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Storage Mapping Optimization for Parallel

Programs

Albert Cohen and Vincent Lefebvre

PRiSM, Universit�e de Versailles, 45 avenue des

�

Etats-Unis, 78035 Versailles, France

Abstract. Data dependences are known to hamper e�cient paralleliza-

tion of programs. Memory expansion is a general method to remove de-

pendences in assigning distinct memory locations to dependent writes.

Parallelization via memory expansion requires both moderation in the

expansion degree and e�ciency at run-time. We present a general storage

mapping optimization framework for imperative programs, applicable to

most loop nest parallelization techniques.

1 Introduction

Data dependences are known to hamper automatic parallelization of imperative

programs and their e�cient compilation on modern processors or supercom-

puters. A general method to reduce the number of memory-based dependences

is to disambiguate memory accesses in assigning distinct memory locations to

non-con
icting writes, i.e. to expand data structures. In parallel processing, ex-

panding a datum also allows to place one copy of the datum on each processor,

enhancing parallelism. This technique is known as array privatization [5,12, 16]

and is extremely important to parallelizing and vectorizing compilers.

In the extreme case, each memory location is written at most once, and

the program is said to be in single-assignment form (total memory expansion).

The high memory cost is a major drawback of this method. Moreover, when

the control 
ow cannot be predicted at compile-time, some run-time computa-

tion is needed to preserve the original data 
ow: Similarly to the static single-

assignment framework [6], �-functions may be needed to \merge" possible data

de�nitions due to several incoming control paths.

Therefore parallelization via memory expansion requires both moderation in

the expansion degree, and e�ciency in the run-time computation of �-functions.

A technique limited to a�ne loop-nests was proposed in [11] to optimize memory

management. The systolic community have a similar technique implemented in

ALPHA compilers [14]. A di�erent approach [15] is limited to perfect uniform

loop-nests, and introduces universal storage mappings. We present a general

storage mapping optimization framework for expansion of imperative programs,

applicable to most parallelization techniques, for any nest of loops with unre-

stricted conditionals and array subscripts.

Section 2 studies a motivating example showing what we want to achieve, be-

fore pointing out contributions in more detail. Section 3 formally de�nes storage

mapping optimization, then we present our algorithm in Section 4. Experimental

results are studied in Section 5, before we conclude.



2 Motivating Example

We �rst study the kernel in Figure 1.1, which appears in several convolution

codes

1

; Parts denoted by � � � have no side-e�ect on variable x. For any statement

in a loop nest, the iteration vector is built from surrounding loop counters

2

.

Each loop iteration spawns instances of statements included in the loop body:

Instances of S are denoted by hS; i; ji, for 1 � i � n and 1 � j � 1.

real x

for i = 1 to n

T x = � � �

for j = 1 to � � �

S x = x � � �

end for

R � � � = x � � �

end for

1.1. Original program.

real D

T

[n], D

S

[n, m]

for == i = 1 to n

T D

T

[i] = � � �

for j = 1 to � � �

S D

S

[i] = if(j=1) D

T

[i]

else D

S

[i, j-1] � � �

end for

R � � � = if(j=1) D

T

[i]

else D

S

[i, j-1] � � �

end for

1.2. Single assignment.

real D

TS

[n]

for == i = 1 to n

T D

TS

[i] = � � �

for j = 1 to � � �

S D

TS

[i] = D

TS

[i] � � �

end for

R � � � = D

TS

[i] � � �

end for

1.3. Partial expansion.

Fig. 1. Convolution example.

2.1 Instance-wise Reaching De�nition Analysis

We believe that an e�cient parallelization framework must rely on a precise

knowledge of the 
ow of data, and advocate for Instance-wise Reaching De�nition

Analysis (IRDA): It computes which instance of which write statement de�ned

the value used by a given instance of a statement. This write is the (reaching)

de�nition of the read access.

Any IRDA is suitable to our purpose, but Fuzzy Array Data-
ow Analysis

(FADA) [1] is prefered since it handles any loop nest and achieves today's best

precision. Value-based Dependence Analysis [17] is also a good IRDA. In the

following, � is alternatively seen as a function and as a relation. The results for

references x in right-hand side of R and S are nested conditionals: �(hS; i; ji; x) =

if j = 1 then fTg else fhS; i; j � 1ig, �(hR; ii; x) = fhS; i; ji : 1 � jg.

2.2 Conversion to Single Assignment Form

Here, memory-based dependences hampers direct parallelization via scheduling

or tiling. We need to expand scalar x and remove as many output-, anti- and

true-dependences as possible. In the extreme expansion case, we would like to

1

E.g. Horn and Schunck's 3D Gaussian smoothing by separable convolution.

2

When dealing with while loops, we introduce arti�cial integer counters.



convert the program into single-assignment (SA) form [8], where all dependences

due to memory reuse are removed.

Reaching de�nition analysis is at the core of SA algorithms, since it records

the location of values in expanded data-structures. However, when the 
ow

of data is unknown at compile-time, �-functions are introduced for run-time

restoration of values [4,6]. Figure 1.2 shows our program converted to SA form,

with the outer loop marked parallel (m is the maximum number of iterations

that can take the inner loop). A �-function is necessary, but can be computed

at low cost: It represents the last iteration of the inner loop.

2.3 Reducing Memory Usage

SA programs su�er from high memory requirements: S now assigns a huge n�m

array. Optimizing memory usage is thus a critical point when applying memory

expansion techniques to parallelization.

Figure 1.3 shows the parallel program after partial expansion. Since T exe-

cutes before the inner loop in the parallel version, S and T may assign the same

array. Moreover a one-dimensional array is su�cient since the inner loop is not

parallel. As a side-e�ect, no �-function is needed any more. Storage requirement

is n, to be compared with n�m+n in the SA version, and with 1 in the original

program (with no legal parallel reordering).

We have built an optimized schedule-independent or universal storage map-

ping, in the sense of [15]. On many programs, a more memory-economical tech-

nique consists in computing a legal storage mapping according to a given parallel

execution order, instead of �nding a universal storage compatible with any legal

execution order. This is done in [11] for a�ne loop nests only.

Our contributions are the following: Formalize the correctness of a storage

mapping, according to a given parallel execution order, for any nest of loops with

unrestricted conditional expressions and array subscripts; Show that universal

storage mappings de�ned in [15] correspond to correct storage mappings accord-

ing to the data-
ow execution order ; Present an algorithm for storage mapping

optimization, applicable to any nest of loops and all parallelization techniques

based on polyhedral dependence graphs.

3 Formalization of the Correctness

Let us start with some vocabulary. A run-time statement instance is called an

operation. The sequential execution order of the program de�nes a total order

over operations, call it �. Each statement can involve several array or scalar

references, at most one of these being in left-hand side. A pair (o; r) of an oper-

ation and a reference in the statement is called an access. The set of all accesses

is denoted by A, built of R, the set of all reads|i.e. accesses performing some

read in memory|andW, the set of all writes.

Imperative programs are seen as pairs (�; f

e

), where � is the sequential

order over all operations and f

e

maps every access to the memory location



it either reads or writes. Function f

e

is the storage mapping of the program

(subscript e stands for \exact"). Parallelization means construction of a parallel

program (�

0

; f

0

e

), where �

0

is a sub-order of � preserving the sequential program

semantics. Transforming f

e

into the new mapping f

0

e

is calledmemory expansion.

The basis of our parallelization scheme is instance-wise reaching de�nition

analysis: Each read access in a memory location is mapped to the last write

access in the same memory location. To stress the point that we deal with

operations (i.e. run-time instances of statements), we talk about sources instead

of de�nitions. In our sense, reaching de�nition analysis computes a subset of

the program dependences (associated with Bernstein's conditions). Practically,

the source relation � computed by IRDA is a pessimistic (a.k.a. conservative)

approximation: A given access may have several \possible sources".

As a compromise between expressivity and computability, and because our

prefered IRDA is FADA [1], we choose a�ne relations as an abstraction. using

tools like Omega [13] and PIP [8].

3.1 Correctness of the Parallelization

What is a correct parallel execution order for a program in SA form? Any ex-

ecution order �

0

(over operations) must preserve the 
ow of data (the source

of an access in the original program executes before this access in the parallel

program): 8e; 8(o

1

; r

1

); (o

2

; r

2

) 2 A : (o

1

; r

1

)�

e

(o

2

; r

2

) ) o

1

�

0

o

2

(where o

1

; o

2

are operations and r

1

; r

2

are references in a statement). Now we want a static

description and approximate �

e

for every execution.

Theorem 1 (Correctness of execution orders). If the following condition

holds, then the parallel order is correct|i.e. preserve the program semantics.

8(o

1

; r

1

); (o

2

; r

2

) 2 A : (o

1

; r

1

)�(o

2

; r

2

) =) o

1

�

0

o

2

: (1)

Given a parallel execution order �

0

, we have to characterize correct expan-

sions allowing parallel execution to preserve the program semantics. We need

to handle \absence of con
ict" equations of the form f

e

(v) 6= f

e

(w), which are

undecidable since subscript function f

e

may be very complicated. Therefore, we

suppose that pessimistic approximation 6l is made available by a previous stage

of program analysis (probably as a side-e�ect of IRDA): f

e

(v) 6= f

e

(w)) v 6l w:

Theorem 2 (Correctness of storage mappings). If the following condition

holds, then the expansion is correct|i.e. allows parallel execution to preserve the

program semantics.

8v; w 2W :

�

9u 2 R : v�u ^ w 6�

0

v ^ u 6�

0

w ^ (u � w _ w � v _ v 6l w)

�

=) f

0

e

(v) 6= f

0

e

(w): (2)

The proof is given in [3]. This result requires the source v of a read u and an other

write w to assign di�erent memory locations, when: In the parallel program: w

executes between v and u; And in the original one: Either w does not execute

between v and u or w assigns a di�erent memory location from v (v 6l w).

Building parallel program (�

0

; f

0

e

) resumes to solving (1) and (2) in sequence.



3.2 Computing Parallel Execution Orders

We rely on classical algorithms to compute parallel order �

0

from the dependence

graph associated with �. Scheduling algorithms [7, 9] compute a function � from

operations to integers (or vectors of integers in the case of multidimensional

schedules [9]). Building �

0

from � is straightforward: u �

0

v , �(u) < �(v).

With additional hypotheses on the original program (such as being a perfect

loop nest), tiling [2,10] algorithms improve data locality and reduces communica-

tions. Given a tiling function T from operations to tile names, and a tile schedule

� from tile names to integers: u �

0

v , �(u) < �(v) _ (T (u) = T (v) ^ u � v).

In both cases|and for any polyhedral representation|computing �

0

yields

an a�ne relation, compatible with the expansion correctness criterion.

Eventually, the data-
ow order de�ned by relation � is supposed (from The-

orem 1) to be a sub-order of every other parallel execution order. Plugging it

into (2) describes schedule-independent storage mappings, compatible with any

parallel execution. This generalizes the technique by Strout et al. [15] to any nest

of loops. Schedule-independent storage mappings have the same \portability" as

SA with a much more economical memory usage. Of course, tuning expansion

to a given parallel execution order generally yields more economical mappings.

4 An Algorithm for Storage Mapping Optimization

Finding the minimal amount of memory to store the values produced by the

program is a graph coloring problem where vertices are operations and edges

represent interferences between operations: There is an edge between v and w i�

they can't share the same memory location, i.e. when the left-hand side of (2)

holds. Since classic coloring algorithms only apply to �nite graphs, Feautrier and

Lefebvre designed a new algorithm [11], which we extend to general loop-nests.

4.1 Partial Expansion Algorithm

Input is the sequential program, the result of an IRDA, and a parallel execution

order (not used for simple SA form conversion); It leaves unchanged its control

structures but thoroughly reconstitutes its data. Let us de�ne Stmt(hS; xi) = S

and Index(hS; xi) = x.

1. For each statement S whose iteration vector is x: Build an expansion vector

E

S

which gives the shape of a new data structure D

S

, see Section 4.2 for

details. Then, the left-hand side (lhs) of S becomes D

S

[x mod E

S

].

2. Considering � as a function from accesses to sets of operations (like in Sec-

tion 2), it can be expressed as a nested conditionals. For each statement S

and iteration vector x, replace each read reference r in the right-hand side

(rhs) with Convert(r), where:

� If �(hS; xi;r) = fug, then Convert(r) = D

Stmt(u)

[Index(u) mod E

Stmt(u)

].

� If �(hS; xi;r) = ;, then Convert(r) = r (the initial reference expression).



� If �(hS; xi; r) is not a singleton, then Convert(r) = �(�(hS; xi;r)); There is a

general method to compute � at run-time, but we prefer pragmatic techniques,

such as the one presented in [3] or another algorithm proposed in [4].

� If �(hS; xi;r) = if p then r

1

else r

2

, then

Convert(r) = if p then Convert(r

1

) else Convert(r

2

).

3. Apply partial renaming to coalesce data structures, using any classical graph

coloring heuristic, see [11].

This algorithm outputs an expanded program whose data are adapted to the

partial execution order �

0

. We are assured that with these new data, the original

program semantic will be preserved in the parallel version.

4.2 Building an Expansion Vector

For each statement S, the expansion vector must ensure that expansion is sys-

tematically done when the lhs of (2) holds, and introduce memory reuse between

instances of S when it does not hold.

The dimension of E

S

is equal to the number of loops surrounding S, written

N

S

. Each element E

S

[p+ 1] is the expansion degree of S at depth p (the depth

of the loop considered), with p 2 [0; N

S

�1] and gives the size of the dimension

(p+ 1) of D

S

. For a given access v, the set of operations which may not write in

the same location as v can be deduced from the expansion correctness criterion

(2), call it W

S

p

(v). It holds all operations w such that:

� w is an instance of S: Stmt(w) = S;

� Index(v)[1::p] = Index(w)[1::p] and Index(v)[p+ 1] < Index(w)[p+ 1];

� And lhs of (2) is satis�ed for v and w, or w and v.

Let w

S

p

(v) be the lexicographic maximum of W

S

p

(v). The following de�nition

of E

S

has been proven to forbid any output-dependence between instances of S

satisfying the lhs of (2) [3, 11].

E

S

[p] = max(Index(w

S

p

)[p+ 1]� Index(v)[p + 1]+ 1) (3)

Computing this for each dimension of E

S

ensures that D

S

has a su�cient size for

the expansion to preserve the sequential program semantics.

4.3 Summary of the Expansion Process

Since we consider unrestricted loop nests, some approximations

3

are performed

to stick with a�ne relations (automatically processed by PIP or Omega).

The more general application of our technique starts with IRDA, then apply a

parallelization algorithm using � as dependence graph (thus avoiding constraints

due to spurious memory-based dependences), describe the result as a partial

order �

0

, and eventually apply the partial expansion algorithm. This technique

3

Source function � is a pessimistic approximation, as well as 6l.



yields the best results, but involves an external parallelization technique, such

as scheduling or tiling. It is well suited to parallelizing compilers.

If one looks for a schedule-independent storage mapping, the second tech-

nique sets the partial order �

0

according to �, the data-
ow execution order

4

.

This is useful whenever no parallel execution scheme is enforced: The \portabil-

ity" of SA form is preserved, at a much lower cost in memory usage.

5 Experimental Results

Partial expansion has been implemented for Cray-Fortran a�ne loop nests [11].

Semi-automatic storage mapping optimization has also been performed on gen-

eral loop-nests, using FADA, Omega, and PIP.

The result for the motivating example is that the storage mapping computed

from a scheduled or tiled version is the same as the schedule-independent one

(computed from the data-
ow execution order). The resulting program is the

same as the hand-crafted one in Figure 1.

A few experiments have been made on an SGI Origin 2000, using the mp

library (but not PCA, the built-in automatic parallelizer...). As one would ex-

pect, results for the convolution program are excellent even for small values

of n. The interested reader may �nd more results on the following web page:

http://www.prism.uvsq.fr/~acohen/smo/smo.html.

6 Conclusion and Perspectives

Expanding data structures is a classical optimization to cut memory-based de-

pendences. The �rst problem is to ensure that all reads refer to the correct

memory location, in the generated code. When control and data 
ow cannot

be known at compile-time, run-time computations have to be done to �nd the

identity of the correct memory location. The second problem is that converting

programs to single-assignment form is too costly, in terms of memory usage.

We have tackled both problems here, proposing a general method for par-

tial memory expansion based on instance-wise reaching de�nition information,

a robust run-time data-
ow restoration scheme, and a versatile storage mapping

optimization algorithm. Our techniques are either novel or generalize previous

work to unrestricted nests of loops.

Future work is twofold. First, improve optimization of the generated code and

study|both theoretically and experimentally|the e�ect of �-functions on par-

allel code performance. Second, study how comprehensive parallelization tech-

niques can be plugged into this framework: Reducing memory usage is a good

thing, but choosing the right parallel execution order is another one.

4

But �

0

must be described as an e�ective order. One must compute the transitive

closure of the symmetric relation: (�

�1

)

+

.
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