
HAL Id: hal-01257319
https://hal.science/hal-01257319

Submitted on 20 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximal Static Expansion
Denis Barthou, Albert Cohen, Jean-François Collard

To cite this version:
Denis Barthou, Albert Cohen, Jean-François Collard. Maximal Static Expansion. Symp. on Principles
of Programming Languages (POPL), Jan 1998, San Diego, California, United States. pp.98-106. �hal-
01257319�

https://hal.science/hal-01257319
https://hal.archives-ouvertes.fr

Maximal Static Expansion

Denis Barthou, Albert Cohen and Jean-François Collard

PRiSM, Université de Versailles

45 Avenue des États-Unis

78035 Versailles, France

{bad,acohen,jfc}@prism.uvsq.fr

Keywords Expansion of data structures, privatization, single as-
signment.

Abstract

Memory expansions are classical means to extract parallelism from
imperative programs. However, for dynamic control programs with
general memory accesses, such transformations either fail or re-
quire some run-time mechanism to restore the data flow. This pa-
per presents an expansion framework for any type of data structure
in any imperative program, without the need for dynamic data flow
restoration. The key idea is to group together the write operations
that participate in the flow of the same datum. We show that such
an expansion boils down to mapping each group to a single mem-
ory cell. We give a practical algorithm for code transformation.
This algorithm, however, is valid for (possibly non-affine) loops
over arrays only.

1 Introduction

Data dependences are known to hamper automatic parallelization
of imperative programs and their efficient compilation on modern
superscalar or VLIW processors. A general method to tackle this
problem is to disambiguate memory accesses and to assign distinct
memory cells to non-conflicting writes, i.e. to expand data struc-
tures. In parallel processing, expanding a datum also allows to
place one copy of the datum on each processor, enhancing paral-
lelism. This technique is known as array privatization [15, 12, 4]
and is extremely important to parallelizing and vectorizing compil-
ers [11, 13]. A similar technique is register or variable renaming.

In the extreme case, each memory cell is written at most once,
and the program is said to be in single assignment (SA) form. Un-
fortunately, when the control flow cannot be predicted at compile-
time, some run-time computation is needed to preserve the original
data flow: In the static single-assignment framework, φ-functions
may be needed to “merge” multiple reaching definitions, i.e. pos-
sible data definitions due to several incoming control paths [5, 6].
Such φ-functions may be an overhead at run-time, especially for
non-scalar data structures or when replicated data are distributed
across processors. We are thus looking for a static expansion , i.e.
an expansion of data structures that does not need a φ-function.

To be published in the proceedings of PoPL’98: The twenty-fifth
annual ACM SIGACT-SIGPLAN symposium on Principles of Pro-
gramming Languages, January 19–21 1998, San Diego, CA.

(Notice that according to our definition, an expansion in the static
single assignment framework may not be static.) The goal of this
paper is to automatically find the static expansion which expands all
data structures as much as possible, i.e. the maximal static expan-
sion. Maximal static expansion may be considered as a trade-off
between parallelism and memory usage.

We present an algebraic framework to derive the maximal static
expansion. The input of this framework is the (perhaps inaccurate)
output of a data-flow analysis, so our method is “optimal” with
respect to the precision of this analysis. Our framework is valid for
any imperative program, without restriction—the only restrictions
being those of your favorite data-flow analysis. We then present an
algorithm to construct the maximal static expansion for programs
with arrays only, but where subscripts and control structures are
unrestricted.

The paper is organized as follows: Section 2 studies motivating
examples showing what we want to achieve. Section 3 formally
states what (maximal) static expansion is, and Section 4 presents
a general framework to solve this problem. This framework is ap-
plied in Section 5 to derive an algorithm for maximal static expan-
sion. Section 6 applies this algorithm to the motivating examples,
before our conclusion.

2 Motivating Examples

The general framework presented in this paper is valid for any im-
perative programs. However, the three examples we study in this
section are basically loop nests over arrays (mainly because our
own analysis [2] is restricted to such programs).

2.1 Definitions

For any statement, the iteration vector is the vector built from sur-
rounding loop counters. The iteration domain is the set of values
the iteration vector takes during program execution. For instance,
the iteration domain of T in Figure 1 is Dom(T) = {i : 1 ≤ i ≤ N}.
Each iteration of a loop spawns instances, called operations , of
statements included in the loop body. In the example program, the
for loop on i yields N instances of T , denoted by 〈1,T 〉, . . . ,〈N,T 〉.
Moreover, we introduce artificial integer counters for while loops.
For instance, operations of S in Figure 1 are labeled 〈i,w,S〉, with
1 ≤ i ≤ N and w ∈ N.

The execution order on operations is denoted by ≪.

1

2.2 First Example: Dynamic Control Flow

We first study the pseudo-code shown in Figure 1; This kernel ap-
pears in several convolution codes 1. Parts denoted by ... are sup-
posed to have no side-effect.

real x

for i = 1 to N do

T x = ...

while ... do

S x = ... x ...

end while

R ... = ... x ...

end for

Figure 1: First example.

Each operation 〈i,T 〉 assigns a new value to variable x. In turn,
statement S assigns x an undefined number of times (possibly zero).
The value read in x by statement R is thus defined either by T ,
or by some instance of S, in the same iteration of the for loop
(the same i). Therefore, if the expansion assigns distinct memory
cells to 〈i,T 〉 and to instances of 〈i,w,S〉, how could operation 〈i,R〉
“know” which memory cell to read from?

To formalize this problem, we use a data-flow analysis to de-
scribe where values are defined and where they are used. The intu-
itive picture is that a datum flows from its source to the sink . We
assume that the data-flow analysis works at operation level. More-
over the analysis may be more or less accurate: When the exact
source of a read operation cannot be predicted at compile time, we
suppose that it returns a set of possible sources for this read. This
set is a conservative approximation of the source.

We may thus call σ the function mapping a read operation to its
set of sources. Applied to the example in Figure 1, it tells us that
the set of sources σ(〈i,w,S〉) of an operation 〈i,w,S〉 is:

σ(〈i,w,S〉) =

∣∣∣∣∣∣∣∣

if w > 0

then {〈i,w−1,S〉}

else {〈i,T 〉}

(1)

And the set of sources σ(〈i,R〉) of an operation 〈i,R〉 is:

σ(〈i,R〉) = {〈i,T 〉}∪{〈i,w,S〉 : w ≥ 0}, (2)

where w is the (arbitrary) counter of the while-loop.
Let us try to expand scalar x. One way is to convert the pro-

gram into SA, making T write into x’[i] and S into x’’[i,w]:
Then, each memory cell is assigned to at most once, complying
with the definition of SA. However, what should right-hand sides
look like now? A brute-force application of (2) yields the program
in Figure 2. While the right-hand side of S only depends on w,
the right-hand side of R depends on the control flow, thus needing
a function similar to a φ-function in the SSA framework (even if,
on this introductory example, the φ-function would be very sim-
ple) [8].

The aim of this paper is to expand x as much as possible in this
program but without having to insert φ-functions.

A possible static expansion is to uniformly expand x into x[i]

and avoid output dependencies between distinct iterations of the
for loop. The resulting maximal static expansion of this example
is given by Figure 3. It has the same degree of parallelism and is
simpler than the program in single-assignment.

1For instance, Horn and Schunck’s algorithm to perform 3D Gaussian smoothing

by separable convolution.

for i = 1 to N do

T x’[i] = ...

while ... do

S x’’[i,w] = ...

if w > 0 then x’’[i,w-1] else x’[i] ...

end while

R ... = ... φ(〈i,T 〉, {〈i,w,S〉 : w ≥ 0}) ...

end for

Figure 2: First example, continued.

real x[1..N]

for i = 1 to N do

T x[i] = ...

while ... do

S x[i] = ... x[i] ...

end while

R ... = ... x[i] ...

end for

Figure 3: Expanded version of the first example.

Notice that it should be easy to adapt the array privatization
techniques by Maydan et al. [12] to handle the program in Figure 1;
This would tell us that x can be privatized along i. However, we
want to do more than privatization along loops, as illustrated in the
following examples.

2.3 Second Example: Array Expansion

Let us give a more complex example; We would like to expand
array A in the program in Figure 4.

Since T always executes when j equals N, a value read by
〈i, j,S〉, j > N is never defined by an instance 〈i′, j′,S〉 of S with
j′ ≤ N. Figure 4 describes the data-flow relations between S in-
stances: An arrow from (i′, j′) to (i, j) means that instance (i′, j′)
defines a value that may reach (i, j).

Formally, the source of one instance of statement S is:

σ(〈i, j,S〉) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if j ≤ N

then
{〈i′, j′,S〉 : 1 ≤ i′ ≤ 2N

∧ 1 ≤ j′ < j ∧ i′− j′ = i− j}

else

{〈i′, j′,S〉 : 1 ≤ i′ ≤ 2N

∧ N < j′ < j ∧ i′− j′ = i− j}
∪ {〈i′,N,T 〉 : 1 ≤ i′ < i

∧ i′ = i− j+N}

(3)

Because sources are non-singleton sets, converting this program
to SA form would require run-time computation of the memory
location read by S.

However, we notice that the iteration domain of S may be split
into disjoint subsets by grouping together operations involved in
the same data flow. These subsets build a partition of the iteration
domain. Each subset may have its own memory cell, a cell that
will not be written nor read by operations outside the subset. The
partition is given in Figure 5.a.

Using this property, we can duplicate only those elements of A
that are used twice. These are all the array elements A[c], 1+N ≤
c ≤ 3N−1. They are accessed by operations in the large central set
in Figure 5.b. Let us label with 1 the subsets in the lower half of

2

real A[1..4*N-1]

for i = 1 to 2*N do

for j = 1 to 2*N do

if ... then

S A[i-j+2*N] = ... A[i-j+2*N] ...

end if

T if j = N then A[i+N] = ... end if

end for

end for

i

2N

N

N 2N

j

Figure 4: Second example.

this area, and with 2 the subsets in the top half. We add one dimen-
sion to array A, subscripted with 1 and 2 in statements S2 and S3

in Figure 6, respectively. Elements A[c],1 ≤ c ≤ N are accessed
by operations in the upper left triangle in Figure 5.b and have only
one subset each (one subset in the corresponding diagonal in Fig-
ure 5.a), which we label with 1. The same labeling holds for sets
corresponding to operations in the lower right triangle.

The maximal static expansion is shown in Figure 6. Notice that
this program has the same degree of parallelism as the correspond-
ing single-assignment program, without the run-time overhead.

2.4 Third Example: Non-Affine Array Subscripts

Consider the program in Figure 7.a, where foo and bar are arbi-
trary subscripting functions 2. Since all array elements are assigned
by T , the value read by R at the ith iteration must have been pro-
duced by S or T at the same iteration. The data-flow graph is similar
to the first example:

σ(〈i,R〉) = {〈i,S〉}∪{〈i, j,T 〉 : 1 ≤ j ≤ N}. (4)

The maximal static expansion adds a new dimension to A sub-
scripted by i. It is sufficient to make the first loop parallel.

These examples show the need for an automatic static ex-
pansion technique. We present in the following section a for-
mal definition of expansion and a general framework for maximal
static expansion. We then describe an expansion algorithm for ar-
rays that yields the expanded programs shown above. Notice that it
is easy to recognize the original programs in their expanded coun-
terparts, which is a practical property of our algorithm.

2.5 Related work

If the input program is built of nested for loops with affine bounds
and accesses arrays with affine subscripts, one can find a static

2A[foo(i)] stands for an array subscript between 1 and N, “too complex” to be

analyzed at compile-time.

Figure 5.a.

j

i

i

j

Figure 5.b.

N

N 2N

N 2N

N

2N

2N

Figure 5: Partition of the iteration domain (N = 4).

expansion which is also in single-assignment form. Feautrier [7]
coined the term static control programs for this class of programs.

In the case of programs with general control and unrestricted
arrays subscripts, array data-flow analyses are approximate [3, 2,
16, 17]: Several writes may be the unique definition of a given
value, but the analysis cannot tell. [8] describes how to obtain a
single-assignment program to the price of dynamic restoration of
data flow.

Many studies are related to array privatization. As hinted above,
Maydan et al. [12] proposed an algorithm to privatize arrays. How-
ever, their method only applies to static control programs. Tu and
Padua [15] proposed a privatization technique for a very large class
of programs. But it resorts to dynamic restoration of data flow. An-
other accurate approach using array regions has been described by
Creusillet [4]. Her method avoids the cost of a dynamic restoration
and copies back the privatized elements into the original arrays.

However, privatization only detects parallelism along the en-
closing loops; It is thus less powerful than general array expan-
sion techniques. Indeed, the example in Section 2.3 shows that our
method not only may expand along diagonals in the iteration space
but may also do some “blocking” along these diagonals.

3 Static Expansion

Let Ω be the set of all operations in the program, f the function
mapping operations to memory cells they write into, and W ⊆ Ω

3

real A[1..4*N-1,1..2]

for i = 1 to 2*N do

for j = 1 to 2*N do

{expansion of statement S}
if -2*N+1 <= i-j <= -N then

if ... then

S1 A[i-j+2*N,1] = ... A[i-j+2*N,1] ...

end if

elsif -N+1 <= i-j <= N-1 then

if j <= N then

if ... then

S2 A[i-j+2*N,1] = ... A[i-j+2*N,1] ...

end if

else

if ... then

S3 A[i-j+2*N,2] = ... A[i-j+2*N,2] ...

end if

end if

else

if ... then

S4 A[i-j+2*N,1] = ... A[i-j+2*N,1] ...

end if

end if

{expansion of statement T}
T if j = N then A[i+N,2] = ... end if

end for

end for

Figure 6: Maximal static expansion for the second example.

be the set of all writes. We still use σ to denote the function map-
ping a read operation to its set of possible sources. Notice that σ
may also be seen as a relation between read and write operations.
Let f ′ be the expansion, that is the new function, after program
transformation, mapping operations to the memory cells they write
into.

Let us consider two operations u and v belonging to the same
set of possible sources of some read r. If they both write in the same
memory cell (f (u) = f (v)) and if we assign two distinct memory
cells to u and v (f ′(u) 6= f ′(v)), then a φ-function is needed to re-
store the data flow since we do not know which of the two cells has
the value needed by r. Static expansion enforces f ′(u) = f ′(v).

Definition 1 (Static expansion) A static expansion is a mapping
f ′ from operations to memory cells such that

∀u,v : (∃r,u ∈ σ(r)∧ v ∈ σ(r)∧ f (u) = f (v))

=⇒ f ′(u) = f ′(v).

Because the sources of a read are mapped to the same memory cell
by f ′, static expansion preserves the original data-flow graph.

Notice also that, according to this definition, even a constant
function on W is a static expansion. Because we are interested
in maximizing the memory expansion, the range of a “good” static
expansion should be as large as possible. In other words, such an
expansion should be constant on sets as small as possible:

Definition 2 (Maximal static expansion) A static expansion f ′ is
maximal on the set of operations W if, for any static expansion f ′′,

∀u,v ∈ W : f ′(u) = f ′(v) =⇒ f ′′(u) = f ′′(v).

Intuitively, if f ′ is maximal, then f ′′ cannot do better: it maps two
writes to the same memory cell when f ′ does.

real A[1..N]

for i = 1 to N do

for j = 1 to N do

T A[j] = ...

end for

S A[foo(i)] = ...

R ... = ... A[bar(i)]

end for

Figure 7.a: Source program.

real A[1..N,1..N]

for i = 1 to N do

for j = 1 to N do

T A[j,i] = ...

end for

S A[foo(i),i] = ...

R ... = ... A[bar(i),i]

end for

Figure 7.b: Expanded version.

Figure 7: Third Example.

We need to characterize the sets of operations on which a max-
imal static expansion f ′ is constant, i.e. the equivalence classes of
the relation {u,v ∈ W : f ′(u) = f ′(v)}. The set of theses classes

is denoted by W
/

f ′ . The number of memory cells after maximal

static expansion is thus equal to the cardinal of W
/

f ′ .

However, this hardly gives us an expansion scheme, because
this result does not tell us how much each individual memory cell
should be expanded. The purpose of Section 4 is to give a similar
result for each memory cell c used in the original program. This
result appears in Theorem 1. This theorem is then used to give a
practical expansion scheme.

4 Expansion Scheme

Let us define the relation:

uR ⊑⇐⇒∃∇, ⊓ ∈ σ(∇)∧⊑ ∈ σ(∇). (5)

σ is itself a relation on Ω×Ω and the reciprocal relation is denoted
by σ−1. Therefore, uR ⊑⇐⇒ ⊓∈σ(σ−∞(⊑)), i.e., R = σ◦σ−∞.
Relation R is obviously symmetric. Definition 1 requires that a
static expansion f ′ verifies f ′(u) = f ′(v) when f (u) = f (v) and
uR ⊑. Given u, v and w in W , if f (u) = f (v) = f (w), uR ⊑ and
vR ⊒ then f ′(u) = f ′(v) = f ′(w). Therefore, given u ∈ W , f ′ is
constant on the set of all v ∈ W such that f (u) = f (v) and uR ∗v,
R ∗ being the transitive closure of R . We may give an equivalent
definition of a static expansion:

Definition 3 A static expansion is a mapping f ′ from operations to
memory cells such that

∀u,v : uR ∗v∧ f (u) = f (v) =⇒ f ′(u) = f ′(v).

We now characterize any maximal static expansion in terms of
R ∗ and f :

Lemma 1 f ′ is a maximal static expansion if and only if

∀u,v ∈ W : uR ∗v∧ f (u) = f (v) ⇐⇒ f ′(u) = f ′(v).
(6)

4

Sufficient condition—the “if” part

Let f ′ be a mapping s.t. ∀u,v∈W : f ′(u)= f ′(v) ⇐⇒
uR ∗v∧ f (u) = f (v). By definition, f ′ is a static expan-
sion.

Let us show that f ′ is maximal. Suppose that for u,v ∈
W : f ′(u) = f ′(v). (6) implies uR ∗v and f (u) = f (v).
Thus, from Definition 3, any static expansion f ′′ sat-
isfies f ′′(u) = f ′′(v). Therefore, f ′(u) = f ′(v) =⇒
f ′′(u) = f ′′(v), so f ′ complies with Definition 2.

Necessary condition—the “only if” part

Let f ′ be a maximal static expansion. Because f ′ is
a static expansion, we only have to prove that ∀u,v ∈
W : f ′(u) = f ′(v) =⇒ uR ∗v∧ f (u) = f (v).

On the one hand, f ′(u) = f ′(v) =⇒ f (u) = f (v) be-
cause f is a static expansion. On the other hand, as-
sume f ′(u) = f ′(v) and ¬uR ∗v. We show that it con-
tradicts the maximality of f ′: Let f ′′(w) = f ′(w) when
¬uR ∗w, and f ′′(w) = c when uR ∗w, with c 6= f ′(u).
f ′′ is a static expansion: By construction, f ′′(u′) =
f ′′(v′) for any u′ and v′ such that u′R ∗v′. The contra-
diction comes from the fact that f ′′(u) 6= f ′′(v).

✷

Let us define M = f (W) the set of all memory cells accessed by
write operations, and for c ∈ M, W (c) = {u ∈ W : f (u) = c} the
set of operations writing into c. Given c ∈ M, the previous lemma
entails that a static expansion f ′ is maximal iff

∀u,v ∈ W (c) : f ′(u) = f ′(v) ⇐⇒ uR ∗v.

Therefore, classes of R ∗ in W (c) are exactly the sets we are look-
ing for:

Theorem 1 The sets on which a maximal static expansion f ′ is
constant are described by:

W
/

f ′ =
⋃

c∈M

W (c)
/

R ∗ (7)

The equivalence classes defined in this theorem gives the partition
intuitively found in Section 2, and the expansion factor of each

individual memory cell c is Card(W (c)
/

R ∗). Consider for instance

A[0] in Figure 5.a. The instances of S that belong to W (A[0])
are on the main diagonal {(i, j) : 1 ≤ i, j ≤ 2N ∧ i = j = 0}. R ∗

partitions these operations in exactly the two subsets depicted in
the figure.

To generate the transformed code, one has to remember which
equivalent class an operation belongs to: Let ϕ be the function map-
ping an operation u to a representative of its equivalence class. One

may label each element of W (c)
/

R ∗ , or equivalently, label each el-

ement of ϕ(W (c)). Such a labeling scheme is obviously arbitrary,
but all programs transformed using our method are equivalent up
to a permutation of these labels. We denote by ν(u) the label we
choose for the elements of ϕ(W (f (u))). Then, f ′ = (f ,ν).

Our expansion scheme depends on the transitive closure calcu-
lator and on the part calculating W (c). We would like to stress the
fact that the expansion produced is static and maximal with respect
to the results yielded by these parts, whatever their accuracy:

• The exact transitive closure may be too complicated and may
therefore be over-approximated. The expansion factor of a

memory cell c is then lower than Card(W (c)
/

R ∗). However,
the expansion remains static and is maximal with respect to
the transitive closure given to the algorithm.

• The sets W (c) may not be known precisely at compile-time.
(For instance, when data structures are arrays with non-affine

subscripts.) One may use some approximation W̃ (c) instead,

such that W (c)⊆ W̃ (c), and expand c into as many cells as

elements in W̃ (c)
/

R ∗ . However, an operation u may then be-

long to two distinct classes of W̃ (c)
/

R ∗ and W̃ (c′)
/

R ∗ , c 6= c′,
that is, have several representatives and be associated to dif-
ferent class labels. To avoid this pitfall, we enforce the same
labels for all classes including u: We first label all classes

of W
/

R ∗ , which in turn gives labels to the classes of all

W̃ (c)
/

R ∗ . The drawback of this method is that some memory
cells not used during program execution may be allocated.
The reasons are that we cannot know statically which cells
will be referred to, and that the set of numbers labeling the

classes of a given W̃ (c)
/

R ∗ may not be dense.

The maximal static expansion scheme given above works
for any imperative programs. More precisely, you may expand
any imperative program using maximal static expansion, provided
that a data-flow analysis technique can handle it (at operation level)
and that transitive closure computation, relation composition, inter-
section, and so on, are feasible in your framework.

Expanding scalars and arrays is done by renaming the variables
and adding new dimensions to arrays; However, no straightforward
expansion exists for trees, graphs, dynamic data structures with
pointers . . . In the general case, appropriate expansion “rules” must
be defined—depending on both the data and control structures.

We give below an algorithm to construct expanded codes for
loops nests and arrays only 3.

Before giving the algorithm, we would like to focus on two
important points:

• The algebraic view given in this section considered each mem-
ory cell c in turn. Obviously, since the number of mem-
ory cells brought into play in a program is often unknown
or parameterized, a naive application of this view would not
practical. Our method gives a solution parameterized by the
identity of the cell c, so its complexity does not grow with
Card(M).

• The definitions given in Section 3 and the expansion scheme
are valid for any class of imperative programs. The only re-
strictions and limitations are those of the data-flow analysis
and of the algorithm to compute transitive closures.

In the sequel, since we apply our own array data-flow anal-
ysis framework to maximal static expansion, we inherit its
syntactical restrictions: Data structures are scalars and ar-
rays; Pointers are not allowed. Loops, conditionals and array
subscripts are unrestricted.

5 An Algorithm for Loop Nests

Using a data-flow analysis such as FADA [2], the data-flow graph
is described by systems of affine inequalities over iteration vari-
ables and structure parameters. Our algorithm then reduces to well
known transformations on affine integer polyhedra, most of them
being implemented in Omega [14]. We present below the expan-
sion algorithm for all accesses to a given array A.

3This is mainly due to the fact that our implementation of the expansion scheme is

based on our own data-flow analysis, which is restricted to such programs.

5

Input: The data-flow graph as an affine relation σ between reads
and their reaching definitions (the sources).
Output: The target expanded code.

1. Compute R = σ◦σ−∞. (This boils down to eliminating r in
(5).)

2. If R is not transitive, compute R ∗ with Omega’s transitive
closure operator. Because the transitive closure of an affine
relation is not necessary affine, the result may be an upper-
approximation. See [10] for details. This approximation
is a conservative one, but may hide an interesting possible
static expansion. Using Omega, R ∗ is described as a map-
ping from u to û (û being the class of u for relation R ∗:
û = {v ∈ W : uR ∗v}).

3. In each class û, pick a single, arbitrary element. This chosen
element is now considered as the representative ϕ(u). How
do we pick this element? As long as the element we pick is
unique, any method is fine. Let us choose the minimum ac-
cording to lexicographical order (which is a case of overkill).

4. Are all subscript functions affine?

Yes Let us consider c = A[x]. W (A[x]) is the union of
{〈i,S〉 : i∈Dom(S)∧ f (〈i,S〉) = x} over all statements
S writing into A.

Compute ϕ(W (A[x])), which is a set of representa-

tives of W (A[x])
/

R ∗ . Give a number to each element in
the set of representatives.

No Compute ϕ(W). Give a number to each element in the
set of representatives.

If an element in the set of representatives is itself a parame-
terized affine set of operations, labeling boils down to scan-
ning exactly once all the integer points in the set, which can
be done using classical techniques [1, 9].

In both cases, u has a single representative and is therefore
mapped to a unique label ν(u).

5. Code generation is then straightforward: any reference A[f (u)]
in the left hand side is transformed into A[f (u),ν(u)]. For
any reference in the right hand side, one has to find the la-
bel of the source of the read. That is, any read A[g(u)] is
transformed into A[g(u),ν(σ(u))]. (Recall that σ(u) is a
set, mapped by construction of ν to a single label ν(σ(u)).)

When ν is a conditional whose predicate is affine w.r.t. loop
counters, then the conditional can be taken out of A’s sub-
script.

6. The size declaration A[...] of A is transformed into A[...,maxS maxu∈Dom(S) ν(u)] 4.

Computing the Lexicographical Minimum Let us call û the
equivalence class of u for relation R ∗. The lexicographical mini-
mum of û is:

min
≪

(û) = v s.t. uR ∗v∧ (6 ∃w : uR ∗w∧w ≪ v)

This definition may be simplified in writing ≪ as a relation be-
tween operations:

≪= {(u,v) : u ≪ v}.

4Arrays usually have to be rectangular; Therefore Aν(u) [f (u)] may be a better

renaming. Consider for instance the expanded version of example 2: Expanding A into

A1 and A2 would require 6N −2 array elements instead of 8N −2 in Figure 6.

Thus,

min
≪

(û) = (R ∗ \ (≪◦R ∗))(u) (8)

Complexity For each array in the source program, the algorithm
proceeds as follows:

• Compute the reciprocal relation σ−1 of σ. This is different
from computing the inverse of a function and barely consists
in a swap of the two arguments of σ.

• Composing two relations σ and σ′ boils down to eliminating
y in xσy ∧ yσ′z.

• Computing the exact transitive closure of R is quite expen-
sive. Kelly et al. [10] do not give a formal bound on the
complexity of their algorithm, but their implementation in
the Omega toolkit proved to be efficient if not concise. No-
tice again that the exact transitive closure is not necessary for
our expansion scheme to be correct.

Moreover, R happens to be often transitive in practice. In
our implementation, this is first checked before triggering the
computation of the closure by testing whether the difference
(R ◦R) \R is empty. In all three examples, the relation is
already transitive.

• In the algorithm above, ϕ is a lexicographical minimum. This
clearly is a bad idea, because the expansion scheme just needs
a way to pick one element per equivalence class. Computing
the lexicographical minimum is expensive a priori, but was
easy to implement in our first prototype.

• Finally, numbering classes is costly only when we have to
scan a polyhedral set of representatives in dimension greater
than 1. In practice, we only had intervals on the examples we
tried.

Implementation The maximal static expansion is implemented
in C++ on top of the Omega library. Figure 8 summaries the com-
putation times for the three examples (on a Sun SPARCstation 5).
These results do not include the computation times for data-flow
analysis and code generation.

1st example 2nd example 3rd example

transitive
closure 100 100 110
(check)

picking the
representatives 110 160 110

(function ϕ)

other 130 150 70

total 340 410 290

Figure 8: Computation times, in milliseconds.

Moreover, computing the class representatives is relatively fast;
It validates our choice to compute function ϕ (mapping operations
to their representatives) using a lexicographical minimum. The in-
tuition behind these results is that the computation time mainly de-
pends on the number of affine constraints in the data-flow analysis
relation.

Our only concern so far would be to find a way to approximate
the expressions of transitive closures when they become large.

6

6 Back to the examples

This section applies our algorithm to the motivating examples, us-
ing the Omega Calculator [14] as a tool to manipulate affine rela-
tions.

6.1 First Example

Let us consider the source program at Figure 1. Using the Omega
Calculator text-based interface, we describe a step-by-step execu-
tion of the expansion algorithm. We have to code operations as
integer-valued vectors. An operation 〈i,Ss〉 is denoted by vector
[i,..,s], where [..] possibly pads the vector with zeroes. We
number T,S,R with 1, 2, 3 in this order, so 〈i,T 〉, 〈i, j,S〉 and 〈i,R〉
are written [i,0,1], [i,j,2] and[i,0,3], respectively.

From (1) and (2), we construct the source relation S:

S := {[i,0,2]->[i,0,1] : 1<=i<=N}

union {[i,w,2]->[i,w-1,2] : 1<=i<=N && 1<=w}

union {[i,0,3]->[i,0,1] : 1<=i<=N}

union {[i,0,3]->[i,w,2] : 1<=i<=N && 0<=w};

Step 1. Computing R is straightforward:

S’ := inverse S;

R := S(S’);

R;

{[i,0,1]->[i,0,1] : 1<=i<=N} union

{[i,w,2]->[i,0,1] : 1<=i<=N && 0<=w} union

{[i,0,1]->[i,w’,2] : 1<=i<=N && 0<=w’} union

{[i,w,2]->[i,w’,2] : 1<=i<=N && 0<=w’ && 0<=w}

Step 2. R is already transitive, no closure computation is thus
necessary.

Step 3. Let us choose ϕ(u) as the first executed operation in
class û (the least operation according to the sequential order): ϕ(u)=
min≪({u′ : u′R ∗u}).

To compute the lexicographical minimum, let us rewrite its def-
inition using the Omega Calculator syntax. We thus describe ϕ by
a relation of the form:

ϕ([i,w,s]) = [i′,w′
,s′] s.t.

[i,w,s],[i′,w′
,s′] ∈ W (x)

∧[i,w,s]R ∗ [i′,w′
,s′]

∧ (6 ∃[i′′,w′′
,s′′] ∈ W (x) :

[i,w,s]R ∗ [i′′,w′′
,s′′]

∧[i′,w′
,s′]≪ [i′′,w′′

,s′′])

Since [i,w,s] ∈ W (x) is always verified in this example, we
may simplify this expression in using (8):

ϕ([i,w,s]) = (R ∗ \ (≪◦R ∗))([i,w,s]). (9)

The result of this computation is:

∀i,w, 1 ≤ i ≤ N,w ≥ 1 : ϕ(〈i,T 〉) = 〈i,T 〉,

ϕ(〈i,w,S〉) = 〈i,T 〉.

Step 4. Since we have only one memory cell, W (x) = W .
Computing ϕ(W (x)) yields N operations of the form 〈i,T 〉.

Maximal static expansion of accesses to variable x requires N mem-
ory cells. i is an obvious label:

∀i,w, 1 ≤ i ≤ N,w ≥ 1 : ν(〈i,w,S〉) = ν(〈i,T 〉) = i.
(10)

Step 5. All left-hand side references to x are transformed into
x[i]; All references to x in the right hand side are transformed
into x[i] too since their sources are instances of S or T for the
same i. The expanded code is thus exactly the one found intuitively
in Figure 3.

Step 6. The size declaration of the new array is x[1..N].

6.2 Second Example

We now consider the source program in Figure 4. Operations 〈i, j,S〉
and 〈i,N,T 〉 are denoted by [i,j,1] and [i,N,2], respectively.
From (3), the source relation S is defined as:

S := {[i,j,1]->[i’, j’,1] : 1<=i,i’<=2N

&& 1<=j’<j<=N && i’-j’=i-j}

union {[i,j,1]->[i’,N,2] : 1<=i,i’<=2N

&& N<j<=2N && i’=i-j+N}

union {[i,j,1]->[i’,j’,1] : 1<=i,i’<=2N

&& N<j’<j<=2N && i’-j’=i-j};

Step 1. As in the first example, we compute relation R using
Omega:

S’ := inverse S;

R := S(S’);

R;

{[i,j,1]->[i’,j-i+i’,1] : 1<=i<=2N-1 && 1<=j<N

&& 1<=i’<=2N-1 && i<j+i’ && j+i’<N+i} union

{[i,j,1]->[i’,j-i+i’,1] : N<j<=2N-1 && 1<=i<=2N-1

&& 1<=i’<=2N-1 && N+i<j+i’ && j+i’<2N+i} union

{[i,N,2]->[i’,N-i+i’,1] : 1<=i<i’<=2N-1

&& i’<N+i} union

{[i,j,1]->[N+i-j,N,2] : N<j<=2N-1 && i<=2N-1

&& j<N+i} union

{[i,N,2]->[i,N,2] : 1<=i<=2N-1}

Step 2. We compute R ∗. Figure 5.a shows the equivalence
classes of R ∗.

Step 3. We compute ϕ(u) as a relation similar to (9), using
Omega. The result follows:

∀i, j, 1 ≤ i ≤ 2N,1 ≤ j ≤ N, j− i ≥ 0
ϕ(〈i, j,S〉) = 〈1, j− i+1,S〉

∀i, j, 1 ≤ i ≤ 2N,1 ≤ j ≤ N, j− i < 0
ϕ(〈i, j,S〉) = 〈i− j+1,1,S〉

∀i, j, 1 ≤ i ≤ 2N,N +1 ≤ j ≤ 2N, j− i ≥ N
ϕ(〈i, j,S〉) = 〈1, j− i+1,S〉

∀i, j, 1 ≤ i ≤ 2N,N +1 ≤ j ≤ 2N, j− i < N
ϕ(〈i, j,S〉) = 〈i− j+N,N,T 〉

∀i, j, 1 ≤ i ≤ 2N
ϕ(〈i,N,T 〉) = 〈i,N,T 〉

Step 4. W (c) = {〈i, j,S〉 : i− j+2N = c}∪{〈c−N,N,T 〉}.
Let us compute the representatives for W (c):

1 ≤ c ≤ N : ϕ(W (c)) = 〈1,1− c,S〉

N +1 ≤ c ≤ 3N −1 : ϕ(W (c)) = {〈c+1,1,S〉,

〈c+N,N,T 〉}

3N ≤ c ≤ 4N −1 : ϕ(W (c)) = 〈c+1,1,S〉

7

This result shows three intervals of constant cardinality of W (c)
/

R ∗ ;
They are described in Figure 5.b. A labeling can be found me-
chanically. If i− j + 2N ≤ N or i− j + 2N ≥ 3N, there is only
one representative in ϕ(W (i− j + 2N)), thus ν(〈i, j,S〉) = 1. If
N + 1 ≤ i− j+ 2N ≤ 3N − 1, there are two representatives; Thus
we define ν(〈i, j,S〉) = 1 if j ≤ n, ν(〈i, j,S〉) = 2 if j > N, and
ν(〈i,N,T 〉) = 2.

Step 5. The static expansion code appears in Figure 6. As hinted
in Section 5, conditionals in ν have been taken out of array sub-
scripts.

Step 6. Array A is allocated as A[1..4*N-1,1..2].

6.3 Third Example: Non-Affine Array Subscripts

We come back to the program in Figure 7.a. Operations 〈i, j,T 〉,
〈i,S〉 and 〈i,R〉 are written [i,j,1], [i,0,2] and [i,0,3]. From
(4), we build the source relation as follows:

S := {[i,0,3]->[i,j,1] : 1<=i,j<=N}

union {[i,0,3]->[i,0,2] : 1<=i<=N};

Step 1.

S’ := inverse S;

R := S(S’);

R;

{[i,j,1]->[i,j’,1] : 1<=i<=N && 1<=j<=N

&& 1<=j’<=N} union

{[i,0,2]->[i,j’,1] : 1<=i<=N && 1<=j’<=N} union

{[i,j,1]->[i,0,2] : 1<=i<=N && 1<=j<=N} union

{[i,0,2]->[i,0,2] : 1<=i<=N}

Step 2. R is already transitive: R = R ∗.

Step 3. We compute ϕ(u) as a relation similar to (9).

∀i, 1 ≤ i ≤ N : ϕ(〈i,S〉) = 〈i,1,T 〉

∀i, j, 1 ≤ i ≤ N,1 ≤ j ≤ N : ϕ(〈i, j,T 〉) = 〈i,1,T 〉

Note that every 〈i, j,T 〉 operation is in relation with 〈i,1,T 〉.

Step 4. Since some subscripts are not affine, we cannot compute
at compile-time the exact sets W (A[x]) of operations writing in
some cell A[x]. Therefore, we compute ϕ(W):

ϕ(W) = {〈i,1,T 〉}.

We can use i to label these representatives; Thus the resulting ν
function is:

ν(〈i,S〉) = ν(〈i, j,T 〉) = i.

Step 5. Using this labeling, all left hand side references to A[...]
become A[..., i] in the expanded code. Since the source of 〈i,R〉
is an instance of S or T at the same iteration i, the right hand side
of R is expanded the same way. Expanding the code thus leads to
the intuitive result given at Figure 7.b.

Step 6. The size declaration of A is now A[1..N,1..N].

7 Conclusion

Expanding data structures is a classical optimization to cut memory-
based dependences. However, the generated code has to ensure that
all reads refer to the correct memory cell. When control flow is dy-
namic, the main drawback of such methods is therefore that some
run-time computation has to be done to decide the identity of the
correct memory cell.

This paper presented a new and general expansion framework:
A cell can be expanded at most as many times as there are classes of
independent (as far as data-flow is concerned) writes. A practical
algorithm was given and applied to real-life loop nests accessing
arrays.

Interestingly enough, the framework does not require any pre-
cision level of the data-flow analysis, nor does it require the closure
computation to be exact. Conservative approximate results are fine
as well, the only drawback being a probable loss in static expan-
sion. However, we cannot do any better, and in accordance to our
definition, the static expansion we derive is still maximal. When
the data-flow analysis and/or the transitive closure tool give poor
results, our expansion scheme does not fail but degrades gracefully.

Future work will study the application of the framework to a
wider class of problems. We also intend to enhance the algorithm
so as to handle pointer-based data structures and recursive pro-
grams.

Acknowledgments The first two authors are supported by the
French Ministre de l’Enseignement Suprieur et de la Recherche
(MESR) and the third by the Centre National de la Recherche Sci-
entifique (CNRS). All authors are, in addition, supported by INRIA
project AAA and the German-French ProCoPe program.

We would like to thank Paul Feautrier, Mx Geigl, Martin Griebl
and Vincent Lefebvre for fruitful discussions on this topic.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loop.
In Symp. on Principles and Practice of Parallel Programming
(PPoPP’91), pages 39–50, June 1991.

[2] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array
dataflow analysis. J. of Parallel and Distributed Computing,
40:210–226, 1997.

[3] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array
dataflow analysis. In Symp. on Principles and Practice of Par-
allel Programming, pages 92–102, Santa Barbara, CA, July
1995.

[4] B. Creusillet. Array Region Analyses and Applications. PhD
thesis, cole des Mines de Paris (ENSMP), December 1996.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. K. Wegman, and F. K.
Zadeck. An efficient method of computing static single as-
signment form. In 16th Annual ACM Symposium on Princi-
ples of Programming Languages, pages 25–35, 1989.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Pro-
gramming Languages and Systems, 13(4):451–490, October
1991.

[7] P. Feautrier. Dataflow analysis of scalar and array references.
Intl. J. of Parallel Programming, 20(1):23–53, February 1991.

8

[8] M. Griebl and J.-F. Collard. Generation of synchronous code
for automatic parallelization of while loops. In S. Haridi,
K. Ali, and P. Magnusson, editors, EuroPar’95, volume 966
of LNCS, pages 315–326. Springer-Verlag, 1995.

[9] W. Kelly, W. Pugh, and E. Rosser. Code generation for multi-
ple mappings. In Frontiers’95 Symp. on the frontiers of mas-
sively parallel computation, McLean, 1995.

[10] W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive
closure of infinite graphs and its applications. Intl. J. of Par-
allel Programming, 24(6):579–598, 1996.

[11] D. Levine, D. Callahan, and J. Dongarra. A comparative
study of automatic vectorizing compilers. Parallel Comput-
ing, 17:1223–1244, 1993.

[12] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Ar-
ray dataflow analysis and its use in array privatization. In
20th POPL, pages 2–15, Charleston, South Carolina, January
1993.

[13] Karen Lee Pieper. Parallelizing Compilers: Implementation
and Effectiveness. PhD thesis, Stanford, CA, USA, 1993.
UMI Order No. GAX93-26540.

[14] W. Pugh. The omega test: a fast and practical integer pro-
gramming algorithm for dependence analysis. Communica-
tions of the ACM, 8:102–114, August 1992.

[15] P. Tu and D. Padua. Automatic array privatization. In Proc.
Sixth Workshop on Languages and Compilers for Parallel
Computing, number 768 in Lecture Notes in Computer Sci-
ence, pages 500–521, August 1993. Portland, Oregon.

[16] D. Wonnacott and W. Pugh. Nonlinear array dependence anal-
ysis. In Proc. Third Workshop on Languages, Compilers and
Run-Time Systems for Scalable Computers, 1995. Troy, New
York.

[17] D. G. Wonnacott. Constraint-Based Array Dependence Anal-
ysis. PhD thesis, University of Maryland, 1995.

Copyright c©1997 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or direct commer-
cial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Publications Dept., ACM Inc., fax
+1 (212) 869-0481, or (permissions@acm.org).

9

