bS w.b.S
f f bS u ε f bS w.b−1. f−1.b.S
f f S u2 u f f bS w.b.S
f f f S u3 u2 f f S w. f−1.S

Fig. 3. Simulated execution for N = 4.

Set of Possible Sources The set Q(w) of all previous instances w′ of S that wrote in the

memory cell read by w is:

Q(w) = {w′ | # f (w
′)+#b(w

′)< N, (10)

# f (w
′)−#b(w

′) = # f (w)−#b(w)−1, (11)

w′ ≪ w} (12)



Thanks to (1), (12) is equivalent to:

(w′ = x.b.y′.S,w = x.S) ∨ (w′ = x.b.y′.S,w = x. f .y.S) ∨ (w′ = x.S,w = x. f .y.S) (13)

where x,y,y′ are in LABELS
∗. (10) is the existence predicate, (11) is the conflict predicate, i.e.

the read element is the same as the one written into. We split Q(w) according to the disjuncts

in (13).

First Disjunct in (13)

Q1(w) = {w′ | (10),(11),w′ = w.S−1.b.y′.S} (14)

This is a simple NOL. (10) and (14) imply P(w)< N −1, otherwise, w′ =⊥. From (11) and

(14), we have # f (y
′)− 1− #b(y

′) = −1 ⇔ # f (y
′) = #b(y

′). Let a be the number of f ’s and

b’s in y′ (a = # f (y
′) = #b(y

′)). From (10) and (14): # f (w)+ 0+ a+ #b(w)+ 1+ a < N ⇔
P(w)+1+2a < N. Thus:

Q1(w) =

∣

∣

∣

∣

∣

∣

∣

if P(w)< N −1

then w.S−1.b. [ f a,ba]
P(w)+1+2a<N

.S

else /0

(15)

Let a = max
{

x

∣

∣

∣
x ∈ Z ∧ x < N−P(w)−1

2

}

. Then:

K1(w) = if P(w)< N −1 then w.S−1.b. f a.ba.Selse ⊥ (16)

Second Disjunct in (13) Q2(w) = {w′ | (10),(11),w′ = x.b.y′.S,w = x. f .y.S}. w = x. f .y.S
implies that w must contain at least one f . Moreover, w′ = w.S−1.y−1. f−1.b.y′.S. Thus, we

have to consider the set of all w.S−1.UP
∗. f−1:

Q2(w) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if w = b∗.S
then /0

else







w′

∣

∣

∣

∣

∣

∣

# f (w
′)+#b(w

′)< N,
# f (w

′)−#b(w
′) = # f (w)−#b(w)−1,

w′ = w.S−1.UP∗. f−1.b.LABELS∗.S







Lemma 2 implies that the last executed element in this set is the one with rightmost applica-

tion of f−1. I.e., the last one has the following shape: w′ = w.S−1.b−k. f−1.b.y′.S, where k ≥ 0

is the greater value such that w = LABELS
∗. f . bk.S, and some word y′. (To see this, notice

that Lemma 2 implies that w.S−1. f−1. b−k. f−1.b.LABELS
∗.S ≪ w.S−1. f−1.b.LABELS

∗.S.)

Let F,B be the number of f ,b in y′. From (c): B−F = k−1.

K2(w) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if w = b∗.S
then ⊥

else

∣

∣

∣

∣

∣

∣

∣

if w = LABELS
∗. f .bk.S, k ≥ 0

then w.S−1.b−k. f−1.b. [ f F ,bB]
B−F=k−1,B+F<N+k−P(w) .S

else ⊥



Actually, we can’t have w 6= b∗.S∧w 6= LABELS
∗. f .bk.S, so the last leaf is impossible:

K2(w) =

∣

∣

∣

∣

∣

∣

∣

if w = b∗.S
then ⊥

else w.S−1.b−k. f−1.b. [ f F ,bB]
B−F=k−1,B+F<N+k−P(w) .S

(17)

Note that, in the second leaf, w has to have shape w = LABELS∗. f .bk.S, k ≥ 0. Moreover, this

leaf actually is a set. Even though this may mean some lack of precision in the analyis, this

set is guaranteed to include the maximum element of Q2(w) according to the lexicographical

order.

Third Disjunct in (13) Q3(w) : {w′ | (10),(11),w = w′.S−1. f .y.S}. Let F,B be the number

of f ,b in y, respectively. From (11), we know that w cannot be equal to b∗.S. (However, since

this is a property local to the current disjunct of the execution order, w = b∗.S yields a soft

bottom, not a hard one.) From w = w′.S−1. f .y.S and (11), # f (w
′)− #b(w

′) = # f (w
′)+ 1+

F −#b(w
′)−B ⇔ B−F = 0. Thus w has to be of the form: LABELS

∗. f .[ f i,bi].S. Hence:

K3(w) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if w = b∗.S
then ⊥

else

∣

∣

∣

∣

∣

∣

if w = LABELS
∗. f .[ f i,bi].S

then w.S−1.[ f i,bi]
−1
. f−1.S

else ⊥

(18)

where i is a non-negative integer (= B = F). Lemma 2 implies that i> j ⇒ w.S−1.[ f−i,b−i]. f−1.S≺
w.S−1.[ f− j,b− j]. f−1.S, which in turns implies that the maximum of w.S−1.[ f−i,b−i]. f−1.S
is given by the smallest possible i, depending on the actual value of w.

Combining Intermediate Results Combining K3(w) and K2(w) (K3(w) is plugged in at

K2(w)’s leaves):

S1(w) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if w = b∗.S
then ⊥

else

∣

∣

∣

∣

∣

∣

∣

if w = LABELS
∗. f .[ f i,bi].S

then (a)

else w.S−1.b−k. f−1.b. [ f F ,bB]
B−F=k−1,B+F<N+k−P(w) .S

where:
(a) = max

(

w.S−1.[ f i,bi]
−1
. f−1.S,

w.S−1.b−k. f−1.b. [ f F ,bB]
B−F=k−1,B+F<N+k−P(w) .S

)

=

∣

∣

∣

∣

∣

∣

∣

if i = k = 0

then w.S−1.[ f i,bi]
−1
. f−1.S

else w.S−1.b−k. f−1.b. [ f F ,bB]
B−F=k−1,B+F<N+k−P(w) .S

S1(w) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if w = b∗.S
then ⊥

else

∣

∣

∣

∣

∣

∣

∣

if w = LABELS∗. f .S
then w.S−1. f−1.S

else w.S−1.b−k. f−1.b. [ f F ,bB]
B−F=k−1,B+F<N+k−P(w) .S



Plugging K3(w) at S1’s leaves:

S2(w) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if w = b∗.S

then

∣

∣

∣

∣

∣

∣

if P(w)< N −1

then w.S−1.b. f a.ba.S
else ⊥

else

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if w = LABELS
∗. f .S

then

∣

∣

∣

∣

∣

∣

if P(w)< N −1

then max(w.S−1. f−1.S,w.S−1.b. f a.ba.S)
else w.S−1. f−1.S

else

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if P(w)< N −1

then max

(

w.S−1.b−k. f−1.b. [ f F ,bB]
B−F=k−1,B+F<N+k−P(w) .S,

w.S−1.b. f a.ba.S

)

else w.S−1.b−k. f−1.b. [ f F ,bB]
B−F=k−1,B+F<N+k−P(w) .S

Moreover, w= y. f .s ⇒ w′=w.S−1. f−1.S≪w′=w.S−1.b.LABELS
∗.S, and w= y. f .bk≥1.S ⇒

w.S−1.b−k. f−1.b.LABELS
∗.S≪w.S−1.b.LABELS

∗.S, thus the two maxima should be replaced

by their second arguments. Since we can then notice that all the leaves are equal when

P(w)< N −1, we may factor the latter conditional out (just to make the result more readable

to a human eye).

S2(w) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if P(w)< N −1

then w.S−1.b. f a.ba.S

else

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if w = b∗.S
then ⊥

else

∣

∣

∣

∣

∣

∣

∣

if w = LABELS
∗. f .S

then w.S−1. f−1.S

else w.S−1.b−k. f−1.b. [ f F ,bB]
B−F=k−1,B+F<N+k−P(w) .S

(19)

Notice also that, since all the intermediate results have been combined, remaining soft bot-

toms became hard ones, meaning that the analysis is now able to guarantee that there is no

source under the corresponding conditions.

4.3 Comments on the Examples. Applications

The reader may check that the closed form (19) expresses the flows of data tabulated in

Fig 4.2. For instance w = b.b.b.S corresponds to the second leaf (⊥). w = f .b.b.S ⇒ k = 2

in the last leaf, so w′ = max(b. [ f F ,bB]
B−F=1,B+F<3

.S) = b.b.S. All “inner” nodes correspond to the

first leaf: for instance, w = S ⇒ a = 1 ⇒ w′ = b. f .b.S.

Application of our data flow analysis to program checking is clear: in the first example,

undefined values are read during the first instance of the outer explore construct.

Applications to compiling and automatic parallelization are best illustrated by the first

example. Due to the regularity of the data flow, we can apply the method in [5] to automat-

ically find a scheduling functionθ(i, j) such that θ(i, j) > θ(i− 1, j). A possible solution is

θ(i, j) = i, i.e., the program can be “wavefronted” along the right branches of the tree. More

formally, all instances 〈S, i, j〉, for a given i and all j, can be executed simultaneously.



In turn, we can apply the methods in [6] to detect that only a finite subset of the data

structure tree (declared to be infinite) has to be allocated at any time: exactly 2 branches of

q elements of tree need to be allocated, and can be reused in turn. In a sense, we thus have

new means to compute the extent of the data structure [7].

5 Conclusion

We presented a data flow analysis for a restricted class of recursive programs over recursive

data structures. This restricted class include recursive exploration of commutative (e.g. ar-

rays) and non commutative (e.g. trees) recursive data structures. These restrictions are in part

due to the intrinsic difficulty of the subject, and in part to the way our framework is restricted

to data flow problems that can be expressed as integer linear programming ones, enforcing

for instance that recursion predicates should be conjunctions of affine (in)equalities.

Rinard and Diniz [8] proposed an analysis that detects commuting (so, parallel) compu-

tations in C++ programs that manipulate recursive data structures. Even though they handle

more general structures than we do, their analysis is local (i.e., does not take global properties

of the structure into account) and is based on semantical properties of a limited number of

operators.

There are obviously numerous deficiencies in our analysis: our inability to directly han-

dle programs written in usual Pascal-like imperative languages (the main problems being the

extraction of the existence predicate and the detection of induction variables that access data

structures); the approximation due to NOLs in the case of non commutative structures; the

lack of general algorithms to compute lexicographical maxima of NOLs with pumping in-

verses; and, of course, our need for more of practical experience. All these issues will be

addressed in future work. In addition, we intend to study cases when the existence of oper-

ations cannot be predicted at compile-time, i.e., to extend our framework along the lines of

[9].
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