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Abstract

We present a new approach to dependence testing in the presence of induction variables. Instead of looking for
closed form expressions, our method computesmonotonic evolutionwhich captures the direction in which the value
of a variable changes. This information is used for dependence testing of array references. Under this scheme, closed
form computation and induction variable substitution can be delayed until after the dependence test and be performed
on-demand. The technique can be extended to dynamic data structures, using either pointer-based implementations
or standard object-oriented containers. To improve efficiency, we also propose an optimized (non-iterative) data-flow
algorithm to compute evolution. Experimental results showthat dependence tests based on evolution information
match the accuracy of that based on closed-form computation(implemented in Polaris), and when no closed form
expressions can be calculated, our method is more accurate than that of Polaris.

1 Introduction

Many optimizations are based on induction variable (IV) detection and classification, including loop transformations
for parallelization and strength reduction. An induction variable is broadly defined as a scalar variable (or array ele-
ment) referenced in a cycle of a def-use graph. Although production compilers only implement well-known techniques
for linear IVs [1], more general IV classes have been proposed for parallelizing compilers [7].

In classical dependence analyses, induction variable occurrences are replaced by closed form expressions in order
to break dependences inherent in inductions and enable accurate dependence analysis. Substitution-based approaches,
however, have several drawbacks. A dependence test may report false dependences on some closed form expressions.
Consider Figure 1.a, the closed form expression ofijk is (j-1)*ns*3 + (k-1)*3 + l: Since the expression
is symbolic (due to the coefficientns), most tests will report loop-carried dependences over thej-loop. Moreover, it is
sometimes not possible to represent the value of an induction variable as a closed form expression. This is the case for
nred in Figure 1.b. However, if the compiler could determine thatnred is strictly increasing across iterations, then,
it could also decide that the loop carries no dependence overarraylisred. Eventually, closed form expressions can
be complex, and testing dependences on them may be expensive.

In this paper, we present a method that exploits IV information in dependence testing without closed form compu-
tation. We observe that the values of most induction variables change (“evolve”) monotonically. Consider the example
in Figure 1.a again, any path in the control-flow graph from statementp back to itself must also traverse statement
ijk = ijk+1. This means that the value ofijk increases betweenany two visits of p. In other words, values
of ijk at p are strictly increasing. With the information on the monotonicity of ijk, the compiler can prove that
different executions ofp access different array elements, even when a closed form expression can not be captured as
is the case in the example of Figure 1.b. Therefore, our analysis tries to identifymonotonic evolutionwhich captures
the monotonicity of variables over paths of a control-flow graph.

There has been some related work on monotonic variables [9, 8] that target sequence properties of asinglerefer-
ence. Monotonic evolution is more general since it can be computed betweenany two statements and alongselected
pathsbetween the two statements. The latter feature is especially useful to distinguish between intra-loop and loop-
carried dependences.

The rest of the paper is organized as follows. Section 2 defines the concept of monotonic evolution. Section 3
presents the dependence test based on monotonic evolution.To improve precision, we propose a simple extension to
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— mdg predic do1000 — line 758 —
ijk = 0
do j = 1,ns

do k = 1,ns
do l = 1,3

ijk = ijk+1
p zc(ijk) = � � �

end do
end do

end do

(a) IV with a closed form expression

— qcd setcol do1 — line 2387 —
do l = 1,latt(1)

if (� � �) then
nred = nred+1
lisred(nred) = � � �

else
� � �

endif
� � �

end do

(b) IV with no closed form expression

Figure 1: Motivating examples from the Perfect Benchmark suite

the lattice of evolution states in Section 4. Section 5 modifies the dependence test to take advantage of this new lattice.
Section 6 deals with practical and efficient computation. Section 7 presents experimental results. Section 8 explores
some ideas about extending monotonic evolution to dynamic data structures. Section 9 compares our technique with
others. Section 10 outlines future work and concludes.

2 Monotonic Evolution

The rest of the paper uses the following notions: acontrol-flow path refers to a path in a control-flow graph; a
statement instance refers to an execution of a statement; thevalue ofi at p refers to the value of variablei
immediately before statement instancep is executed.

2.1 Evolution

For dependence testing, it is important to determine whether a variable that appears in subscript expressions may
have the same value at different statement instances. Givenan execution sequence and a variablei, themonotonic
evolution (evolution) ofi describes how the value ofi changes from the beginning to the end of the sequence. We
introduceevolution states to describe possible values of an evolution. The semi-lattice of evolution states is given in
Figure 2, the join operator ist.

> unknown evolution;
E monotonically increasing;
C strictly increasing;
D monotonically decreasing;
B strictly decreasing;
� constant evolution;
? no evolution.

Ordering:

>

E D

C � B

?

Figure 2: The lattice of evolution states

? C E � D B >

Identity ? C E � D B >

Forward ? C C C > > >

Backward ? > > B B B >

Arbitrary ? > > > > > >

Figure 3: Transfer functions of evolution values

Any execution sequence corresponds to a control-flow path where each node along the path represents a statement
instance. We define evolutions in terms of control-flow paths. Each statement is thus interpreted as a transfer function
of evolution values. Given a variablei, we classify a statement as:

� an identity statement (Identity) if it does not change the value ofi, such asj = n;

� a forward induction (Forward) if it always increases the value ofi, such asi = i+1;

� abackward induction (Backward) if it always decreases the value ofi, such asi = i-3;

� anarbitrary assignment (Arbitrary) if it may assign an arbitrary value toi, such asi = n.
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The transfer functions corresponding to each class of statements are given in Table 3.
The notationp aN

i

q represents thejoin (t) of the evolution ofi over all paths that starts fromp and ends atq
(immediately before the lastq is executed),excludingthose traversing any edges in the setN . A special case is whenq
can not be reached fromp, thenp a

i

q is?. Intuitively,p aN
i

q tells us how the value ofi changes when the program
executes from an instance ofp to an instance ofq. The setN is introduced to be able to represent evolutions for a
selected part of a control-flow graph. For instance, we may exclude the back-edge of a loop from an evolution. This
can be used to analyze the evolution within a single loop iteration.

For dependence testing, we are also interested in evolutions that must traverse an intermediate node. We use,
p a

N

i

r a

N

i

q, to denote such an evolution ofi along all paths fromp via r before finally reachingq, excluding those
that traverse any edge inN .

A simple example is presented below where statement “� � � ” does not change the value ofi. Nodes in the graph
are named by statement labels. Evolutions below can be computed following paths in the control-flow graph.

1 do

2 i = 0

3 do

4 i = i+1

5 � � �

6 � � �

b
a

� 3 a

i

3 = >, sincei = 0 is traversed along some paths from3 to 3;

� 5 a

b
i

4 = ?, sinceb is excluded,4 can not be reached from5;

� 4 a

b
i

5 = C, afterb is excluded, there is only one path from4 to 5,
and it traversesi = i+1;

� 3 a

a
i

6 = E, 3 may directly follow the exit edge of loop3 to reach6
without traversingi = i+1.

Figure 4: An example

2.2 The Iterative Algorithm

One may check that the lattice of evolution states is finite and that transfer functions are distributive and monotonic
over this lattice. Therefore,p aN

i

q can be computed as theleast fixed pointof an iterative application of transfer
functions [12] over a “pruned” control-flow graph (to exclude edges inN ). For each statements, let f

s

be the transfer
function ofs and pred(s) be the set of predecessors ofs in the control-flow graph. Letin

s

andout
s

hold the values of
the evolution that ends right before and immediately afters, respectively. Forq, we also keep a special state,state

q

,
that holds the final result of the computation. The followingdata flow equations have to be solved:

in

s

=

G

i2pred(s)

out

i

out

s

= f

s

(in

s

) (1)

To computep aN
i

q, the iterative algorithm starts from nodep. Initially, we havein
p

 �, state
q

 ?, and
out

s

 ? for all statements. The algorithm iteratively solves the data-flow equations (1). During this process, every
time in

q

is updated,1 the new state is joined tostate
q

, i.e.,state
q

 state

q

t in

q

. The algorithm terminates when it
reaches a fixed point, andstate

q

yields the result ofp aN
i

q. An early termination is also possible as soon asstate

q

is
set to>. In Section 6, we will present a more efficient non-iterativemethod to compute evolution.

As opposed to traditional data-flow schemes, this algorithmstarts from a nodep that may be on a cycle on a
control-flow graph. Joiningin

q

to state
q

at each update is thus mandatory becausein

q

doesnot necessarily increase
(in the lattice) across each iteration, as required by the safety and termination proofs in [12]. For instance, applying
the algorithm to5 a

i

3 in Figure 4 yieldsin
3

= � at the first iteration after traversing5, andin
3

= C after traversing
5; 3; 4; 5, yet5 a

i

3 = state

3

= E.

1Whenq = p, the initial value ofin
p

(�) is not joined tostate
p

, since it is not computed (updated) from the data-flow equations.
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2.3 Evolution Composition

The composition operator (�) “chains” two evolutions into a single one where the ending node of the first evolution
is also the starting node of the second one. The value ofp a

N

i

r � r a

M

i

q is state
q

of the second evolution which
is computed by the iterative algorithm starting within

r

 p a

N

i

r (instead ofin
r

 �). Composition can be used
to compute evolutions that must traverse an intermediate node, i.e.,p aN

i

r a

N

i

q = p a

N

i

r � r a

N

i

q: In practice,
composition of evolution does not need to be computed in order. We may compute each evolution in the composition
independently, then, compose their evolution states. Figure 5 defines this operation. Notice that composition is
idempotent, i.e.,a � a = a; and� is the neutral element, i.e.,� � a = a.

� ? C E � D B >

? ? ? ? ? ? ? ?

C ? C C C > > >

E ? C E E > > >

� ? C E � D B >

B ? > > B B B >

D ? > > D D B >

> ? > > > > > >

Figure 5: Composition of evolution states

� Identity(state) = state

� Forward(state) = state �C

� Backward(state) = state �B

� Arbitrary(state) = state � >

Figure 6: Transfer funcitons by composition

Composition is alsocommutativeandassociative. In fact, an evolution along a path consisting of two consecutive
pathsA andB can be computed as the evolution state alongA composed with that alongB. Consider Figure 4, the
evolution ofi along path(4; 5) isC, which can be computed as the composition of the evolutions along4 and5 (i.e.,
C � �). Thus, we may re-define transfer functions given in Table 3 in terms of composition. The new definitions are
given in Figure 6. In fact, transfer functions may be defined for sub-graphs with a single entry and a single exit such
as basic blocks. Consider a sub-graph with an entry node,x. Let y be the node that immediately follows the exit node
of the subgraph. The transfer function of the sub-graph composes the input state with the evolution that traverses the
entire sub-graph fromx to y (not includingy).

3 Dependence Test

1 do

2 if

3 a(i) = � � �

4 i = i+1
b

5 � � � = a(i)

o

b

We use evolution to determine dependences between array references
subscripted by expressions involving induction variables. Consider
statements 3 and 5 in the figure to the right. A dependence testshall
determine whether values ofi at 3 may overlap with those ofi at 5.
We observe that the evolution ofi from 3 to 5 is strictly increasing
(3 a

i

5 = C), i.e., the value ofi at 3 isless thanthe value ofi at any
later instance of 5. If the same can be proven for5 a

i

3, then values of
i at 3 and 5 are always distinct, meaning that 3 and 5 are not dependent.
In this example, however,5 a

i

3 is evaluated toE, and therefore it has
to be assumed that3 is anti-dependent on5.

Consider an expressione and two statementsp andq with identical array accessa(e), at least one of them being
on the left-hand side of an assignment statement. The observation is that, if there are dependences betweenp andq,
thenp a

i

q andq a
i

p cannot both be strict (C, B) or unreachable (?). To prove the absence of any dependence,
we may check that the evolutions betweenp andq are eitherC, B, or?. On the other hand, if a dependence may
exist, the test needs to further classify them as intra-loopor loop-carried. In our scheme, intra-loop and loop-carried
dependences are tested in separate steps for each single loop ` of a nest.

� Intra-loop dependences are concerned with instances that are spawned by the same iteration of a loop. Thus,
evolutions used in the test only need to consider paths betweenp andq that do not traverse any back-edge of
loop`. As discussed below, we assume that loops only exit at the top. Therefore, paths that start within the loop
and do not traverse a back-edge never leave the body of the loop.
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There isno intra-loop dependence betweenp andq for loop`, if,

p a

B

e

q 2 f?;C;Bg ^ q a

B

e

p 2 f?;C;Bg (2)

whereB is the set of all back-edges of the loop.

Consider the previous example again, since3 a

b
i

5 = C and5 ab
i

3 = ?, we conclude that there is no intra-loop
dependence between 3 and 5.

� Loop-carrieddependences are concerned with instances that are spawned by different iterations of a loop,̀, but
the same iteration of any loop that surrounds`. Thus, evolutions used in the test must traverse a back-edgeof
`, and must not traverse any exit edge of`. Note that any path traversing a back-edge of a loop also traverses
the header of the loop (the statement that checks for the loop’s termination). Thus, forcing the traversal of a
back-edge is equivalent to forcing the traversal of the loopheader.

There isno loop-carried dependence betweenp andq for loop`, if,

p a

E

e

h a

E

e

q 2 f?;C;Bg ^ q a

E

e

h a

E

e

p 2 f?;C;Bg (3)

whereE is the set of exit edges of` andh is the header of̀.

In the previous example, since3 ao
i

1 a

o
i

5 = C and5 ao
i

1 a

o
i

3 = E, there is a loop-carried dependence
between 3 and 5 for loop 1.

4 Lattice Extension

The lattice of evolution states is useful to detect value changes in induction variables but not toquantifysuch changes.
Dependence testing for some cases require a little more information. Consider the examples in Figure 7 where array
a is accessed with subscriptsk andk+1. If the dependence test knows that values ofk change by a minimum of 2, it
will detect no loop-carried dependence for accesses toa.

do i = 1,100
a(k) = a(k+1) + � � �

k = k+2
end do

do i = 1,100
a(k) = a(k+1) + � � �

if (� � �) k = k+1
k = k+2

end do

1 do i = 1,100
2 k = k+2
3 t = a(k)
4 a(k) = a(k+1)
5 a(k+1) = t
6 end do

Figure 7: Induction variables with offsets

We introduce new lattice elements to discover such information. For alln � 0, C
n

andB
n

describe increasing
and decreasing evolutions, respectively, where the difference between values of the variable must begreater than
or equalto n. In other words,n characterizes theminimal differencebetween any two values of the variable at the
starting and ending points of the evolution. We calln theminimal distance of the evolution. The evolution states
C

1

andB
1

correspond toC andB of the original lattice, respectively, where the only information is that “the value
has changed” in some direction; andC

0

/B
0

correspond toE/D, where the value might have been constant but the
direction is known in case of a change. Table 1 gives the formal definition oft using theminimumof distances when
joining two increasing or two decreasing evolution states.

Operator� needs to be updated as well. The new table is given in Table 2. The main difference is that composing
C

p

with C
q

yieldsC
p+q

. According to this new definition,� is still commutative and associative, but not idempotent
anymore, e.g.,C

p

�C

p

= C

2p

.
Transfer functions have changed to cope with new elements ofthe lattice, but the algorithm that drives the iterative

computation remains the same. The distance after an induction i = i+q is thesumof current distance, call itp,
with q. Notice thatq has to beknown at compile-time(possibly after constant propagation). Consider the previous
examples, all evolutions between assignments tok across iterations yieldC

2

.
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t ? C

p

� B

p

>

? ? C

p

� B

p

>

C

q

C

q

C

min(p;q)

C

0

> >

� � C

0

� B

0

>

B

q

B

q

> B

0

B

min(p;q)

>

> > > > > >

Table 1: Distance-extended lattice

� ? C

p

� B

p

>

? ? ? ? ? ?

C

q

? C

p+q

C

q

> >

� ? C

p

� B

p

>

B

q

? > B

q

B

p+q

>

> ? > > > >

Table 2: Distance-extended composition

? C

p

� B

p

>

Identity ? C

p

� B

p

>

Forward
q

(with stepq) ? C

p+q

C

q

> >

Backward
q

(with stepq) ? > B

q

B

p+q

>

Arbitrary ? > > > >

This extension makes the lattice infinite, even of infinite height. However, sincestate � state @ state holds, we
still have an interesting property:statetstate�state = state: This means that all descending chains (using operator
t) are offinite length during the fixed point computation. This property guarantees the termination of the fixed point
computation.

5 Improved Dependence Test

We devise a new dependence test to exploit the additional minimal distance information. This test shares some similar-
ities with therange testused in Polaris [3]. Consider two accesses,a(i) atp anda(i+d) atq, i being an induction
variable andd being a constant.2 The value difference betweeni at p andi+d at q is used in the dependence test.
However, since subscripts ofa atp andq are different, this information cannot be computed directly from evolutions.
Of course,i+ d � i if d � 0 at q. Therefore, we may compute the evolution ofi from p to q, then compose it with
C

d

. The resulting evolution captures the difference between the value ofi at an instance ofp and the value ofi+d at
any later instance ofq.

Consider a loop̀, two accesses,a[e] atp anda[e+d] at q. LetB andE denote the sets of back-edges and exit
edges of̀ , respectively.

� If d > 0, there isno intra-loop dependence betweenp andq for loop` when,

p a

B

e

q �C

d

=2 f>; �;C

0

;B

0

g ^ q a

B

e

p �B

d

=2 f>; �;C

0

;B

0

g: (4)

If d < 0,C
d

(resp.B
d

) is replaced byB
�d

(resp.C
�d

) in (4).

� If d > 0, there isno loop-carried dependence betweenp andq for loop ` when,

p a

E

e

h a

E

e

q �C

d

=2 f>; �;C

0

;B

0

g ^ q a

E

e

h a

E

e

p �B

d

=2 f>; �;C

0

;B

0

g: (5)

If d < 0,C
d

(resp.B
d

) is replaced byB
�d

(resp.C
�d

) in (5).

Consider the right-most loop in Figure 7, which swaps every pair of elements of arraya. Sincek is incremented
by 2 per iteration, to test loop-carried dependence between3 and 5, we have3 a

k

1 a

k

5 �C

1

= C

2

�C

1

= C

3

and
5 a

k

1 a

k

3 �B

1

= C

2

�B

1

= C

1

. This proves there is no loop-carried dependence between 3 and 5.

6 Practical Computation

We designed a basic (non-iterative) algorithm to compute evolutions which traverseno back-edgesin the control-flow
graph. This algorithm is the core of the non-iterative method. Any general evolution can be decomposed into segments,
each of which can be computed by the basic algorithm. This method is described in [16].

2Accesses of the forma[i+d
1

] anda[i+d
2

] can be handled asa[j] anda[j+(d
2

� d

1

)].
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Loops with IIVs Parallel Loops with IIVs
Total Subscript Targeted Polaris Monotonic w/ Distance Best

adm 17 17 5 3 2 3 3
bdna 63 62 60 22 34 34 34

dyfesm 15 11 8 7 8 8 8
flo52 15 15 15 12 12 12 12
mdg 29 29 24 12 12 12 13
mg3d 97 97 89 5 5 5 5
ocean 11 6 6 5 4 4 5
qcd 69 69 69 58 63 63 63

spec77 99 59 54 44 1 44 44
trfd 13 13 9 7 6 6 7

Table 3: Experiments with the Perfect Club benchmark suite

6.1 Caching Intermediate Evolution

The dependence test computes two evolutions, for any pair ofaccesses, and for each surrounding loop to be tested (e.g.,
from p to q, and fromq to p). Obviously, computation will not be efficient without optimizing computations across
different evolutions. We propose to cache and reuse intermediate evolutions. Note that, the non-iterative algorithm
decomposes evolutions into the same segments, over and overagain. We can compute and tabulate the results for each
statement and loop to be tested. To further optimize the algorithm, for each basic block, we compute (on demand) local
evolutions that traverse an entire block, and store the results. During later computations, the algorithm may “short-cut”
the basic block by composing its (cached) local state with the input state.

6.2 Complexity Analysis

We are interested in an upper bound on the complexity of computing all evolutions for the dependence test of the
overall program. Of course, we would like to take the “caching” of intermediate results into account.

Since dependence tests are local to individual loop nests, we consider an arbitrary loop nestL and an induction
variablei. Let e be the number of edges inL, andm be the maximal nesting ofL. Suppose thatk statements inL are
involved in the dependence test. The dependence test computesp aN

i

h a

N

i

q andp aN
i

q, for all possiblep, q andh,
whereN may only contain back-edges and exit edges. In fact, when computing intermediate evolutions, we can drop
N and explicitly compute those evolutions for each loop. We showed that the dependence test complexity is

O(ek +m

2

k

2

): (6)

Any flow-sensitive, statement-wise dependence test fork statements in a loop nest of depthm must take at least
mk

2 steps, our test is no exception. In our scheme, dependency istested individually for each loop of a nest (as
reflected by the occurrence ofm in (6)). Therefore, compared to classical dependence testswithout induction variable
recognition, our scheme requires more steps.3 However, (6) estimates the number of operations (i.e.,�, �, andt)
involved in the dependence test: the formula gives a fairly accurate account of the cost of the test. On the other hand,
for classical dependence tests, depending on the mathematical tools employed, the cost of individual operations is
difficult to estimate.

7 Experimental Results

For our experimental studies, we used Polaris [4], a Fortransource-to-source parallelizing compiler, as the basis for
comparison. In Polaris, there is a dedicated idiom recognition pass to identify induction variables and find their
closed forms. Each induction variable is then substituted by its closed form expression before the dependence test is
performed. In the context of dependence testing for array accesses, we focus oninteger induction variables (IIVs)

3
m times, when testing a large number of array accesses, i.e., whenk is close toe.
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which are used inarray subscripts, and we do not deal with IIVs unrelated to any dependences, e.g., IIVs used in
subscripts for arrays that only appear in right-hand side. Other IIVs may still be used to drive locality optimizations
and to prove array properties such as the injectivity of array values [13], but these applications are left for future work.

In the experiment, we used Polaris to find candidate IIVs fromthe Perfect Club benchmark suite. We applied
our dependence test by hand (for dependences involving IIVs). Table 3 presents the experimental results. The first
three columns classify loops with IIVs into three sets: loops containing IIVs (Total); loops where IIVs appear as
subscripts (Subscript); and loops where the analysis of IIVs is required for parallelization (Targeted), i.e., loops which
are the target of our technique. The next four columns give the number of loops with IIVs parallelized by different
techniques: by Polaris (Polaris), by our dependence analysis with either the original (Monotonic) or the distance-
extended (w/ Distance) lattice, and by combining Polaris with our technique (Best). Note that, in columns Monotonic
and w/Distance, a loop counted as parallel simply means thatwhen disabling IV substitution in Polaris and “plugging
in” our analysis, Polaris reports no loop-carried dependence for the loop except for those due to assignments to IVs
themselves.

These results allow us to draw an early conclusion: when dealing with induction variables, our technique is efficient
and matches the precision of Polaris. Thus, closed form computation can be delayed until after the dependence test and
performed only for loops free of other loop-carried dependences. This would not only enable closed form expression
computation to be on demand (to remove sequential inductioncomputations), but also avoid expensive dependence
testing on complex subscripts due to closed form substitution. Such a scheme only misses three loops that can be
parallelized by Polaris using closed form expressions, butit finds 19 more parallel loops (or 13 without considering
conditional induction variable updates).

8 Induction Variables with Dynamic Structures

By design, monotonic evolution is not limited to scalar induction variables. Interestingly, many data-intensive algo-
rithms use dynamic structures where inductive traversals are implemented withpointers, referencesand/oriterators.
Indeed, when dealing with non-numerical programs, arrays share their preeminence with pointer-based structures and
more generalcontainercomponents, such as lists, vectors, hash-tables, sets, andso on. General-purpose containers
are often provided by standard libraries, such as C++ Standard Template Library (STL) and Java Standard Develop-
ment Kit (SDK). Iterators abstract the implementation details and provide an efficient and portable interface to traverse
containers.

In this section, we sketch a few ideas about extending the analysis to pointer-based data structures and object-
oriented containers. Monotonic evolution is restricted tostructures with alinked-listbackbone (bidirectional or not).
It can be extended easily to anyacyclicstructure in defining two evolution directions (e.g., depthin a tree or directed
acyclic graph) or extending the lattice with additional directions.

We use a Java-like syntax. By convention, pointer-based structures have anext field, and possibly aprev field
(such thatp.next.prev=p andp.prev.next=p, except on the list’s head and tail). We only studied a small set
of basic container operations:first() andlast() generates a new iterator attached to the container;advance()
andretreat()move an iterator;get(),put(),insert() anddelete() update/accesses a container through
an iterator. The syntax of these operations is borrowed fromthe Java Generic Library (JGL).4 The semantics is slightly
simplified, e.g., no implicit iterator move in container accesses.

Most important, monotonic evolution and dependence testing is applied after a staticpointeranalysis of the loop
nest. This preliminary phase needs to discover three critical properties that will be assumed in the rest of the section:

1. when dealing with pointer-based structures,non-circular listness(or treeness) is a requiredshapeproperty;

2. when dealing with object-oriented containers,combnessneeds to be proven to deduce dependence information:
a container is acombwhen every container element is attached at a single container position, i.e., when the
mapping between positions and elements is injective;

3. aliasedpointers/references induce dependences, independently of monotonic evolution results; such depen-
dences are not taken into account here.

Many shape and alias analyses have been crafted for pointer-based data structures, see [15] for a detailed review;
virtually any one can be used, depending on the precision, scalability, and interprocedural requirements. Shape analysis

4A project from ObjectSpace, seehttp://www.objectspace.com.

8



of container structures is a new research topic: we have designed two techniques to analyze combness (and other static
pointer properties) in general-purpose containers [5] andnested Java arrays [17]. The reader is referred to these papers
for details.

static void sparseLU (Iterator k) {
while (!k.atEnd ()) {
Iterator j = k.clone ();
while (!j.atEnd ()) {

Object b = j.get ();
List l = j.get ();
Iterator i = l.first ();
while (!i.atEnd ()) {

Object a = i.get ();
i.put (� � �);
i.advance ();

}
j.advance ();

}
k.advance ();

}
}

(a) Iterator IV

static Node bubbleSort (Node p) {
Node q = NULL;
while (p!=NULL) {

r = q;
while (� � � && r.val<p.val)
r = r.next;

if (� � � ) {
r.prev.next = p;
p.prev.next = p.next;
p.next = r.next;

}
}
return q;

}

(b) Pointer-chasing IV

Figure 8: Examples with dynamic structures

Pointer assignments and iterator updates can be handled by the usual transfer functions:

� effects ofi.advance() andp=p.next are abstracted byForward;

� effects ofi.retreat() andp=p.prev are abstracted byBackward;

� i.delete() andi.insert(o) perform structural container updates but leavei unchanged, they are ab-
stracted byIdentity;

� i=l.first(), i=l.last() andp=� � � (where� � � is notp.next) are considered arbitrary assignments,
hence abstracted byArbitrary; it is conservatively the same fori = j.clone();

� C-like p = &x, p = *q and pointer arithmetic are abstracted byArbitrary; it is the same for aliased iterators
(Iterator i = j) because they may hide further moves;

� all other statements have no effect on IVs and are abstractedby Identity.

Two code fragments are proposed in Figure 8. The first one implements LU factorization using a sparse representa-
tion with lists of lists. The two innermostwhile loops carry no dependences over the list elements, becausej iterate
over distinct sub-lists andi enumerates elements of each sub-list. However,structuraldependences remain, i.e., de-
pendences induced by the linear accesses and backbone structure associated with theList container. Parallelization
techniques can still be applied, see [18] for details.

The second example implements a bubble sort on a doubly-linked list. This example performs structural updates
on both lists, and a classical shape analysis [15] can prove thatp andq are unaliased at the beginning of each iteration
of the outer loop, and that the returned list is acyclic ifp points to an acyclic loop. Monotonic evolution only cares
with statementr = r.next and accessesr.val andp.val (it does not deal with structural updates). Of course,
it detects no dependence on the list’s elements, but manystructuraldependences still hamper parallelization.

This short overview of the interplay of monotonic evolutionand dynamic structures motivates further research in
combining pointer analyses with our dependence test. This is left for a promising future work.

9 Related Work

Most dependence tests handle induction variables by idiom recognition and closed form substitution. Those closed
form expressions usually involve only the indices of the surrounding loops and loop invariants. Using patterns pro-
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posed by Pottenger and Eigenmann [14], the Polaris compilerrecognizes polynomial sequences that are not limited to
scalar and integer induction variables. Other closed form computation techniques explore various approaches. Abstract
interpretation is used by Ammarguellat and Harrison [2] to compute symbolic expressions and compare it with known
templates, but it leads to a rather inefficient algorithm anddoes not handle irregular nests. Two general classification
techniques have been designed. The first one by Gerlek, Stoltz and Wolfe [8] is based on a SSA representation [6]
optimized for efficient demand-driven traversals. It relies on Tarjan’s algorithm to detect strongly connected compo-
nents. The second one is designed by Haghighat and Polychronopoulos for the Parafrase 2 compiler[10]. It combines
symbolic execution (iterated forward substitution) and recurrence interpolation. Both of them handle a broad scope
of closed form expressions, such as linear, arithmetic (polynomial), geometric (with exponential terms), periodic, and
wrap-around.

Closed form expression computation has obvious benefits foroptimizations. It is also critical for removing de-
pendences due to computation of induction variables themselves. For irregular nests withwhile loops or complex
bounds (e.g., with array accesses), and for conditional IV updates, closed form expressions are generally not hoped
for. Gupta and Spezialetti extended the linear IV detectionframework with arithmetic and geometric sums, as well as
monotonicsequences [9], for non-nested loops only. Their technique is applied to optimizations such as efficient run-
time array bounds checking. Lin and Padua [13] also studied monotonicity for values of index arrays in the context of
parallelizing irregular codes. This property can be used later to detect dependences between accesses to sparse matri-
ces through index arrays. Like in our technique, they compute monotonicity on-demand from non-iterative traversals
of the control-flow graph, but their technique does not target general induction variables. More generalmonotonic
sequences could be detected by Gerlek, Stoltz and Wolfe as a special class of induction variables [8], as soon as
a strongly connected component in the SSA graph traverses a�-function. As far as the monotonic class of IVs is
concerned, their classification of sequences is less powerful than our evolution in the following ways:

� Monotonicity is estimated for eachsequence of valuesassociated with a variable. Since SSA gives different
names after each definition, references to the same variableseparated by induction variable updates cannot be
compared. This may yield spurious dependences.

� It is not clear whether sequences are defined loop-wise or forthe whole nest. In the latter case, it may make
too conservative assumptions for inner loops. Extending their technique for statement-to-statement evolutions
seems difficult: SSA graphs are not well suited for disablingtraversal of control-flow edges.

� Stride-extended monotonicity information is not computed, but closed form expressions associated with other
IV classes may be suitable for such sequences. This would incur a higher analysis cost and is likely to blur
further dependence testing.

It is worth noticing that recursive pointer “chasing” likep = p->next may also be interpreted as a form of
induction. Dealing with pointer and dependence analysis inthe presence ofrecursive data structures, some techniques
use abstractions closely related to monotonicity to compare pointer variables. For instance, Hendren, Hummel and
Nicolau [11] are able to discover when a tree access is “below” another one or when two accesses target distinct
branches. They abstract access paths with regular expressions that might be interpreted as monotonicity and strides
generalized to multiple independent dimensions.

10 Conclusion

We use monotonic evolution for dependence testing on array accesses indexed by induction variables. This method
requires no closed form expression computation. The experiment showed that our technique matches the precision of
Polaris when closed form expressions are available, and when there are no closed form expressions, our technique can
detect additional parallel loops. An efficient non-iterative algorithm is devised, achieving incremental computation
of evolutions at a very low cost. IV substitution only needs to be performed after the dependence analysis, and it
can be performed on demand. This saves unnecessary closed form computation on loops that eventually may not be
parallelized.

We plan to extend the algorithm to handle arbitrary assignments, such asi = j, more precisely. This may lead
us to solving the two patterns yet to be handled. Furthermore, since arbitrary assignments link the values of two
variables, they may be used as reference points to compare different variables. From the lattice side, we would like
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to compute both the maximal and minimal distance of an evolution. Dependence tests may exploit such information
[3]. Eventually, we proposed a first attempt to apply monotonic evolution on other forms of induction operations,
such as pointer chasing and iterator traversals, where closed form abstractions are impractical. Applications include
parallization and improved pointer analyses. Monotonic evolution is well-suited for dynamic structures since traversals
are likely to be monotonic, and closed form abstractions areimpractical for such accesses.
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