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Parallelization via Constrained Storage Mapping Optimization

A key problem for parallelizing compilers is to nd the good tradeo between memory expansion and parallelism. This paper is a new step towards solving this problem. A framework for parallel execution order and storage mapping computation is designed, allowing time and space optimization. Constrained expansion|a theoretical model for expansion strategies|is shown to be very useful in this context.

Introduction

Data dependences are known to hamper automatic parallelization of imperative programs and their e cient compilation on modern processors or supercomputers. A general method to reduce the number of memory-based dependences is to disambiguate memory accesses in assigning distinct memory locations to non-con icting writes, i.e. to expand data structures.

In the extreme case, each memory location is written at most once, and the program is said to be in single-assignment form. Unfortunately, when the control ow cannot be predicted at compile-time, some run-time computation is needed to preserve the original data ow: -functions may be needed to \merge" data de nitions due to several incoming control paths 5].

Parallelization via memory expansion thus requires both moderation in the expansion degree, and e ciency in the run-time computation of -functions. In our framework, moderation is achieved from two complementary directions:

Adding constraints to limit memory expansion, like static expansion avoiding -functions 1], privatization [START_REF] Tu | Automatic array privatization[END_REF][START_REF] Maydan | Array data ow analysis and its use in array privatization[END_REF], or array static single assignment 9]. All these techniques allow partial removal of memory-based dependences, but may extract less parallelism than conversion to single assignment form. Applying storage mapping optimization techniques 4]. Some of these are either schedule-independent 13] or schedule-dependent 10]|yielding better optimizations|whether they require former computation of a parallel execution order (scheduling, tiling, etc.) or not. Trying to get the best of both directions is the goal of this paper. Our contribution is to show the bene t of combining them into a uni ed framework for memory expansion. We present an intra-procedural algorithm applying to any imperative program and most loop nest parallelization techniques.

The paper is organized as follows: Section 2 studies a motivating example showing what we want to achieve. Section 3 introduces the general concepts, before we formally de ne correct constrained storage mappings in Section 4. Then, Section 5 presents our expansion algorithm. We draw conclusions in Section 7.

Motivating Example

We study the pseudo-code in Figure 1.a. Such nested loops with conditionals appear in many kernels, but most parallelization techniques fail to generate e cient code for these programs. Each iteration of a loop spawns instances of statements included in the loop body. In the example program, instances of T are denoted by hT; i; ji, instances of S by hS; i; j; ki, and instances of R by hR; ii, for 1 i; j m and 1 k n. (\P(i; j)" is a boolean function of i and j.) We believe that an e cient parallelization framework must rely on a precise description of the ow of data. Here comes Instance-wise Reaching De nition Analysis (IRDA): It computes for each value read in memory, the run-time instance which produced the value. This write is the (reaching) de nition of the read access|the use. Any IRDA is suitable to our purpose, but Fuzzy Array Data-ow Analysis (FADA) 2] is prefered for its high precision on unrestricted loop nests. Value-based Dependence Analysis 15] is also suitable.

On this example, assume n is non-negative and predicate \P(i; j)" evaluates to true at least one time for each iteration of the outer loop. FADA tells us that the reaching de nition of the read access hS; i; j; ki to x is hT; i; ji when k = 1 and hS; i; j; k 1i when k > 1. We only get an approximate result for de nitions that may reach hR; ii: Those are fhS; i; j; ni : 1 j mg. Indeed, the value of x may only come from S (since n > 0) for the same i (since T executes at least one time for each iteration of the outer loop), and for k = n.

Conversion to Single Assignment Form

Obviously, memory-based dependences on x hampers direct parallelization via scheduling or tiling. Our intent is to expand scalar x so as to get rid of as many dependences as possible. The extreme expansion case is single-assignment (SA) form, where all dependences due to memory reuse are removed.

Reaching de nition analysis is at the core of SA algorithms in tracking values in expanded data-structures. Figure 1.b shows our program converted to SA form, using the result of IRDA. The unique -function implements a run-time choice between values produced by hS; i; 1; ni; : : : ; hS; i; m; ni.

Parallelization

SA removed enough dependences to make the two outer loops parallel, see Figure 2.a. Function is computed at run-time using array Last j . It holds the last value of j when x was assigned. This information allows value recovery in R.

But this parallel program is unusable on any architecture. The main reason is memory usage: Variable x has been replaced by a huge three-dimensional array, plus two smaller arrays. This code is approximately ve times slower than the original program on a single processor (when arrays hold in memory). 

Storage Mapping Optimization

This shows the need for a memory usage optimization technique. Storage mapping optimization (SMO) 4,13,10] consists in reducing memory usage as much as possible as soon as a parallel execution order has been crafted, see Figure 2.b. A single two-dimensional array can be used, while keeping the two outer loops parallel. Run-time computation of function with array Last seems very cheap at rst glance; But execution of Last j = max (Last j , j) hides synchronizations behind the \maximum" computation! As usual, it results a very bad scaling: Good accelerations are obtained for a very small number of processors, then speed-up drops dramatically because of synchronizations.

Figure 3 gives execution time and speed-up for the parallel program, compared to the original (not expanded) one. We used the mp library on an SGI Origin 2000, with m = 64 and n = 2048, and simple expressions for \ " parts. 

Tuning Between Expansion and Parallelism

This bad result shows the need for a ner parallelization scheme. The question is to nd a good tradeo between expansion overhead and parallelism extraction. If we target widely-used parallel computers, the processor number is likely to be less than 100, but SA form extracted two parallel loops involving m 2 processors! The intuition is that we uselessly spilled memory and run-time overhead.

One would prefer a pragmatic expansion scheme, such as maximal static expansion (MSE) 1], or privatization [START_REF] Tu | Automatic array privatization[END_REF][START_REF] Maydan | Array data ow analysis and its use in array privatization[END_REF]. Choosing static expansion has the bene t that no -function is necessary any more: x can be safely expanded along outermost and innermost loops, but expansion along j is forbidden|it requires a -function thus violates the static constraint. Now, only the outer loop is parallel, see Figure 4. We get much better scaling, see Figure 4. However, on a single processor the program still runs two times slower than the original one. This is probably due to bad locality of the innermost loop.

Storage Mapping Optimization Again

Maximal static expansion expanded x along the innermost loop, but it was of no interest regarding parallelism extraction. Combined MSE and storage mapping optimization solves the problem, see Figure 5. Scaling is excellent and parallelization overhead is very low: The parallel program runs 31:5 times faster than the original one on 32 processors (for m = 64 and n = 2048).

This example shows the use of combining constrained expansions|such as privatization and static expansion|with storage mapping optimization techniques, to improve parallelization of general loop nests (with unrestricted conditionals and array subscripts). In the following, we present an algorithm useful for automatic parallelization of imperative programs. Although this algorithm cannot itself choose the \best" parallelization, it aims to simultaneous optimization of expansion and parallelization constraints. 

Problem Statement

Let us start with some vocabulary. Our transformation techniques should be able to distinguish between the distinct run-time instances of a statement. A run-time statement instance is called an operation.

The sequential execution order of the program de nes a total order over operations, call it . Each statement can involve several array or scalar references, at most one of these being in left-hand side: A pair (o; r) of a statement instance (an operation) and a reference in the statement is called an access. The set of all accesses is denoted by A. It can be decomposed into: The set of all reads R|i.e. accesses performing some read in memory|and the set of all writes W.

Parallelization Scheme

Imperative programs are seen as pairs ( ; f e ), where is the sequential order over all operations and f e maps every access to the memory location it either reads or writes. Subscript e models a given execution of the program: f e may depend on input data or initial values of variables. Function f e is the storage mapping of the program. In this model, parallelization means construction of a program ( 0 ; f 0 e ) where 0 is a sub-order of . Obviously, 0 and f 0 e must satisfy several properties in order to preserve the sequential program semantics. Building a new storage mapping f 0 e from f e is called memory expansion. To stress the point that we deal with operations (i.e. run-time instances of statements), we will talk about sources instead of de nitions. In our sense, reaching de nition analysis computes a subset of the program dependences. The source relation computed by IRDA is a pessimistic (a.k.a. conservative) approximation the actual source function e that depends on the execution.

Similarly, we have to handle undecidable \con ict equations" of the form f e (v) = f e (w) and f e (v) 6 = f e (w), since f e depends on the execution. Therefore, we suppose that pessimistic (a.k.a. conservative) approximations l and 6 l are made available by a previous stage of program analysis (e.g. as a side-e ect of IRDA). Moreover, we need a mathematical representation to handle functions and relations over accesses and operations. Since we target parallelizing compilers, this representation must support basic algebraic operations, allow to decide whether a set is empty, whether some access can be the source of another, etc. For all these reasons|and the fact our preferred reaching de nition analysis is FADA 2]|we choose a ne relations as an abstraction. Tools like Omega 12] are well suited to handle such relations.

Introducing Constrained Expansion

The motivating example shows the bene ts of putting an a priori limit to expansion. Static expansion 1] is a good example of constrained expansion. The idea is to avoid dynamic restoration of the data ow by the mean of a relation between writes that possibly de ne the same read: vRw , 9u 2 R : v u^w u.

Whenever two sources of the same read assign the same memory location in the original program, they must still do so in the expanded one. Since \writing in the same memory location" is an equivalence relation, we actually use R , the transitive closure of R. The resulting constraint for f 0 e to be static is 8e; 8v; w 2 W : vR w ^fe (v) = f e (w) ) f 0 e (v) = f 0 e (w). What about other expansion schemes ? The goal of constrained expansion is to design pragmatic techniques that does not expand variables when the incurred overhead is \two strong". To generalize static expansion, we suppose that some equivalence relation on writes is available from previous compilation stages. A storage mapping constrained by is any mapping f 0 e s.t. 8e; 8v; w 2 W : v w ^fe (v) = f e (w) =) f 0 e (v) = f 0 e (w):

It is di cult to decide whether to forbid expansion of some variable or not, and building of constraint is the purpose of Section 6. We leave for Section 5 all discussion about picking the right parallel order. Indeed, the two problems are part of the same bi-criteria optimization problem: Tuning expansion and parallelism for performance. We do not present here a solution to this complex problem. The algorithm described in the next sections should be seen as an integrated tool for parallelization, as soon as the \strategy" has been chosen|what expansion constraints, what kind of schedule, tiling, etc. Most of these strategies have already shown useful and practical for some programs, the main contribution is their integration in an automatic optimization process. The summary of our optimization framework is presented in Figure 6. 

What is a Correct Parallel Execution Order?

Memory expansion|partially|removes dependences due to memory reuse. Suppose exp approximates the dependence relation of ( ; f 0 e ), the expanded program with sequential execution order. ( exp matches when the program is converted to SA form.) Any parallel order 0 (over operations) compatible with dependence relation exp (over accesses) preserve the original semantics: 8(o 1 ; r 1 ); (o 2 ; r 2 ) 2 A : (o 1 ; r 1 ) exp (o 2 ; r 2 ) =) o 1 0 o 2 :

(2) Computation of relation exp from expansion f 0 e is done in Section 4.3.

What is a Correct Expansion?

Given parallel order 0 , we are looking for correct expansions allowing parallel execution to preserve original semantics. Our task is to formalize memory reuse constraints enforced by 0 . We need a new (symmetric) relation ./: v ./ w def () 9u 2 R : v u ^w 6 0 v ^u 6 0 w ^(u w _ w v _ v 6 l w) _ 9u 2 R : w u ^v 6 0 w ^u 6 0 v ^(u v _ v w _ w 6 l v) : (3)

We proved in 4] that the expansion is correct if the following condition holds. 8e; 8v; w 2 W : v ./ w =) f 0 e (v) 6 = f 0 e (w):

(4) This result requires the source v of a read u and an other write w to assign di erent memory locations, when: In the parallel program, w executes between v and u, And in the original one, either w does not execute between v and u or w assigns a di erent memory location from v (v 6 l w).

Computing Parallel Execution Orders and Expansions

We formalized the parallelization correctness with an expansion constraint [START_REF] Barthou | Maximal static expansion[END_REF] and two correctness criteria ( 2) and ( 4). Let us show how solving these equations simultaneously yields a suitable parallel program ( 0 ; f 0 e ).

Maximal constrained expansion: Following the lines of 1], we are interested in removing as many dependences as possible, without violating the expansion constraint. We can prove|like Lemma 1 in 1]|that a constrained expansion is maximal|i.e. assigns the largest number of memory locations while verifying

(1)|i 8e; 8v; w 2 W : v w ^fe (v) = f e (w) , f 0 e (v) = f 0 e (w). Still following 1], we assume that f 0 e = (f e ; ), where is constant on equivalence classes of . Indeed, if f e (v) = f e (w), condition f 0 e (v) = f 0 e (w) becomes equivalent to (v) = (w). Using \con ict equation" approximation l our maximal constrained expansion criterion becomes: 8v; w 2 W; v l w : v w () (v) = (w)

(5) Computing resumes to enumerating equivalence classes of : For any access v in a class of l (operations that \may" hit the same memory location), (v) can be de ned via a representative of the equivalence class of v for relation . Computing the lexicographical minimum is a simple way to nd representatives.

Parallel execution order: It is time to recompute dependences exp of program ( ; f 0 e ): An access w depends on v if they hit the same memory location, v executes before w, and at least one is a write. Then, applying equation (5): 8v; w 2 A : v exp w def () v w _ (v l w ^v w ^v w) _ (v l fu : u wg ^v fu : u wg ^v w) _ (fu : u vg l w ^fu : u vg w ^v w) (

We rely on classical algorithms to compute 0 from exp 6{8,3].

Reducing memory usage: Knowing (f 0 e ; 0 ), we could stop and say we have successfully parallelized our program; But nothing ensures that f 0 e is an \economical" storage mapping (remember the motivating example). We must build a new expansion from 0 that minimizes memory usage while satisfying (4).

It is exactly what the partial expansion algorithm presented in 4] has been crafted for. Following the lines of 10], it generates a new array D S for every assignment statement S, then replaces the left-hand side by D S x mod E S ], where x denotes an iteration vector. Vector E S is computed from (4) using a new graphcoloring algorithm, see 4,10]. When every array D S has been built, renaming is performed (to merge arrays) using a greedy graph-coloring algorithm.

Instead of generating code, one can redesign the output of this algorithm to compute an equivalence relation over writes: The \color" relation. When v w, it is correct to have f 0 e (v) = f 0 e (w). Let Stmt(u) (resp. Index(u)) be the statement (resp. iteration vector) associated with access u. Let NewArray(S) be the name of the new array assigned by S (after partial expansion):

8v; w 2 W : v w def () NewArray(Stmt(v)) = NewArray(Stmt(w)) ^Index(v) mod E Stmt(v) = Index(w) mod E Stmt(w) :
Relation satis es expansion correctness equation ( 4), but annoyingly, nothing ensures that expansion constraint (1) is still satis ed. We have to compute a new equivalence relation from and .

Figure 7 shows that is not su cient: Consider three writes u, v and w s.t. f e (u) = f e (v) = f e (w), u v and v w. ( 5) enforces f 0 e (u) = f 0 e (v) since u v. Moreover, to spare memory, we should apply coloration and set f 0 e (v) = f 0 e (w). Then, no expansion is done and parallel order 0 may be violated.

w if ( ) then x = rw = x u x = v if ( ) then x = ruv = x
Original program, (rw) = fwg and

(ruv) = fu; vg.

u x = w if ( ) then x = rw = x v if ( ) then x = ruv = x
Wrong expansion when moving u to the top: rw may read the value produced by u.

u y = w if ( ) then x = rw = x v if ( ) then y = ruv = y
Correct when assigning y in u and v and moving u to the top.

Fig. 7. Strange interplay of expansion constraint and correctness coloration

To avoid this pitfall, coloration relation must be used with care. One may safely set f 0 e (u) = f 0 e (v) when for all u 0 u, v 0 v: u 0 v 0 (i.e. u 0 and v 0 share the same color). Consider the following relation over writes: 8v; w 2 W : v w () v w _ (8v 0 ; w 0 : v 0 v ^w0 w =) v 0 w 0 ):

The good thing is that relation is an equivalence! The proof is simple since both and are equivalence relations. Moreover, choosing f 0 e (v) = f 0 e (w) when v w and f 0 e (v) 6 = f 0 e (w) when its not the case ensures that f 0 e satis es both the expansion constraint and the expansion correctness criterion. The result is: Theorem 1. Storage mapping f 0 e of the form (f e ; ) such that 8v; w 2 W; v l w : v w () (v) = (w) is the minimal storage mapping, according to relation , allowing the parallel execution order 0 to preserve the program semantics. (Meaning that it uses the fewer memory locations possible, being the only information about permitting two accesses to assign the same memory location or not.) Theorem 1 gives us an automatic method to minimize memory usage, according to a given parallel order and a prede ned expansion constraint.

Code Generation Algorithm

We start with a summary of the optimization problem. Section 4 yields the system:

8 > > > > < > > > > :
Constraints on f 0 e = (f e ; ):

v l w ^v w ) (v) = (w) v l w ^v ./ w ) (v) 6 = (w)
Constraints on 0 :

(o 1 ; r 1 ) exp (o 2 ; r 2 ) ) o Expansion scheme (static expansion, etc.)

The algorithm to solve this system enhances the one proposed in 4] to handle constrained expansion. We use the notations Stmt(hS; xi) = S and Index(hS; xi) = x, Array(S) is the name of the original data structure assigned by statement S, and Subscript(u) is the subscript (program text) associated with access u. Inputs are the sequential program, the result of an IRDA, the expansion constraint, and pessimistic approximations l and 6 l.

1. Compute parallel order 0 from , l, , and , by rst computing dependence relation exp then applying your prefered parallelization algorithm (scheduling, tiling, etc.). 

Building Expansion Constraints

Our goal here is not to choose the right constraint suitable to expand a given program; But it does not mean leaving the user compute relation ! As shown in Section 3.2, enforcing the expansion to be static corresponds to setting = R . The constraint is thus built from IRDA results 1].

Another example is privatization, seen as expansion along some surrounding loops, without renaming. Consider two accesses u and v writing into the same memory location. After privatization, u and v assign the same location if their iteration vectors coincide on the components associated with privatized loops: u v () Index(u) privatized loops] = Index(v) privatized loops];

where Index(u) privatized loops] holds counters of privatized loops for u.

Building the constraint for array SSA is even simpler. Instances of the same statement assigning the same memory location must still do so in the expanded program (only variable renaming is performed): u v () Stmt(u) = Stmt(v);

These three practical examples give the insight that building from the formal de nition of an expansion strategy is not di cult. New expansion strategies should be designed and expressed as constraints|statement-by-statement, user-de ned, knowledge-based, and especially architecture dependent (number of processors, memory hierarchy, communication model) constraints.

Conclusion and Perspectives

Expanding data structures is a classical transformation to cut memory-based dependences. The questions are (1) \What is the good expansion for my favorite program and architecture?", and (2) \What is the good parallel loop reordering algorithm?". We believe that better performance could be achieved if both questions are handled simultaneously.

This paper introduces expansion constraints to tune between expansion overhead (time and space) and parallelism extraction. When the parallel order has been built, storage optimization is performed to reduce memory usage. We designed a kind of integrated tool for parallelization, taking the expansion strategy and parallel order computation algorithm as input from an other part of the compiler, or even the user. Our techniques are either novel or generalize previous work to unrestricted nests of loops.

We advocate for the use of constrained expansion in parallelizing compilers, since its integration with other parallelization techniques (scheduling, tiling, storage mapping optimization, etc.) has been shown possible by this work. The goal is now to design pragmatic constraints and to propose a real bi-criteria optimization algorithm for expansion overhead and parallelism extraction.
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