
HAL Id: hal-01257314
https://hal.science/hal-01257314

Submitted on 17 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximal Static Expansion
Denis Barthou, Albert Cohen, Jean-François Collard

To cite this version:
Denis Barthou, Albert Cohen, Jean-François Collard. Maximal Static Expansion. International Jour-
nal of Parallel Programming, 2000, 28 (3), pp.213–243. �hal-01257314�

https://hal.science/hal-01257314
https://hal.archives-ouvertes.fr

Maximal Static Expansion

Denis Barthou, Albert Cohen and Jean-Fran�cois Collard

PRiSM, Universit�e de Versailles, 45 avenue des

�

Etats-Unis, 78035 Versailles, France

{bad,acohen,jfc}@prism.uvsq.fr

1 Introduction

Data dependences are known to hamper automatic parallelization of imperative programs and

their e�cient compilation on modern processors or supercomputers. A general method to reduce

the number of memory-based dependences is to disambiguate memory accesses in assigning distinct

memory locations to non-conicting writes, i.e. to expand data structures. In parallel processing,

expanding a datum also allows to place one copy of the datum on each processor, enhancing

parallelism. This technique is known as privatization [26, 20, 11] and is extremely important to

parallelizing and vectorizing compilers [22].

Another way to expand data structures is to use the SSA (or Array SSA [19]) form in the

generated code, i.e., without eliminating the renaming associated with SSA. In a more aggressive

optimization, each memory location is written at most once, and the program is said to be in (plain)

single assignment (SA) form [14, 8]. Unfortunately, when the control ow cannot be predicted at

compile-time, some run-time computation is needed to preserve the original data ow: in the static

single-assignment framework, � functions may be needed to \merge" multiple reaching de�nitions,

i.e. possible data de�nitions due to several incoming control paths [12]. Such � functions may

be an overhead at run-time, especially for non-scalar data structures or when replicated data

are distributed across processors. We are thus looking for a static expansion, i.e. an expansion

of data structures that does not need a � function. (Notice that according to our de�nition,

an expansion in the static single assignment framework may not be static.) The goal of this

paper is to automatically �nd a static way to expand all data structures as much as possible,

i.e. the maximal static expansion (MSE). It may be considered as one possible trade-o� between

parallelism and memory usage. Other possibilities include memory usage, architecture-speci�c

optimizations, etc. and also dependence removal techniques based on a priori knowledge about

which dependences hamper parallel execution [6]. All these techniques are compatible with the

MSE framework: requiring the expansion to be static is just an additional constraint on the whole

program transformation.

We present a framework to derive the maximal static expansion. The input of this framework

is the (perhaps conservative) output of a reaching de�nition analysis, so our method is \optimal"

with respect to the precision of this analysis. Our framework is valid for any imperative program,

without restriction|the only restrictions being those of your favorite reaching de�nition analysis.

We then present an algorithm to construct the maximal static expansion for programs with arrays

and scalars only, but where subscripts and control structures are unrestricted. This paper actually

extends our previous work on static expansion [3], a detailed comparison is proposed in Section 9.

Published in the International Journal of Parallel Programming, 28(3):213{243, June 2000. Copyright
c
 2000

Plenum Publishing Corporation.

1

The paper is organized as follows: Section 2 studies motivating examples showing what we want

to achieve. Section 3 formally de�nes the problem of expansion without �s. Section 4 introduces a

general framework, MSE, to solve this problem. This framework is applied in Section 5 to derive

an algorithm for maximal static expansion on arrays and scalars. This algorithm is illustrated on

the motivating examples in Section 6. Parallelizing compilers applications are studied in Section 7,

and Section 8 reports experimental results. Section 9 contrasts this paper with related work, before

we wrap up in Section 10.

2 Motivating Examples

The general framework presented in this paper is valid for any imperative programs. However, the

three examples we study in this section are basically loop nests over arrays (mainly because our

own analysis [4, 2] is restricted to such programs).

2.1 De�nitions

For any statement, the iteration vector is the vector built from surrounding loop counters. Each

iteration of a loop spawns instances of statements included in the loop body. In the example

program, the for loop on i yields N instances of T , denoted by hT; 1i; : : : ; hT;Ni. Moreover, we

introduce arti�cial integer counters for while loops. E.g., instances of S in Figure 1 are labeled

hS; i; wi, with 1 � i � N and w � 1. The execution order on instances is denoted by �.

2.2 First Example: Dynamic Control Flow

We �rst study the pseudo-code shown in Figure 1; this kernel appears in several convolution codes

1

.

Parts denoted by � � � have no side-e�ect.

real x

for i = 1 to N do

T x = � � �

while � � � do

S x = x � � �

end while

R � � � = x � � �

end for

Figure 1: First example.

Each instance hT; ii assigns a new value to variable x. In turn, statement S assigns x an

unde�ned number of times (possibly zero). The value read in x by statement R is thus de�ned

either by T , or by some instance of S, in the same iteration of the for loop (the same i). Therefore,

if the expansion assigns distinct memory locations to hT; ii and to instances of hS; i; wi, how could

instance hR; ii \know" which memory location to read from?

1

Such codes include horn.c by T. Burkit, implementing Horn and Schunck's algorithm to perform 3D Gaussian

smoothing by separable convolution, and singh.c, written by J. Barron, implementation of Ajit Singh, ICCV, 1990,

pages 168{177. Both codes may be found, among others, in the repository

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-source.html.

2

To formalize this problem, we use a reaching de�nition analysis to describe where values are

de�ned and where they are used. We assume that the reaching de�nition analysis works at statement

instance level. Moreover the analysis may be more or less accurate: when the exact de�nition

that reaches a read instance cannot be predicted at compile time, we suppose that it returns a

conservative set of possible reaching de�nitions for this read.

We may thus call RD the mapping from a read instance to its set of reaching de�nitions. Applied

to the example in Figure 1, it tells us that the set RD (hS; i; wi) of de�nitions reaching instance

hS; i; wi is:

RD(hS; i; wi) =

�

�

�

�

�

�

�

if w > 1

then fhS; i; w� 1ig

else fhT; iig

(1)

And the set RD(hR; ii) of de�nitions reaching instance hR; ii is:

RD(hR; ii) =

�

hT; ii

	

[

�

hS; i; wi : w � 1

	

; (2)

where w is an arti�cial counter of the while-loop.

Let us try to expand scalar x. One way is to convert the program into single-assignment form,

making T write into x'[i] and S into x''[i; w]: then, each memory location is assigned to at most

once, complying with the de�nition of single-assignment (SA). However, what should right-hand

sides look like now? A brute-force application of (2) yields the program in Figure 2. While the

right-hand side of S only depends on w, the right-hand side of R depends on the control ow, thus

needing a function similar to a � function in the static single-assignment (SSA) framework (even

if, on this introductory example, the � function would be very simple) [8].

for i = 1 to N do

T x'[i] = � � �

while � � � do

S x''[i,w] = if w > 1 then x''[i,w-1] else x'[i] � � �

end while

R � � � = �(fhT; iig [fhS; i; wi : w � 1g) � � �

end for

Figure 2: First example, continued.

The aim of this paper is to expand x as much as possible in this program but without having

to insert � functions.

A possible static expansion is to uniformly expand x into x[i] and to avoid output dependencies

between distinct iterations of the for loop. Figure 3 shows the resulting maximal static expansion

of this example. Because the while loop is sequential, it has the same degree of parallelism and is

simpler than the program in single-assignment.

Notice that it should be easy to adapt the array privatization techniques by Maydan et al. [20]

to handle the program in Figure 1; this would tell us that x can be privatized along i. However,

we want to do more than privatization along loops, as illustrated in the following examples.

2.3 Second Example: Array Expansion

Let us give a more complex example: the program in Figure 4 iteratively computes the maximum

of an array B then applies some function foo on its elements. This program is representative of

3

real x[1..N]

for i = 1 to N do

T x[i] = � � �

while � � � do

S x[i] = x[i] � � �

end while

R � � � = x[i] � � �

end for

Figure 3: Expanded version of the �rst example.

a larger class of practical algorithms such as gaussian elimination, eigenvalue computation, integer

linear programming (simplex combined with Gomory cuts) and Fourier-Motzkin elimination steps

[25]. To �nd some parallelism in this program, we would like to expand arrays A and B.

real A[1..N], B[1..N]

for i = 1 to N do

T A[i] = 0

for j = 1 to N do

S if B[j]>A[i] then A[i] = B[j]

R B[j] = foo (B[j], A[i])

end for

end for

i

j

N

N

Figure 4: Second example.

When i > 1, it is easy to see that any value read in array B at instance hS; i; ji or hR; i; ji

is de�ned by hR; i � 1; ji. When i = 1, the initial value of B[j] is read: we assume that the

reaching de�nition of hR; 1; ji and hS; 1; ji is some \virtual" instance ? which executes before all

other instances in the program.

Concerning A, since T executes at the beginning of every iteration of the outer loop, a read

access to A in instance hS; i; ji may only be de�ned by hT; ii or hS; i; j

0

i, for some j

0

, 1 � j

0

< j.

The result cannot be made more precise, however, because the value of the predicate B[j]>A[i] is

unknown at compile time. Figure 4 summarizes the reaching de�nition relations between instances

of S and R: an arrow from (i

0

; j

0

) to (i; j) means that instance (i

0

; j

0

) of S or R de�nes a value that

may reach another instance (i; j) of S or R.

Because each statement involves several references to memory, we need to recall which array

is considered in the reaching de�nition analysis. We will thus consider pairs of run-time instances

and array references instead of simple instances (this will be formally stated in the next section).

4

Now, the result of an instance-wise reaching de�nition analysis are:

RD(hR; i; ji; B[j]) =RD(hS; i; ji;B[j]) =

�

�

�

�

�

�

�

if i > 1

then hR; i� 1; ji

else ?

RD(hR; i; ji; A[i]) = fhS; i; j

0

i : 1 � j

0

� jg [fhT; iig

RD(hS; i; ji;A[i]) = fhS; i; j

0

i : 1 � j

0

< jg [fhT; iig (3)

Because some reaching de�nitions are not known exactly (non-singleton sets), converting this pro-

gram to SA form would require run-time computation of the memory locations read by R and S,

i.e. � functions.

However, expansion of array B along the inner loop does not require � functions, because we

could compute the exact reaching de�nition of references to B[j] in instances of R and S. This is

in fact the result of maximal static expansion. The expanded program is shown in Figure 5; the

�rst iteration of the outer loop has been \peeled out" to avoid costly tests at every iteration.

real A[1..N], B[1..N], B'[1..N,1..N]

T

1

A[1] = 0

for j = 1 to N do

S

1

if B[j]>A[1] then A[1] = B[j]

R

1

B'[j] = foo (B[j], A[1])

end for

for i = 2 to N do

T A[i] = 0

for j = 1 to N do

S if B'[i-1,j]>A[i] then A[i] = B'[i-1,j]

R B'[i,j] = foo (B'[i-1,j], A[i])

end for

end for

Figure 5: Maximal static expansion for the second example.

One may apply classical scheduling algorithms [15, 13] (possibly combined with some tiling of

the iteration space [17, 7]) to the expanded program. One possible solution would be to execute in

a single \parallel front" all instances hS; i; ji and hR; i; ji such that i+ j is equal to some constant

t. The resulting program has the same degree of parallelism as the corresponding single-assignment

program, without the run-time overhead.

2.4 Third Example: Non-A�ne Array Subscripts

Consider the program in Figure 6.a, where foo and bar are arbitrary subscript functions

2

. Since

all array elements are assigned by T , the value read by R at the i

th

iteration must have been

produced by S or T at the same iteration. The data-ow graph is similar to the �rst example:

RD (hR; ii) =

�

hS; ii

	

[

�

hT; i; ji : 1 � j � N

	

: (4)

Maximal static expansion adds a new dimension to A subscripted by i. This allows the �rst loop

to execute in parallel.

2

A[foo(i)] stands for an array subscript between 1 and N , \too complex" to be analyzed at compile-time.

5

real A[1..N]

for i = 1 to N do

for j = 1 to N do

T A[j] = � � �

end for

S A[foo(i)] = � � �

R � � � = � � � A[bar(i)]

end for

Figure 6.a: Source program.

real A[1..N,1..N]

for i = 1 to N do

for j = 1 to N do

T A[j,i] = � � �

end for

S A[foo (i),i] = � � �

R � � � = � � � A[bar(i),i]

end for

Figure 6.b: Expanded version.

Figure 6: Third Example.

These examples show the need for an automatic static expansion technique. We present

in the following section a formal de�nition of expansion and a general framework for maximal

static expansion. We then describe an expansion algorithm for arrays that yields the expanded

programs shown above. Notice that it is easy to recognize the original programs in their expanded

counterparts, which is a convenient property of our algorithm.

It is natural to compare array privatization [20, 26, 11] and maximal static expansion: both

methods expose parallelism in programs at a lower cost than single-assignment form transformation.

However, privatization generally resorts to dynamic restoration of the data ow, it requires that

no dependences are carried by the privatized loop, and it cannot discover \skewed" parallelism

across several loops; it is thus less powerful than general array expansion techniques like maximal

static expansion. Indeed, because of loop-carried dependences, the example of Section 2.3 is not

privatizable (no single loop is parallel and diagonal execution fronts must be considered).

3 Problem Statement

Let us start with some vocabulary, then introduce static expansion.

3.1 De�nitions

Because of the state of memory and possible interactions with its environment, several executions

of the same program may yield di�erent sets of run-time statement instances and di�erent sets of

memory accesses. For a given program P , a program execution e is de�ned as an execution trace of

P , which is a �nite or in�nite (when the program does not terminate) sequence of con�gurations|

i.e. machine states. The set of all possible program executions is denoted by E.

Our program analysis and transformation techniques should be able to distinguish between the

run-time instances of a statement. The sequential execution order of the program de�nes a total

order, denoted by �, over statement instances. Each statement can involve several array or scalar

references, which themselves have several instances called accesses.

De�nition 1 (Access) A pair (o; r) of a run-time statement instance and a reference in the state-

ment is called an access.

The set of all possible accesses (for every possible execution) is denoted by A. This set can

be decomposed into two parts: R is the set of all reads|i.e. accesses performing some read in

memory|and W is the set of all writes. We consider functions and relations over statement

instances and accesses.

6

From the previous de�nitions, a given execution of an imperative program can be seen as a pair

(�; f

e

), where � is the sequential order over all statement instances and f

e

maps every access to

the memory location it either reads or writes. Function f

e

is the storage mapping of the program.

Subscript e in f

e

|and in the following functions and relations|means that f

e

is the exact storage

mapping for execution e 2 E. An exact knowledge of f

e

is impossible in general, since f

e

may

depend on the initial state of memory and/or input data. We therefore assume that a previous

analysis provides a conservative, \may" alias information May:

8e 2 E; 8v; w 2W : f

e

(v) = f

e

(w) =) v May w:

We also assume an instancewise reaching de�nition analysis has been performed: it computes a

mapping from each read access (the use) to the statement instance or instances that may produce

the value. For a given execution e 2 E, it is denoted by RD

e

:

8u 2 R; v 2W : v =RD

e

(u)

def

()

v � u ^ f

e

(u) = f

e

(v) ^

�

8w 2W : u � w _ w � v _ f

e

(v) 6= f

e

(w)

�

:

So de�nition v reaches use u if it executes before the use, if both refer to the same memory location,

and if no intervening write w kills the de�nition.

Here again, knowing RD

e

exactly for every execution e is impossible. We thus assume that a

conservative approximation|over all possible executions|of RD

e

is discovered by the instancewise

reaching de�nition analysis:

De�nition 2 (Pessimistic approximation of reaching de�nitions) Relation RD is any con-

servative approximation of function RD

e

s.t. 8e 2 E; 8u 2 R; 8v 2W : v =RD

e

(u)) v RD u.

Notice that the \theoretical" RD

e

is a function: each read has at most one de�ning write, possibly

none. The \practical" RD has to be a relation: more than one de�nition may be considered to

reach a given use.

Notice also that RD should not be de�ned w.r.t. May: otherwise, the reaching-de�nition infor-

mation would be overly approximate. Indeed, one of the di�culties addressed in [4, 2, 28, 24] is to

avoid this approximation. Conversely, it is easy to build an example where two instances v and w

are such that v RD w and :(v May w).

A storage mapping f

0

e

is called memory expansion of f

e

when it uses at least as much memory

as f

e

. More precisely:

De�nition 3 (Expansion) For a given execution e 2 E, a storage mapping f

0

e

is called memory

expansion of f

e

if

8v; w 2W : f

0

e

(v) = f

0

e

(w) =) f

e

(v) = f

e

(w):

3.2 Introducing Static Expansion

Static expansion has �rst been introduced in [3]. The idea is to avoid dynamic restoration of the

data ow. Let us consider two writes v and w belonging to the same set of reaching de�nitions of

some read u. If they both write in the same memory location (f

e

(v) = f

e

(w)) and if we assign two

distinct memory locations to v and w (f

0

e

(v) 6= f

0

e

(w)), then a � function is needed to restore the

data ow since we do not know which of the two locations has the value needed by u.

We introduce the following relation between de�nitions that possibly reach the same read (recall

that we do not require the reaching de�nition analysis to give exact results):

8v; w 2W : vRw () 9u 2 R : v RD u ^ w RD u:

7

Whenever two de�nitions reaching the same read assign the same memory location in the original

program, they must still assign the same memory location in the expanded program. Since \as-

signing the same memory location" is an equivalence relation, we actually use R

�

, the transitive

closure of R (see Section 5.1 for computation details). Relation R

�

, therefore, generalizes webs [21]

to instances of references, and the rest of this paper shows how to compute R

�

in the presence of

arrays. (Strictly speaking, webs include de�nitions and uses, whereas R

�

apply to de�nitions only.)

Relation R holds between de�nitions that reach the same use. Therefore, mapping these writes

to di�erent memory locations is precisely the case where � functions would be necessary, a case a

static expansion is designed to avoid:

De�nition 4 (Static Expansion) Given an execution e 2 E, an expansion f

0

e

is static if

8v; w 2W : vR

�

w ^ f

e

(v) = f

e

(w) =) f

0

e

(v) = f

0

e

(w): (5)

Now, we are interested in removing as many dependences as possible, without introducing �

functions. We are looking for the maximal static expansion (MSE), assigning the largest number

of memory locations while verifying (5):

De�nition 5 (Maximal Static Expansion) Given an execution e 2 E, a static expansion f

0

e

is

maximal on the set of writes W, if for any static expansion f

00

e

,

8v; w 2W : f

0

e

(v) = f

0

e

(w) =) f

00

e

(v) = f

00

e

(w): (6)

Intuitively, if f

0

e

is maximal, then f

00

e

cannot do better: it maps two writes to the same memory

location when f

0

e

does.

We need to characterize the sets of statement instances on which a maximal static expansion

f

0

e

is constant, i.e. equivalence classes of relation fu; v 2W : f

0

e

(u) = f

0

e

(v)g. However, this hardly

gives us an expansion scheme, because this result does not tell us how much each individual memory

location should be expanded. The purpose of Section 4 is to design a practical expansion algorithm

for each memory location used in the original program.

4 Maximal Static Expansion

Following the lines of [3], we are interested in the static expansion which removes the largest number

of dependences.

Lemma 1 (Maximal Static Expansion) Given an execution e 2 E, storage mapping f

0

e

is a

maximal static expansion if and only if

8v; w 2W : vR

�

w ^ f

e

(v) = f

e

(w) () f

0

e

(v) = f

0

e

(w) (7)

Proof: Su�cient condition|the \if" part

Let f

0

e

be a mapping s.t. 8u; v 2 W : f

0

e

(u) = f

0

e

(v) , uR

�

v ^ f

e

(u) = f

e

(v): By

de�nition, f

0

e

is a static expansion.

Let us show that f

0

e

is maximal. Suppose that for u; v 2 W: f

0

e

(u) = f

0

e

(v). (7)

implies uR

�

v and f

e

(u) = f

e

(v). Thus, from (5), any other static expansion f

00

e

satis�es

f

00

e

(u) = f

00

e

(v) too. Hence, f

0

e

(u) = f

0

e

(v)) f

00

e

(u) = f

00

e

(v), so f

0

e

is maximal.

Necessary condition|the \only if" part

8

Let f

0

e

be a maximal static expansion. Because f

0

e

is a static expansion, we only have

to prove that 8u; v 2W : f

0

e

(u) = f

0

e

(v)) uR

�

v ^ f

e

(u) = f

e

(v).

On the one hand, f

0

e

(u) = f

0

e

(v)) f

e

(u) = f

e

(v) because f

e

is an expansion. On the

other hand, for some u and v in W, assume f

0

e

(u) = f

0

e

(v) and :uR

�

v. We show that it

contradicts the maximality of f

0

e

: for any w in W, let f

00

e

(w) = f

0

e

(w) when :uR

�

w, and

f

00

e

(w) = c when uR

�

w, for some c 6= f

0

e

(u). f

00

e

is a static expansion: By construction,

f

00

e

(u

0

) = f

00

e

(v

0

) for any u

0

and v

0

such that u

0

R

�

v

0

. The contradiction comes from the

fact that f

00

e

(u) 6= f

00

e

(v). �

Results above make use of a general memory expansion f

0

e

. However, constructing it from

scratch is another issue. To see why, consider a memory location c and two accesses v and w

writing into c. Assume that vR

�

w: these accesses must assign the same memory location in the

expanded program. Now assume the contrary: if :vR

�

w, then the expansion should make them

assign two distinct memory locations.

We are thus strongly encouraged to choose an expansion f

0

e

of the form (f

e

; �) where function

� is constructed by the analysis and must be constant on equivalence classes of R

�

. For a given

execution e, f

0

e

is a maximal static expansion if function � satis�es the following equation:

8v; w 2W; f

e

(v) = f

e

(w) : vR

�

w () �(v) = �(w):

In practice, f

e

(v) = f

e

(w) can only be decided when f

e

is a�ne. In general, we have to approximate

f

e

with relation May and derive two constraints from the previous equation:

Expansion must be static: 8v; w 2W : v May w ^ vR

�

w =) �(v) = �(w); (8)

Expansion must be maximal: 8v; w 2W : v May w ^ :(vR

�

w) =) �(v) 6= �(w): (9)

Notice (9) is a graph coloring problem: it says that two writes cannot \share the same color" if

related. However, handling the symbolic equations involved and (8) and (9) simultaneously make

the construction of � a di�cult problem.

On the other hand, the computation is easier if we assume relation May is transitive : con-

structing � in (8) becomes a problem of enumerating equivalence classes. (Actually, we believe that

relation May di�ers from May

�

only in contrived examples.) Therefore, we consider the following

maximal static expansion criterion:

8v; w 2W; v May

�

w : vR

�

w () �(v) = �(w) (10)

Now, given an equivalence class of May, classes of R

�

are exactly the sets where storage mapping

f

0

e

is constant:

Theorem 1 Given a program execution e 2 E, a storage mapping f

0

e

= (f

e

; �) is a maximal static

expansion i� for each equivalence class C 2

W

�

May

�

, � is constant on each class in

C

�

R

�

and takes

distinct values between di�erent classes: 8v; w 2 C : vR

�

w , �(v) = �(w).

Proof: C 2

W

�

May

�

denotes a set of writes which may assign the same memory cell, and

C

�

R

�

is the set of equivalence classes for relation R

�

on writes in C. A straightforward

application of (10) concludes the proof. �

Notice that � is only constrained within the same class C: if C

1

;C

2

2

W

�

May

�

with C

1

6= C

2

,

u

1

2 C

1

and u

2

2 C

2

, nothing prevents that �(u

1

) = �(u

2

). As a consequence, two maximal

static expansions f

0

e

and f

00

e

are identical on a class of

W

�

May

�

, up to a one-to-one mapping between

constant values. An interesting result follows:

9

Lemma 2 The expansion factor for each memory location assigned by writes in C is Card(

C

�

R

�

).

Let C be an equivalence class in

W

�

May

�

(statement instances that may hit the same memory

location). Suppose we have a function � mapping each write u in C to a representative of its

equivalence class in C (see Section 5.1 for details). One may label each class in

C

�

R

�

, or equiva-

lently, label each element of �(C). Such a labeling scheme is obviously arbitrary, but all programs

transformed using our method are equivalent up to a permutation of these labels. Labeling boils

down to scanning exactly once all the integer points in the set of representatives �(C), which can

be done using classical techniques [1, 10]. Now, remember that function f

0

e

is of the form (f

e

; �).

From Theorem 1, we can take for �(u) the label we choose for �(u), then storage mapping f

0

e

is a

maximal static expansion for our program.

Eventually, one has to generate code for the expanded program, using storage mapping f

0

e

. It

is done in Section 5.1.

5 Algorithm

The maximal static expansion (MSE) scheme we just designed is general enough to handle any

imperative program. More precisely, you may expand any imperative program using MSE, provided

that a reaching de�nition analysis technique can handle it (at the instance level) and that transitive

closure computation, relation composition, intersection, and so on, are feasible in your framework.

Expanding scalars and arrays is done by renaming the variables and adding new dimensions

to arrays; however, no straightforward expansion exists for trees, graphs, dynamic data structures

with pointers... In the general case, appropriate expansion \rules" must be de�ned|depending on

both the data and control structures.

In the remainder of the paper, since we apply our own reaching de�nition analysis to maximal

static expansion, we inherit its syntactical restrictions: data structures are scalars and arrays;

Pointers are not allowed. Loops, conditionals and array subscripts are unrestricted. This does

not mean that the MSE framework is limited to loop nests and arrays: only the practical code

generation algorithm is.

5.1 Expansion Algorithm

We present the expansion algorithm in Figure 7.

An interesting but technical remark would be that, seeing function � as a parameterized vector,

a few dimensions may have constant values on large and regular sets of accesses. Indeed, they may

represent the \statement part" of an instance. In such case, splitting array A into several (renamed)

data structures

3

should improve performance and decrease memory usage (avoiding convex hulls of

disjoint polyhedra). Other techniques reducing the number of useless memory locations allocated

by our algorithm are not described in this paper.

5.2 Finding Representatives for Equivalence Classes

Finding a canonical representative in a set is not a simple matter, and di�erent techniques may yield

di�erent complexity numbers. We choose the lexicographic minimum because it can be computed

using classical techniques, and our �rst experiments gave us good results.

3

Recall that in single-assignment form, statements assign disjoint (renamed) data structures.

10

Input: The original program, reaching de�nitions expressed as an a�ne relation RD over iteration

variables and symbolic constants, and may-alias relation May.

Output: Maximal static expansion of the program, with shape declaration of the new data struc-

tures.

First Step, Computing Relation May

�

: Compute relation May

�

, as shown in Section 5.4.

Second Step, Computing Relation R

�

: Compute relation R =RD � RD

�1

, where RD

�1

is the

symmetrical relation of RD. Computation of the transitive closure R

�

is performed with

Omega [18]; see Section 5.4 for practical computation details.

Third Step, Computing Representatives: The representative of a write u 2 C is: �(u) =

min

�

(fu

0

May

�

u : u

0

R

�

ug).

Fourth Step, Labeling Representatives: To label memory locations, we consider in turn

(parametrically) each equivalence class C for relation May

�

, and restrict the domain of �

to C. We then associate each location to an integer point in the a�ne polyhedron of repre-

sentatives �(C). Polyhedron scanning techniques [1, 10] can be applied to compute labeling

function �.

Fifth Step, Code Generation: Control structures are left unchanged in the program (paral-

lelization is the subject of Section 7).

Left-hand side: Any reference A[Subscript(u)] in left-hand side|Subscript(u) denotes the

subscript function|is transformed into A[Subscript(u); �(u)].

Right-hand side: For any reference in the right-hand side, one has to �nd the label of

the source of the read. Technically, any read A[Subscript(u)] is transformed into

A[Subscript(u); �(RD (u))]. (Recall that RD (u) is a set, mapped by construction of

� to a single label �(RD (u)).)

When � is a conditional whose predicate is a�ne w.r.t. loop counters, the conditional should

be taken out of A's subscript for e�ciency.

Sixth Step, Shape Declaration: Let �

A

be the maximum value of �(u) on write accesses u to

an array A. (This is a componentwise maximum when �(u) is a vector.) Then, previous

declaration A[: : :] is transformed into A[: : : ; �

A

]. A[:::;max

u2W^Array(u)=A

�(u)].

Figure 7: Algorithm for maximal static expansion

Notice also that representatives must be described by a function � on write instances. Therefore,

the good \parametric" properties of lexicographical minimum computations [14, 23] are well suited

to our purpose.

A general technique to compute the lexicographical minimum follows. Let � be an equivalence

relation, and C an equivalence class for �. The lexicographical minimum of C is:

min

�

(C) = v 2 C s:t: @u 2 C; u � v: (11)

Since � is a relation, we can rewrite the de�nition with algebraic operations:

min

�

(C) =

�

� n(� � �)

�

(C) (12)

11

5.3 Is our Result Maximal?

Our expansion scheme depends on the transitive closure calculator, and of course on the accuracy

of input information: instancewise reaching de�nitions RD and approximation May

�

of the original

program storage mapping. We would like to stress the fact that the expansion produced is static

and maximal with respect to the results yielded by these parts, whatever their accuracy:

� The exact transitive closure may not be available (for computability or complexity reasons)

and may therefore be over-approximated. The expansion factor of a memory location c is

then lower than Card(

fu2W:f

e

(u)=cg

�

R

�

). However, the expansion remains static and ismaximal

with respect to the transitive closure given to the algorithm.

� Relation May

�

approximating the storage mapping of the original program may be more or

less precise, but we required it to be conservative. Being overly conservative has no impact

on the maximality of the result, but the more accurate relation May

�

, the less useless (i.e.

unused) memory is allocated by the expanded program.

5.4 What about Complexity and Practical Use?

We consider in turn every computation involved in the algorithm.

� Computing the reciprocal relation RD

�1

of RD is di�erent from computing the inverse of a

function and merely consists in a swap of the two arguments of RD.

� Composing two relations RD and RD

0

boils down to eliminating y in x RD y ^ y RD

0

z.

This can be done in polynomial time with the Fourier-Motzkin algorithm [23]. The number

of constraints for this problem is equal to twice the number of surrounding loops, plus the

number of governing conditionals and the number of dimensions of the array considered.

� Computing the exact transitive closure of R or May is impossible in general (Presburger

arithmetic is not closed over transitive closure). However, very precise conservative approxi-

mations (if not exact results) can be computed. Kelly et al. [18] do not give a formal bound

on the complexity of their algorithm, but their implementation in the Omega toolkit proved

to be e�cient if not concise. Notice again that the exact transitive closure is not necessary

for our expansion scheme to be correct.

Moreover,R andMay happens to be transitive in most practical cases. In our implementation,

this is �rst checked before triggering the computation of the closure by testing whether the

di�erence (R � R) n R is empty. This step is solved by integer linear programming: it can

be done with the simplex algorithm which is exponential in the worse case but polynomial in

the mean [14]. In all three examples, both relations R and May are already transitive.

� In the algorithm above, � is a lexicographical minimum. The expansion scheme just needs

a way to pick one element per equivalence class. Computing the lexicographical minimum

is easy to implement but may sometimes be rather expensive: it is still an integer linear

programming problem.

� Finally, numbering classes becomes costly only when we have to scan a polyhedral set of rep-

resentatives in dimension greater than 1. In practice, we only had intervals on our examples.

To sum up these observations, we may consider two cases:

� either relations May and R are already transitive (as in our simple examples), and the algo-

rithm complexity is equivalent to that of two integer linear programs (of similar size);

12

� or the transitive closure algorithm must be applied, with a probably exponential complexity

in the number of disjuncts in May or R; if such a complexity is not tolerable, Omega also

provides a quite fast \a�ne closure" algorithm as a conservative approximation of transitive

closure [23].

5.5 What about Application to Real Codes?

Despite good performance results on small kernels (see following sections), it is obvious that reaching

de�nition analysis and MSE will become unacceptably expensive on larger codes. When addressing

real programs, it is therefore necessary to apply the MSE algorithm independently to several loop

nests. A parallelizing compiler (or a pro�ler) can isolate loop nests that are critical program parts

and where spending time in powerful optimization techniques is valuable. Such techniques have

been investigated in the Polaris [5] and SUIF [16] projects.

However, some values may be initialized outside of the analyzed code. When the set of possible

reaching de�nitions for some read accesses is not a singleton and includes ?, it is necessary to

perform some copy-in at the beginning of the code: each array holding values read in the considered

part must be copied into the appropriate expanded arrays. This may be expensive when expanded

arrays hold many copies of original values, but the process is fully parallel and is likely to cost

slightly less than the loop nest itself. In particular, there is no need for tracking write accesses into

temporary arrays as for � function computation.

There is a simple way to avoid copy-in, to the cost of some loss in the expansion degree.

It consists in inserting \virtual write accesses"|before any other access in the loop nest|for

every memory location and replacing ?s in the reaching de�nition relation by the appropriate

virtual access. Since all ?s have been removed, computing the maximal static expansion from

the modi�ed reaching de�nition relation requires no copy-in; but additional constraints due to the

\virtual accesses" may forbid some array expansions. This technique is especially useful when many

temporary arrays are involved in a loop nest.

Morever, the data structures created by MSE on each loop nest may be di�erent, and accesses

to the same original array may now be inconsistent. Consider for instance the original pseudo code

in Figure 8.a. We assume the �rst nest was processed separately by MSE, and the second nest by

any technique. The code appears in Figure 8.b. Clearly, references to A may be inconsistent: a

read reference in the second nest does not know which �

1

to read from.

A simple solution is then to insert, between the two loop nests, a copy-out code in which the

original structure is restored (see Figure 8). Doing this only requires to add, at the end of the �rst

nest \virtual accesses" that reads every memory locations written in the nest. Reaching de�nitions

within the nest give the identity of the memory location to read from. Notice that unlike � functions

on arrays, there is no need for this copy-out code to keep track of write accesses with additional

statements and temporary arrays

4

. If we call V (c) the \virtual access" to memory location c after

the loop nest, we can compute the maximal static expansion for the nest and the additional \virtual

accesses", and the value to copy back into c is located in (c; �(RD (V (c)))).

Fortunately, with some knowledge on the program-wide ow of data, several optimizations can

remove the copy-out code

5

. The simplest optimization is to remove the copy-out code for some

data structure when no read access executing after the nest uses a value produced inside this nest.

The copy-out code can also be removed when the read accesses executing after the nest can be

4

Copy-out code can indeed be viewed as a special case of � function implementation.

5

Let us notice that, if MSE is used in codesign, the intermediate copy-code and associated data structures would

correspond to additional logic and bu�ers, respectively. Both should be minimized in complexity and/or size.

13

considered as the \virtual accesses". Eventually, it is always possible to remove the copy-out code

in performing a forward substitution of (c; �(RD (V (c)))) into read accesses to a memory location

c in following nests.

for i � � �

� � � A[f

1

(i)] � � �

end for

� � �

for i � � �

� � � = A[f

2

(i)] � � �

end for

Figure 8.a: Original code.

for i � � �

� � � A1[f

1

(i),�

1

(i)] � � �

end for

� � �

for i � � �

� � � = A1[f

2

(i),{unknown}] � � �

end for

Figure 8.b: MSE version.

for i � � �

� � � A1[f

1

(i),�

1

(i)] � � �

end for

� � �

for c � � � {copy-out code}

A[c] = A1[c,�

1

(RD (� � �))]

end for

� � �

for i � � �

� � � = A[f

2

(i)] � � �

end for

Figure 8.c: MSE with copy-out.

Figure 8: Inserting copy-out code.

We have thus proved that MSE is an incremental technique, i.e. it can be applied independently

on several loop nests. Doing this, however, requires to add constraints to the expansion|through

the use of \virtual accesses"|to enforce that no interference will occur with other nests in the

program. This is still cheaper than � functions since no there is no need to track write accesses.

This solution is fully \static" but it may also forbid useful expansions in some cases.

6 Back to the Examples

This section applies our algorithm to the motivating examples, using the Omega Calculator [23] as

a tool to manipulate a�ne relations.

6.1 First Example

Let us consider the program in Figure 1. Using the Omega Calculator text-based interface, we

describe a step-by-step execution of the expansion algorithm. We have to code instances as integer-

valued vectors. An instance hS

s

; ii is denoted by vector [i,..,s], where [..] possibly pads the

vector with zeroes. We number statements T , S, R with 1, 2, 3 in this order, so hT; ii, hS; i; ji and

hR; ii are written [i,0,1], [i,j,2] and [i,0,3], respectively.

Step 1. From (1) and (2), we construct the relation S of reaching de�nitions:

S := {[i,1,2]->[i,0,1] : 1<=i<=N}

union {[i,w,2]->[i,w-1,2] : 1<=i<=N && 2<=w}

union {[i,0,3]->[i,0,1] : 1<=i<=N}

union {[i,0,3]->[i,w,2] : 1<=i<=N && 1<=w};

Since we have only one memory location, relation May tells us that all instances are related

together, and can be omitted.

14

Step 2. Computing R is straightforward:

S' := inverse S;

Rel := S(S');

Rel;

{[i,0,1]->[i,0,1] : 1<=i<=N} union

{[i,w,2]->[i,0,1] : 1<=i<=N && 1<=w} union

{[i,0,1]->[i,w',2] : 1<=i<=N && 1<=w'} union

{[i,w,2]->[i,w',2] : 1<=i<=N && 1<=w' && 1<=w}

In mathematical terms, we get:

hT; iiRhT; ii () 1 � i � N

hS; i; wiRhS; i; w

0

i () 1 � i � N;w � 1; w

0

� 1

hS; i; wiRhT; ii () 1 � i � N ^ w � 1

hT; iiRhS; i; w

0

i () 1 � i � N ^ w

0

� 1 (13)

Relation R is already transitive, no closure computation is necessary: R = R

�

Step 3. There is only one equivalence class for May

�

.

Let us choose �(u) as the �rst executed instance in the equivalence class of u for R

�

(the least

instance according to the sequential order): �(u) = min

�

(fu

0

: u

0

R

�

ug).

To compute the lexicographical minimum, we describe � by a relation of the form:

�([i; w; s]) = [i

0

; w

0

; s

0

] s.t.[i; w; s]; [i

0

; w

0

; s

0

] 2W ^ [i; w; s]R

�

[i

0

; w

0

; s

0

]

^ (@[i

00

; w

00

; s

00

] 2W : [i; w; s]R

�

[i

00

; w

00

; s

00

] ^ [i

0

; w

0

; s

0

] � [i

00

; w

00

; s

00

])

Here [i; w; s] 2W is always true, and we may compute this expression using (12):

8i; w; 1 � i � N;w � 1 : �(hT; ii) = hT; ii; �(hS; i; wi) = hT; ii:

Step 4. Computing �(W) yields N instances of the form hT; ii. Maximal static expansion of

accesses to variable x requires N memory locations. Here, we choose i as an obvious label for

representative hT; ii:

8i; w; 1 � i � N;w � 1 : �(hS; i; wi) = �(hT; ii) = i: (14)

Step 5. All left-hand side references to x are transformed into x[i]; all references to x in the

right hand side are transformed into x[i] too since their reaching de�nitions are instances of S or

T for the same i. The expanded code is thus exactly the one found intuitively in Figure 3.

Step 6. The size declaration of the new array is x[1..N].

6.2 Second Example

We now consider the program in Figure 4. Instances hT; ii, hS; i; ji and hR; i; ji are denoted by

[i,0,1], [i,j,2] and [i,j,3], respectively.

15

Step 1. From (3), the relation S of reaching de�nitions is de�ned as:

S := {[i,j,2]->[i,0,1] : 1<=i,j<=N}

union {[i,j,3]->[i,0,1] : 1<=i,j<=N}

union {[i,j,2]->[i,j',2] : 1<=i,j,j'<=N && j'<j}

union {[i,j,3]->[i,j',2] : 1<=i,j,j'<=N && j'<=j}

union {[i,j,2]->[i-1,j,3] : 2<=i<=N && 1<=j<=N}

union {[i,j,3]->[i-1,j,3] : 2<=i<=N && 1<=j<=N};

It is easy to compute relation May since all array subscripts are a�ne. This relation is in fact

transitive, i.e. May=May

�

:

May := {[i,0,1]->[i,0,1] : 1<=i<=N}

union {[i,j,2]->[i,j',2] : 1<=i,j,j'<=N}

union {[i,0,1]->[i,j,2] : 1<=i,j<=N}

union {[i,j,2]->[i,0,1] : 1<=i,j<=N}

union {[i,j,3]->[i',j,3] : 1<=i,i',j<=N};

Step 2. As in the �rst example, we compute relation R using Omega:

S' := inverse S;

Rel := S(S');

Rel;

{[i,0,1] -> [i,0,1] : 1 <= i <= N} union

{[i,j,2] -> [i,0,1] : 1 <= i <= N && 1 <= j <= N} union

{[i,j,3] -> [i+1,0,1] : 1 <= i < N && 1 <= j <= N} union

{[i,0,1] -> [i,j',2] : 1 <= i <= N && 1 <= j' <= N} union

{[i,j,2] -> [i,j',2] : 1 <= i <= N && 1 <= j <= N

&& 1 <= j' <= N} union

{[i,j,3] -> [i+1,j',2] : 1 <= j' <= j <= N && 1 <= i < N} union

{[i,0,1] -> [i-1,j',3] : 2 <= i <= N && 1 <= j' <= N} union

{[i,j,2] -> [i-1,j',3] : 1 <= j <= j' <= N && 2 <= i <= N} union

{[i,j,3] -> [i,j,3] : 1 <= i < N && 1 <= j <= N}

Computation of (Rel compose Rel) - Rel shows that relation R is already transitive: R =

R

�

.

Step 3. For u 2 C, �(u) = min

�

(fu

0

May

�

u : u

0

R

�

ug). We compute �(u) using (12) and Omega:

Lex := {[i,0,1]->[i',0,1] : 1<=i<i'<=N}

union {[i,0,1]->[i',j',2] : 1<=i<=i'<=N && 1<=j'<=N}

union {[i,0,1]->[i',j',3] : 1<=i<=i'<=N && 1<=j'<=N}

union {[i,j,2]->[i',0,1] : 1<=i<i'<=N && 1<=j<=N}

union {[i,j,2]->[i',j',2] : 1<=i<=i'<=N

&& (1<=j<j'<=N || 1<=i<i'<=N)}

union {[i,j,2]->[i',j',3] : 1<=i<=i'<=N

&& (1<=j<=j'<=N || 1<=i<i'<=N)}

union {[i,j,3]->[i',0,1] : 1<=i<i'<=N && 1<=j<=N}

union {[i,j,3]->[i',j',2] : 1<=i<=i'<=N

&& (1<=j<j'<=N || 1<=i<i'<=N)}

union {[i,j,3]->[i',j',3] : 1<=i<=i'<=N

&& (1<=j<j'<=N || 1<=i<i'<=N)};

16

RelMay := Rel intersection May;

Rho := RelMay - (Lex compose RelMay);

Rho;

{[i,0,1] -> [i,0,1] : 1 <= i <= N} union

{[i,j,2] -> [i,0,1] : 1 <= i <= N && 1 <= j <= N} union

{[i,j,3] -> [i,j,3] : 1 <= i < N && 1 <= j <= N}

That is:

8i; 1 � i � N : �(hT; ii) = hT; ii

8i; j; 1 � i � N; 1 � j � N : �(hS; i; ji) = hT; ii

8i; j; 1 � i � N; 1 � j � N : �(hR; i; ji) = hR; i; ji

Step 4. We consider each array in turn. LetC be an equivalence class for relation May

�

associated

with writes to array B. There is an integer k s.t. C = fhR; i; ki : 1 � i � Ng. Conversely, if C is an

equivalence class associated with A, there is an integer k s.t.C = fhT; k; 0ig[fhS; k; ji : 1 � j � Ng.

Let us now restrict the domain of � to every equivalence class of R

�

(Beware that the \backslash"

symbol denotes the restriction of a relation's domain in Omega, not set subtraction):

CB := {[i,k,3] : 1<=i<=N};

CA := {[k,0,1]} union {[k,j,2] : 1<=j<=N};

Rho \ CB;

{[i,k,3] -> [i,k,3] : 1 <= k <= N && 1 <= i < N}

Rho \ CA;

{[k,0,1] -> [k,0,1] : 1 <= k <= N} union

{[k,j,2] -> [k,0,1] : 1 <= k <= N && 1 <= j <= N}

A labeling can be found mechanically:

� for a given k, each instance hR; i; ki is mapped to a distinct representative, we thus choose

�(hR; i; ki) = i;

� for a given k, all instances hT; ki and hS; k; ji are mapped to the same representative, we are

thus required to consider �(hT; ki) = �(hS; k; ji) = 1.

We have thus computed the following labeling of write accesses:

8i; j; 1 � i � N; 1 � j � N : �(hR; i; ji) = i

8i; j; 1 � i � N; 1 � j � N : �(hS; i; ji) = �(hT; ii) = 1

Step 5. Only references to array B are expanded: the static expansion code appears in Figure 5

(with an additional loop-peeling).

Step 6. Array A is unchanged and array B is expanded as B[1..N,1..N].

6.3 Third Example: Non-A�ne Array Subscripts

We consider the program in Figure 6.a. Instances hT; i; ji, hS; ii and hR; ii are written [i,j,1],

[i,0,2] and [i,0,3].

17

Step 1. From (4), we build the relation of reaching de�nitions:

S := {[i,0,3]->[i,j,1] : 1<=i,j<=N}

union {[i,0,3]->[i,0,2] : 1<=i<=N};

Since some subscripts are non a�ne, we cannot compute at compile-time the exact relation

between instances writing in some location A[x]. We can only make the following conservative

approximation ofMay: all instances are related together (because theymay assign the same memory

location).

Step 2.

S' := inverse S;

Rel := S(S');

Rel;

{[i,j,1]->[i,j',1] : 1<=i<=N && 1<=j<=N

&& 1<=j'<=N} union

{[i,0,2]->[i,j',1] : 1<=i<=N && 1<=j'<=N} union

{[i,j,1]->[i,0,2] : 1<=i<=N && 1<=j<=N} union

{[i,0,2]->[i,0,2] : 1<=i<=N}

R is already transitive: R = R

�

.

Step 3. There is only one equivalence class for May

�

.

We compute �(u) using Omega:

8i; 1 � i � N : �(hS; ii) = hT; i; 1i

8i; j; 1 � i � N; 1 � j � N : �(hT; i; ji) = hT; i; 1i

Note that every hT; i; ji instance is in relation with hT; i; 1i.

Step 4. Computing �(W) yields N instances of the form hT; ii. Maximal static expansion of

accesses to variable x requires N memory locations. We can use i to label these representatives;

the resulting � function is:

�(hS; ii) = �(hT; i; ji) = i:

Step 5. Using this labeling, all left hand side references to A[� � �] become A[� � �, i] in the

expanded code. Since the source of hR; ii is an instance of S or T at the same iteration i, the right

hand side of R is expanded the same way. Expanding the code thus leads to the intuitive result

given in Figure 6.b.

Step 6. The size declaration of A is now A[1..N,1..N].

7 Parallelization

This section aims to characterize correct parallel execution orders for an expanded program. In our

framework, parallelization means construction of a parallel program (�

0

; f

0

e

) where �

0

is a sub-order

of �.

18

7.1 Computing Dependences After Maximal Static Expansion

The bene�t memory expansion is to remove spurious dependences due to memory reuse. But with

MSE, some memory-based dependences may remain. We consider an execution e of the expanded

program with sequential execution order, (�; f

0

e

). Let us denote by �

(�;f

0

e

)

e

the exact dependence

relation of (�; f

0

e

), and let �

(�;f

0

e

)

denote its conservative approximation. Notice that �

(�;f

0

e

)

actually

equals the RD function when the program is converted to single-assignment form (but not SSA).

Dependences left by MSE are, as usual, of three kinds: (1) output dependences due to writes

connected to each other by � functions. (2) True dependences, from a de�nition to a read, where

the de�nition either may reach the read or is related (by R

�

) to a de�nition that reaches the read.

(3) Anti dependences from a read to a de�nition where the de�nition, even if it executes after the

read, is related (by R

�

) to a de�nition that reaches the read. From equation (10), we de�ne �

(�;f

0

e

)

e

as follows (for a given execution e):

8v; w 2 A : v�

(�;f

0

e

)

e

w () v RD

e

w

_ f

e

(v) = f

e

(w) ^ vR

�

w ^ v � w

_ f

e

(v) = f

e

(RD

e

(w)) ^ vR

�

RD

e

(w) ^ v � w

_ f

e

(w) = f

e

(RD

e

(v))^ RD

e

(v)R

�

w ^ v � w

Then, the following de�nition of �

(�;f

0

e

)

is the best conservative approximation of �

(�;f

0

e

)

e

(supposing

relation May is the best available approximation of function f

e

and RD is the best approximation

of RD

e

):

8v; w 2 A : v�

(�;f

0

e

)

w

def

() v RD w (15)

_ v May w ^ vR

�

w ^ v � w (16)

_

�

9u 2W : u RD w ^ v May u ^ vR

�

u

�

^ v � w (17)

_

�

9u 2W : u RD v ^ u May w ^ uR

�

w

�

^ v � w (18)

Now, since May and R

�

are reexive relations, we observe that (15) implies (17). We may simplify

the de�nition of �

(�;f

0

e

)

:

8v; w 2W : v�

(�;f

0

e

)

w

def

() v May w ^ vR

�

w ^ v � w

8v 2W; w 2 R : v�

(�;f

0

e

)

w

def

()

�

9u 2W : u RD w ^ v May u ^ vR

�

u

�

^ v � w

8v 2 R; w 2W : v�

(�;f

0

e

)

w

def

()

�

9u 2W : u RD v ^ u May w ^ uR

�

w

�

^ v � w (19)

Eventually, we get an algebraic de�nition of the dependence relation after maximal static expansion:

�

(�;f

0

e

)

= (May \R

�

) [(May \R

�

)� RD [RD

�1

�(May \R

�

): (20)

The �rst term describes output-dependences, the second one describes true-dependences (including

reaching de�nitions), and the third one describes anti-dependences.

7.2 What about Parallel Execution Order?

We can rely on classical algorithms to compute parallel order �

0

from the dependence graph asso-

ciated with �

(�;f

0

e

)

(cf. Theorem 2). In particular, when relation �

(�;f

0

e

)

is a�ne|i.e. involves only

19

a�ne inequalities over loop counters and symbolic constants|scheduling [15, 13] algorithms can

be applied. With some additional hypotheses on the original program (such as being a perfect nest

of loops), tiling [17, 7] algorithms also apply.

Any parallel order �

0

(over operations) must \satisfy" dependence relation �

(�;f

0

e

)

(over ac-

cesses):

8e; 8(o

1

; r

1

); (o

2

; r

2

) 2 A : (o

1

; r

1

)�

(�;f

0

e

)

(o

2

; r

2

)) o

1

�

0

o

2

(where o

1

; o

2

are operations and r

1

; r

2

are references in a statement). Now we want a static description and approximate �

(�;f

0

e

)

for every

execution.

Theorem 2 (Parallel execution order correctness criterion) Given the following condition,

the parallel order is correct for the maximal static expansion of the program (it preserves the original

program semantics).

8(o

1

; r

1

); (o

2

; r

2

) 2 A : (o

1

; r

1

)�

(�;f

0

e

)

(o

2

; r

2

) =) o

1

�

0

o

2

: (21)

7.3 Parallelization Example

To illustrate (20) and (21), we parallelize the �rst example in Figure 1. First, we de�ne the

sequential execution order � within Omega (with conventions de�ned in Section 6.1):

Lex := {[i,w,2]->[i',w',2] : 1<=i<=i'<=N && 1<=w,w'

&& (i<i' || w<w')}

union {[i,0,1]->[i',w',2] : 1<=i<=i'<=N && 1<=w'}

union {[i,w,2]->[i',0,1] : 1<=i,i'<=N && 1<=w && i<i'}

union {[i,0,1]->[i',0,1] : 1<=i<i'<=N}

union {[i,0,3]->[i',0,3] : 1<=i<i'<=N}

union {[i,0,1]->[i',0,3] : 1<=i<=i'<=N}

union {[i,0,3]->[i',0,1] : 1<=i<i'<=N}

union {[i,w,2]->[i',0,3] : 1<=i<=i'<=N && 1<=w}

union {[i,0,3]->[i',w',2] : 1<=i<i'<=N && 1<=w'};

Second, recall from Section 6.1 that all writes are in relation for May

�

(since the data structure

is a scalar variable), and that relation R

�

is de�ned by (13). We compute �

(�;f

0

e

)

from (20):

D := (R union R(S) union S'(R)) intersection Lex;

D;

{[i,w,2] -> [i,w',2] : 1 <= i <= N && 1 <= w < w'} union

{[i,0,1] -> [i,w',2] : 1 <= i <= N && 1 <= w'} union

{[i,0,1] -> [i,0,3] : 1 <= i <= N} union

{[i,w,2] -> [i,0,3] : 1 <= i <= N && 1 <= w}

After MSE, the only remaining dependences are between operations sharing the same value of

i. It makes the outer loop parallel (it was not the case without expansion of scalar x). The parallel

program in maximal static expansion is given in Figure 9.b.

8 Experiments

We ran a few experiments on an SGI Origin 2000, using the mp library (but not PCA, the built-in

automatic parallelizer...). Implementation issues are discussed in Section 8.2.

20

8.1 Performance Results for the First Example

For the �rst example, the parallel SA and MSE programs are given in Figure 9. Remember that w

is an arti�cial counter of the while-loop, and M is the maximum number of iterations of this loop.

We have seen that a � function is necessary for SA form, but it can be computed at low cost: it

represents the last iteration of the inner loop.

real D

T

[N], D

S

[N, M]

for == i = 1 to N do

T D

T

[i] = � � �

while � � � do

S D

S

[i] = if (w=1) then D

T

[i]

else D

S

[i, w-1] � � �

end while

R � � � = if (w=1) then D

T

[i]

else D

S

[i, w-1] � � �

{the last two lines implement

�(fhT; ii; hS; i; 1i; : : : ; hS; i;M ig)}

end for

Figure 9.a: Single assignment

real x[N]

for == i = 1 to N do

T x[i] = � � �

while � � � do

S x[i] = x[i] � � �

end while

R � � � = x[i] � � �

end for

Figure 9.b: Maximal static expansion

Figure 9: Parallelization of the �rst example.

Table in Figure 10 �rst describes speed-ups for the maximal static expansion relative to the

original sequential program, then speed-ups for the MSE version relative to the single-assignment

form. Due to � function removal, MSE shows a better scaling : the relative speed-up quickly goes

over 2. Moreover, for larger memory sizes, the SA program may swap or fail for lack of memory.

8.2 Implementation

A prototype of maximal static expansion is implemented in C++ on top of the Omega library.

Computing the class representatives is rather fast for our three examples: it validates our

choice to compute function � (mapping operations to their representatives) using a lexicographical

minimum. As expected, checking for transitivity and computing the lexicographic minimum take

approximately the same amount of time (around 100 milliseconds on a 32MB Sun SPARCstation

M � N

Con�guration 200� 250 200� 500 200� 1000 200� 2000 200� 4000

Speed-ups for MSE versus original program

16 processors 6.72 9.79 12.8 13.4 14.7

32 processors 5.75 9.87 15.3 21.1 24.8

Speed-ups for MSE versus SA

16 processors 1.43 1.63 1.79 1.96 2.07

32 processors 1.16 1.33 1.52 1.80 1.99

Figure 10: Experimental results for the �rst example.

21

5). Interestingly, the whole MSE transformation appears to be much faster than FADA, the in-

stancewise reaching de�nition analysis (which is necessary for most parallelization schemes based

on memory expansion). Our main concern, so far, would be to �nd a way to approximate the

expressions of transitive closures when they become large.

9 Related Work

If the input program is built of nested for loops with a�ne bounds and accesses arrays with a�ne

subscripts, one can �nd a static expansion which is also in single-assignment form. Feautrier [14]

coined the term static control programs for this class of programs.

In the case of programs with general control and unrestricted arrays subscripts, array reaching

de�nition analyses are approximate [9, 4, 2, 27, 28]: Several writes may be the unique de�nition of

a given value, but the analysis cannot tell. [8] describes how to obtain a single-assignment program

at the price of dynamic restoration of data ow.

Many studies are related to array privatization. As hinted above, Maydan et al. [20] proposed

an algorithm for array privatization. However, their method only applies to static control programs.

Tu and Padua [26] proposed a privatization technique for a very large class of programs; but it

resorts to dynamic restoration of the data ow. Another accurate approach using array regions has

been described by Creusillet [11]. Her method avoids the cost of a dynamic restoration and copies

back the privatized elements into the original arrays. As we remarked in Section 2.4, privatization

only detects parallelism along the enclosing loops and is less powerful than general array expansion

techniques (cf. program example in Section 2.3). Conversely, privatization leads to lower memory

overhead in general.

Array SSA [19] generalizes SSA to Arrays. It may be used as a concrete form for generated

code, so as to expand arrays. Its main drawback is the need for � functions. The very purpose of

MSE is to expand data structures as much as possible without having to introduce � functions.

Our previous paper on Maximal Static Expansion [3] had a di�erent approach to non a�ne

subscripts. In that case, representatives of equivalence classes were systematically labeled with a

distinct name. This guaranteed correctness, but sometimes yielded excessive expansion, as illus-

trated in the following example.

for i = 1 to N do

S A[Perm(i)] = � � �

R � � � = A[Perm(i)]

end for

The de�nition reaching hR; ii is exactly hS; ii. Assuming Perm (which may be an array or a

function) is a permutation, no expansion is needed, because instances of S assign distinct memory

locations. However, there are N equivalence classes of R

�

, so the original MSE would label them

with i; 1 � i � N , and expand array A into a two-dimensional array:

for i = 1 to N do

S A[Perm(i),i] = � � �

R � � � = A[Perm(i),i]

end for

The modi�ed framework presented in this paper avoids such unnecessary expansion, thanks to

relation May. Indeed,

8i; i

0

2 f1; : : : ; Ng : hS; iiMay hS; i

0

i () i = i

0

:

22

Therefore, any equivalence class for relation May

�

=May is a singleton.

10 Conclusion and Perspectives

Expanding data structures is a classical optimization to cut memory-based dependences. However,

the generated code has to ensure that all reads refer to the correct memory cell. When control ow

is dynamic, the main drawback of such methods is therefore that some run-time computation has

to be done to decide the identity of the correct memory cell.

This paper presented a new and general expansion framework: a cell can be expanded at most

as many times as there are classes of independent (as far as reaching de�nitions are concerned)

writes. A practical algorithm was given and applied to real-life loop nests accessing arrays.

Interestingly enough, the framework does not require any precise reaching de�nition analysis,

nor does it require the closure computation to be exact. Conservative approximate results are

�ne as well, the only drawback being a probable loss in static expansion. However, we cannot do

any better than that, and in accordance to our de�nition, the static expansion we derive is still

maximal. When the reaching de�nition analysis and/or the transitive closure tool give poor results,

our expansion scheme does not fail but degrades gracefully.

Future work will study the application of the framework to a wider class of problems. We

also intend to enhance the algorithm so as to handle pointer-based data structures and recursive

programs.

Acknowledgments: Authors are supported by the French MENRT and CNRS, INRIA project AAA,

and the German-French ProCoPe program. Access to the SGI Origin 2000 was provided by the Universit�e

Louis Pasteur, Strasbourg, thanks to G.-R. Perrin. We would like to thank Paul Feautrier, M�ax Geigl, Martin

Griebl, Fran�cois Irigoin and Vincent Lefebvre for fruitful discussions on this topic.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proc. of ACM SIGPLAN Symp. on

Principles and Practice of Parallel Programming, pages 39{50, June 1991.

[2] D. Barthou. Array Dataow Analysis in Presence of Non-a�ne Constraints. PhD thesis, Univ. Ver-

sailles, February 1998. http://www.prism.uvsq.fr/~bad/these.html.

[3] D. Barthou, A. Cohen, and J.-F. Collard. Maximal static expansion. In ACM Symp. on Prin. of Prog.

Lang. (PoPL), pages 98{106, San Diego, CA, January 1998.

[4] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array dataow analysis. Journal of Parallel and

Distributed Computing, 40:210{226, 1997.

[5] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeinger, D. Padua, P. Petersen, W. Pottenger,

L. Rauchwerger, P. Tu, and S. Weatherford. Parallel programming with Polaris. IEEE Computer,

29(12):78{82, December 1996.

[6] P.-Y. Calland, A. Darte, Y. Robert, and Fr�ed�eric Vivien. Plugging anti and output dependence removal

techniques into loop parallelization algorithms. Parallel Computing, 23(1{2):251{266, 1997.

[7] L. Carter, J. Ferrante, and S. Flynn Hummel. E�cient multiprocessor parallelism via hierarchical tiling.

In SIAM Conference on Parallel Processing for Scienti�c Computing, 1995.

[8] J.-F. Collard. The advantages of reaching de�nition analyses in Array (S)SA. In Proc. Workshop on

Languages and Compilers for Parallel Computing, Chapel Hill, North Carolina, August 1998. Springer-

Verlag. To appear in June 99.

23

[9] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataow analysis. In ACM SIGPLAN Symp.

on Principles and Practive of Parallel Prog. (PPoPP), pages 92{102, Santa Barbara, CA, July 1995.

[10] J.-F. Collard, P. Feautrier, and T. Risset. Construction of DO loops from systems of a�ne constraints.

Parallel Processing Letters, 5(3), 1995.

[11] B. Creusillet. Array Region Analyses and Applications. PhD thesis, Ecole des Mines de Paris, December

1996.

[12] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. E�ciently computing static

single assignment form and the control dependence graph. ACM Trans. on Prog. Lang. Sys., 13(4):451{

490, October 1991.

[13] A. Darte and F. Vivien. Optimal �ne and medium grain parallelism detection in polyhedral reduced

dependence graphs. Int. Journal of Parallel Programming, 25(6):447{496, December 1997.

[14] P. Feautrier. Dataow analysis of scalar and array references. Int. Journal of Parallel Programming,

20(1):23{53, February 1991.

[15] P. Feautrier. Some e�cient solution to the a�ne scheduling problem, part II, multidimensional time.

Int. J. of Parallel Programming, 21(6), December 1992.

[16] M. Hall et al. Maximizing multiprocessor performance with the SUIF compiler. IEEE Computer,

29(12):84{89, December 1996.

[17] F. Irigoin and R. Triolet. Supernode partitioning. In Proc. 15th POPL, pages 319{328, San Diego, Cal.,

January 1988.

[18] W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman. Transitive closure of in�nite graphs and its applica-

tions. Int. Journal of Parallel Programming, 24(6):579{598, 1996.

[19] K. Knobe and V. Sarkar. Array SSA form and its use in parallelization. In ACM Symp. on Prin. of

Prog. Lang. (PoPL), pages 107{120, San Diego, CA, January 1998.

[20] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array dataow analysis and its use in array

privatization. In Proc. of ACM Conf. on Principles of Programming Languages, pages 2{15, January

1993.

[21] S. S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufmann, 1997.

[22] K. L. Pieper. Parallelizing Compilers: Implementation and E�ectiveness. PhD thesis, Stanford Univer-

sity, Computer Systems Laboratory, June 1993.

[23] W. Pugh. A practical algorithm for exact array dependence analysis. Communications of the ACM,

35(8):27{47, August 1992.

[24] W. Pugh and D. Wonnacott. Constraint-based array dependence analysis. ACM Trans. on Prog. Lang.

and Systems, 3:635{678, May 1998.

[25] A. Schrijver. Theory of linear and integer programming. Wiley, New York, 1986.

[26] P. Tu and D. Padua. Automatic array privatization. In Proc. Sixth Workshop on Languages and

Compilers for Parallel Computing, number 768 in Lecture Notes in Computer Science, pages 500{521,

August 1993. Portland, Oregon.

[27] D. Wonnacott and W. Pugh. Nonlinear array dependence analysis. In Proc. Third Workshop on

Languages, Compilers and Run-Time Systems for Scalable Computers, 1995. Troy, New York.

[28] D. G. Wonnacott. Constraint-Based Array Dependence Analysis. PhD thesis, University of Maryland,

1995.

24

