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Abstract

We present a new approach to dependence testing in the peeskimduction variables. Instead of looking for
closed form expressions, our method computesotonic evolutionvhich captures the direction in which the value
of a variable changes. This information is used for depecel¢esting of array references. Under this scheme, closed
form computation and induction variable substitution camblayed until after the dependence test and be performed
on-demand. The technique can be extended to dynamic datausts, using either pointer-based implementations
or standard object-oriented containers. To improve effiiewe also propose an optimized (non-iterative) data-flow
algorithm to compute evolution. Experimental results shibat dependence tests based on evolution information
match the accuracy of that based on closed-form computétigplemented in Polaris), and when no closed form
expressions can be calculated, our method is more accheatettat of Polaris.

1 Introduction

Many optimizations are based on induction variable (IV)ed&bn and classification, including loop transformations
for parallelization and strength reduction. An inductia@riable is broadly defined as a scalar variable (or array ele-
ment) referenced in a cycle of a def-use graph. Althoughyrtidn compilers only implement well-known techniques
for linear IVs [1], more general IV classes have been proposed forlphzahg compilers [7].

In classical dependence analyses, induction variableroaroees are replaced by closed form expressions in order
to break dependences inherent in inductions and enablesgedependence analysis. Substitution-based apprgaches
however, have several drawbacks. A dependence test may false dependences on some closed form expressions.
Consider Figure 1.a, the closed form expressionjdf is (j - 1) *ns*3 + (k-1)*3 + | . Since the expression
is symbolic (due to the coefficiens), most tests will report loop-carried dependences ovefkbep. Moreover, it is
sometimes not possible to represent the value of an induetidable as a closed form expression. This is the case for
nr ed in Figure 1.b. However, if the compiler could determine thiaed is strictly increasing across iterations, then,
it could also decide that the loop carries no dependenceaoray! i sr ed. Eventually, closed form expressions can
be complex, and testing dependences on them may be expensive

In this paper, we present a method that exploits IV infororaiin dependence testing without closed form compu-
tation. We observe that the values of most induction vaembhange (“evolve”) monotonically. Consider the example
in Figure 1.a again, any path in the control-flow graph froateshentp back to itself must also traverse statement
ijk = ijk+1. This means that the value dbf k increases betweegny two visits ofp. In other words, values
of i j k at p are strictly increasing. With the information on the monmmtity of i j k, the compiler can prove that
different executions op access different array elements, even when a closed fornegsipn can not be captured as
is the case in the example of Figure 1.b. Therefore, our arsalsies to identifymonotonic evolutiomvhich captures
the monotonicity of variables over paths of a control-flowymr.

There has been some related work on monotonic variable$ {PaBtarget sequence properties cfiaglerefer-
ence. Monotonic evolution is more general since it can beprded betweeanytwo statements and alorsglected
pathsbetween the two statements. The latter feature is espeasdiful to distinguish between intra-loop and loop-
carried dependences.

The rest of the paper is organized as follows. Section 2 defime concept of monotonic evolution. Section 3
presents the dependence test based on monotonic evollitidgmprove precision, we propose a simple extension to
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ijk =0 do | =1,latt(1)
doj =1,ns if (---) then
do k = 1,ns nred = nred+1
do!l =1,3 lisred(nred) = ---
ijk = ijk+1 el se
p zc(ijk) = -
end do endi f
end do e
end do end do
(a) IV with a closed form expression (b) IV with no closed form expression

Figure 1: Motivating examples from the Perfect Benchmaitesu

the lattice of evolution states in Section 4. Section 5 mesdifihe dependence test to take advantage of this new lattice.
Section 6 deals with practical and efficient computatiorcti®a 7 presents experimental results. Section 8 explores
some ideas about extending monotonic evolution to dynamtie skructures. Section 9 compares our technique with

others. Section 10 outlines future work and concludes.

2 Monotonic Evolution

The rest of the paper uses the following notionscoatrol-flow path refers to a path in a control-flow graph; a
statement instance refers to an execution of a statement; treue ofi at p refers to the value of variablie
immediately before statement instancis executed.

2.1 Evolution

For dependence testing, it is important to determine whiedheariable that appears in subscript expressions may
have the same value at different statement instances. @ivexecution sequence and a varidhl¢he monotonic
evolution (evolution) ofi describes how the value ofchanges from the beginning to the end of the sequence. We
introduceevolution states to describe possible values of an evolution. The semickatif evolution states is given in
Figure 2, the join operator is.

Ordering:
T unknown evolution; T
< monotonically increasing;
< strictly increasing; 4 / \ > T 9 J o b > T
> monotonically decreasing; T \ / T Identity | L <« 4 o > > T
> strictly decreasing; 4 o > Forward | L < <« <« T T T
© constant evolution; | Backward | L T T > > > T
L no evolution. \ n / Arbitrary | L T T T T T T
Figure 2: The lattice of evolution states Figure 3: Transfer functions of evolution values

Any execution sequence corresponds to a control-flow patrevbach node along the path represents a statement
instance. We define evolutions in terms of control-flow paBech statement is thus interpreted as a transfer function
of evolution values. Given a variahile we classify a statement as:

anidentity statement (ldentity) if it does not change the value bf suchag = n;

aforward induction (Forward) if it always increases the value of suchas = i +1;

abackward induction (Backward) if it always decreases the valueiofsuchas = i - 3;

anarbitrary assignment (Arbitrary) if it may assign an arbitrary value tq suchas = n.



The transfer functions corresponding to each class ofrataiés are given in Table 3.

The notatiorp Y ¢ represents thin (LJ) of the evolution ofi over all paths that starts fromand ends ag
(immediately before the lagtis executed)excludingthose traversing any edges in the 8etA special case is when
can not be reached from thenp -, ¢is L. Intuitively, p 4V ¢ tells us how the value af changes when the program
executes from an instance pfto an instance of|. The set/V is introduced to be able to represent evolutions for a
selected part of a control-flow graph. For instance, we majuele the back-edge of a loop from an evolution. This
can be used to analyze the evolution within a single loojatiten.

For dependence testing, we are also interested in evotutitat must traverse an intermediate node. We use,
p ¥ r 4 ¢, to denote such an evolution pélong all paths fronp via r before finally reaching, excluding those
that traverse any edge ix.

A simple example is presented below where statement ‘does not change the value bf Nodes in the graph
are named by statement labels. Evolutions below can be amehfallowing paths in the control-flow graph.

e 3, 3=T,sincei = O istraversed along some paths fréro 3;

5P 4 = 1, sinceb is excluded4 can not be reached from

4 4 5 = 4, afterb is excluded, there is only one path frehio 5,
and it traverses = i +1;

3 42 6 = <, 3 may directly follow the exit edge of loopto reacht
without traversing = i +1.

Figure 4: An example

2.2 Thelterative Algorithm

One may check that the lattice of evolution states is finit thiat transfer functions are distributive and monotonic
over this lattice. Therefores ¥ ¢ can be computed as theast fixed poinbf an iterative application of transfer
functions [12] over a “pruned” control-flow graph (to exctuddges inV). For each statement let f, be the transfer
function ofs and preds) be the set of predecessorssaf the control-flow graph. Leins andout hold the values of
the evolution that ends right before and immediately afteespectively. Fog, we also keep a special statéqte,,
that holds the final result of the computation. The followdada flow equations have to be solved:

ing = |_| out; outs = fs(ing) Q)
iepred s)

To computep Y ¢, the iterative algorithm starts from noge Initially, we havein, « o, state, «— L, and
out, «— 1 for all statement. The algorithm iteratively solves the data-flow equatidl}s During this process, every
time in, is updated, the new state is joined tetate,, i.e.,state, < state, Ll in,. The algorithm terminates when it
reaches a fixed point, andate, yields the result op 4 ¢. An early termination is also possible as soontage, is
settoT. In Section 6, we will present a more efficient non-iterativethod to compute evolution.

As opposed to traditional data-flow schemes, this algoristants from a node that may be on a cycle on a
control-flow graph. Joiningn, to state, at each update is thus mandatory becaugaloesnot necessarily increase
(in the lattice) across each iteration, as required by tfetysand termination proofs in [12]. For instance, applying
the algorithm tds -, 3 in Figure 4 yieldsns = ¢ at the first iteration after traversirig andins = < after traversing
5,3,4,5,yetd -; 3 = states = <.

Wheng = p, the initial value ofin,, (¢) is not joined tostate,, since it is not computed (updated) from the data-flow equati



2.3 Evolution Composition

The composition operatop) “chains” two evolutions into a single one where the endingeof the first evolution

is also the starting node of the second one. The valye-tf r o r =4 ¢ is state, of the second evolution which
is computed by the iterative algorithm starting with. < p Y r (instead ofin, < o). Composition can be used
to compute evolutions that must traverse an intermediadence.,p -+ r Y ¢ = p 4Y r o r 4 ¢. In practice,
composition of evolution does not need to be computed inrokife may compute each evolution in the composition
independently, then, compose their evolution states. rEigudefines this operation. Notice that composition is
idempotenti.e.,a o a = a; ando is the neutral element, i.ex,0 a = a.

oll <« d& o B> > T
Ly L Ll e Ildentity(state) = state
4lL < < < T T T
4/L <« &« QT T T e Forward(state) = state o <
oll 9 9 o > > T
5L T T o> o> T e Backward(state) = state o >
2L T T BB >T e Arbitrary(state) = stateo T
T|L T T T T T T
Figure 5: Composition of evolution states Figure 6: Transfer funcitons by composition

Composition is alseommutativendassociative In fact, an evolution along a path consisting of two contigeu
pathsA and B can be computed as the evolution state aldngpmposed with that alony. Consider Figure 4, the
evolution ofi along path(4, 5) is <1, which can be computed as the composition of the evolutitorgyal and5 (i.e.,
< 0 0). Thus, we may re-define transfer functions given in Table &ims of composition. The new definitions are
given in Figure 6. In fact, transfer functions may be definmdstub-graphs with a single entry and a single exit such
as basic blocks. Consider a sub-graph with an entry nadegty be the node that immediately follows the exit node
of the subgraph. The transfer function of the sub-graph a@®pthe input state with the evolution that traverses the
entire sub-graph from to y (not includingy).

3 Dependence Test

We use evolution to determine dependences between arergneks 0
subscripted by expressions involving induction variabl€sonsider 0
statements 3 and 5 in the figure to the right. A dependenceaheadit
determine whether values éfat 3 may overlap with those afat 5.
We observe that the evolution éffrom 3 to 5 is strictly increasing
(3 H; 5 = <), i.e., the value of at 3 isless tharthe value ofi at any
later instance of 5. If the same can be provendot; 3, then values of
7 at 3and 5 are always distinct, meaning that 3 and 5 are nohdepg
In this example, howeves, H; 3 is evaluated tad, and therefore it has
to be assumed thatis anti-dependent ok

Consider an expressienand two statemenfsandq with identical array access( e) , at least one of them being
on the left-hand side of an assignment statement. The adis@mmis that, if there are dependences betweandg,
thenp -, ¢ andg -; p cannot both be strict<{, ) or unreachableL). To prove the absence of any dependence,
we may check that the evolutions betwgeandq are either<, >, or L. On the other hand, if a dependence may
exist, the test needs to further classify them as intra-tmrdpop-carried. In our scheme, intra-loop and loop-carrie
dependences are tested in separate steps for each sirgledba nest.

|3 a(i) = |

|5 o= a(i)|
)

¢ Intra-loop dependences are concerned with instances that are spawiieel fame iteration of a loop. Thus,
evolutions used in the test only need to consider paths leetwandq that do not traverse any back-edge of
loop /. As discussed below, we assume that loops only exit at theTlogrefore, paths that start within the loop
and do not traverse a back-edge never leave the body of the loo



There isnointra-loop dependence betwegandgq for loop ¢, if,
pIeae{L,q>} Agdpe{L, <>} (2)
whereB is the set of all back-edges of the loop.

Consider the previous example again, siBe® 5 = < and5 4? 3 = 1, we conclude that there is no intra-loop
dependence between 3 and 5.

e Loop-carrieddependences are concerned with instances that are spayd#félent iterations of a loog, but
the same iteration of any loop that surrouidS hus, evolutions used in the test must traverse a back-@dge
¢, and must not traverse any exit edge/ofNote that any path traversing a back-edge of a loop alseitsag
the header of the loop (the statement that checks for thesldepnination). Thus, forcing the traversal of a
back-edge is equivalent to forcing the traversal of the loeader.

There isnoloop-carried dependence betwaeandgq for loop ¢, if,
pAE hHE ge{L,<a,>}A g8 h4E pe {L, <, >} (3)
whereFE is the set of exit edges dfandh is the header of.
In the previous example, sinGe- 1 49 5 = < and5 49 1 49 3 = <, there is a loop-carried dependence
between 3 and 5 for loop 1.
4 Lattice Extension

The lattice of evolution states is useful to detect valuengles in induction variables but notgoantifysuch changes.
Dependence testing for some cases require a little moreniafiton. Consider the examples in Figure 7 where array
a is accessed with subscrigksandk +1. If the dependence test knows that valuek ehange by a minimum of 2, it
will detect no loop-carried dependence for accesses to

doi = 1,100 doi = 1,100 1 doi = 1,100
a(k) = a(k+1) + - a(k) = a(k+1) + - 2 k = k+2
k = k+2 if () k = k+1 3 t = a(k)
end do k = k+2 4 a(k) = a(k+1)
end do 5 a(k+1) =t
6 end do

Figure 7: Induction variables with offsets

We introduce new lattice elements to discover such infoienatFor alln > 0, <,, andr>,, describe increasing
and decreasing evolutions, respectively, where the diffee between values of the variable mustgbeater than
or equalto n. In other wordsy characterizes theinimal differencébetween any two values of the variable at the
starting and ending points of the evolution. We ealhe minimal distance of the evolution. The evolution states
<1; andr>; correspond tad and > of the original lattice, respectively, where the only infation is that “the value
has changed” in some direction; ar/>o correspond tod/>, where the value might have been constant but the
direction is known in case of a change. Table 1 gives the fbdeifnition of LI using theminimumof distances when
joining two increasing or two decreasing evolution states.

Operatoro needs to be updated as well. The new table is given in Tabl&& main difference is that composing
<p With < yields <1,44. According to this new definitiom, is still commutative and associative, but not idempotent
anymore, .95, 0 <, = <lzp.

Transfer functions have changed to cope with new elemertkedéttice, but the algorithm that drives the iterative
computation remains the same. The distance after an imfuicti= i +¢ is the sumof current distance, call i,
with ¢. Notice thatg has to beknown at compile-timépossibly after constant propagation). Consider the previ
examples, all evolutions between assignmentsaaross iterations yieles.



L L <p o >p T o | L < o >p T
1] L <p o >p T Llr +r 1 1 1
<]q <]q <]min(p,q) <o T T <]q 1 <]p+q <]q T T
o | © <o o >0 T oL < o >, T
Bq | Pg T >0 I>Inin(p7q) T >q L T B¢ Dptg T
T T T T T T L T T T T
Table 1: Distance-extended lattice Table 2: Distance-extended composition
< O Dy
Identity O Dy

Forward, (with stepq)
Backward, (with stepg)
Arbitrary

<]P+q <]q T
T B¢ Pptg
T T T

This extension makes the lattice infinite, even of infiniteghe However, sincetate o state C state holds, we

still have an interesting propertytate U state o state = state. This means that all descending chains (using operator

L1) are offinite length during the fixed point computation. This propertygmdees the termination of the fixed point

computation.

=
- |

5 Improved Dependence Test

We devise a new dependence test to exploit the additionaimalmlistance information. This test shares some similar-
ities with therange tesused in Polaris [3]. Consider two access®s, ) atp anda(i +d) atg,i being an induction
variable andd being a constartt. The value difference betweénat p andi +d at ¢ is used in the dependence test.
However, since subscripts afat p andq are different, this information cannot be computed diseftttm evolutions.
Of coursei +d > iif d > 0 atq. Therefore, we may compute the evolution ofrom p to ¢, then compose it with
4. The resulting evolution captures the difference betwhervalue of at an instance gf and the value of +d at
any later instance af.

Consider a loogd, two accesses| e¢] atp anda[ e+d] atq. Let B andE denote the sets of back-edges and exit
edges of, respectively.

e If d > 0, there isnointra-loop dependence betwegandg for loop £ when,
pA8 qo<a g {T,0,<0,>0} A g8 po>a g {T,0,<0,>0} 4)
If d <0, <4 (resp.>y) is replaced by>_ 4 (resp.<i_g4) in (4).
e If d > 0, there isnoloop-carried dependence betweeandq for loop £ when,
pAe hHE go<a ¢ {T,0,<0,>0} A g-g hAE po>g ¢ {T,0,<0, >0} (5)
If d <0, <4 (resp.>y) is replaced by>_; (resp.<i_g) in (5).

Consider the right-most loop in Figure 7, which swaps evetiy pf elements of arrag. Sincek is incremented
by 2 per iteration, to test loop-carried dependence bet@esrd 5, we havg -, 1 -, 50 <; = <13 0 <; = <3 and
54,14, 30> =<y 0> = <. This proves there is no loop-carried dependence betwead 8.a

6 Practical Computation

We designed a basic (non-iterative) algorithm to computéutions which traversao back-edgem the control-flow
graph. This algorithm is the core of the non-iterative mdthiny general evolution can be decomposed into segments,
each of which can be computed by the basic algorithm. Thisiowkis described in [16].

2Accesses of the forra[ i +d;] anda[ i +d2] can be handled & j ] anda[j +(d2 — d1)] -



Loops with IIVs Parallel Loops with IIVs
Total | Subscript| Targeted|| Polaris| Monotonic | w/ Distance| Best
adm 17 17 5 3 2 3 3
bdna 63 62 60 22 34 34 34
dyfesm 15 11 8 7 8 8 8
fl o052 15 15 15 12 12 12 12
ndg 29 29 24 12 12 12 13
ngy3d 97 97 89 5 5 5 5
ocean 11 6 6 5 4 4 5
gcd 69 69 69 58 63 63 63
spec77 99 59 54 44 1 44 44
trfd 13 13 9 7 6 6 7

Table 3: Experiments with the Perfect Club benchmark suite

6.1 Caching Intermediate Evolution

The dependence test computes two evolutions, for any pagaasses, and for each surrounding loop to be tested (e.g.,
from p to ¢, and fromgq to p). Obviously, computation will not be efficient without omiizing computations across
different evolutions. We propose to cache and reuse indiateevolutions. Note that, the non-iterative algorithm
decomposes evolutions into the same segments, over andgaier We can compute and tabulate the results for each
statement and loop to be tested. To further optimize therigigo, for each basic block, we compute (on demand) local
evolutions that traverse an entire block, and store thdteedduring later computations, the algorithm may “shaut*c

the basic block by composing its (cached) local state wighrtput state.

6.2 Complexity Analysis

We are interested in an upper bound on the complexity of coimpall evolutions for the dependence test of the
overall program. Of course, we would like to take the “caghiof intermediate results into account.

Since dependence tests are local to individual loop nesissomsider an arbitrary loop nestand an induction
variablei . Lete be the number of edges i andm be the maximal nesting df. Suppose that statements il are
involved in the dependence test. The dependence test cespptf h - ¢ andp -V ¢, for all possiblep, ¢ andh,
whereN may only contain back-edges and exit edges. In fact, wherpating intermediate evolutions, we can drop
N and explicitly compute those evolutions for each loop. Wawsdd that the dependence test complexity is

O(ck + m*k?). ©)

Any flow-sensitive, statement-wise dependence teskfetatements in a loop nest of depth must take at least
mk? steps, our test is no exception. In our scheme, dependenegted individually for each loop of a nest (as
reflected by the occurrenceof in (6)). Therefore, compared to classical dependencewsattsut induction variable
recognition our scheme requires more stépsiowever, (6) estimates the number of operations (., andL)
involved in the dependence test: the formula gives a fabusate account of the cost of the test. On the other hand,
for classical dependence tests, depending on the matluainaidls employed, the cost of individual operations is
difficult to estimate.

7 Experimental Results

For our experimental studies, we used Polaris [4], a Foroamce-to-source parallelizing compiler, as the basis for
comparison. In Polaris, there is a dedicated idiom recagnpass to identify induction variables and find their
closed forms. Each induction variable is then substitutedshclosed form expression before the dependence test is
performed. In the context of dependence testing for arragsses, we focus anteger induction variables (l1Vs)

3m times, when testing a large number of array accesses, henis close toe.



which are used irarray subscriptsand we do not deal with IIVs unrelated to any dependencgs, I&Vs used in
subscripts for arrays that only appear in right-hand sidie©l1Vs may still be used to drive locality optimizations
and to prove array properties such as the injectivity ofyavedues [13], but these applications are left for future kvor

In the experiment, we used Polaris to find candidate IIVs ftbmPerfect Club benchmark suite. We applied
our dependence test by hand (for dependences involving.|lVable 3 presents the experimental results. The first
three columns classify loops with 1IVs into three sets: lp@ontaining 1IVs (Total); loops where [IVs appear as
subscripts (Subscript); and loops where the analysis of i$\fequired for parallelization (Targeted), i.e., loogsah
are the target of our technique. The next four columns gieenlimber of loops with 11Vs parallelized by different
techniques: by Polaris (Polaris), by our dependence asaljith either the original (Monotonic) or the distance-
extended (w/ Distance) lattice, and by combining Polaribwur technique (Best). Note that, in columns Monotonic
and w/Distance, a loop counted as parallel simply meansithah disabling 1V substitution in Polaris and “plugging
in” our analysis, Polaris reports no loop-carried depexddor the loop except for those due to assignments to IVs
themselves.

These results allow us to draw an early conclusion: wherirteadith induction variables, our technique is efficient
and matches the precision of Polaris. Thus, closed form ctatipn can be delayed until after the dependence test and
performed only for loops free of other loop-carried depeamds. This would not only enable closed form expression
computation to be on demand (to remove sequential inductomputations), but also avoid expensive dependence
testing on complex subscripts due to closed form subgitutSuch a scheme only misses three loops that can be
parallelized by Polaris using closed form expressionsijtlfirids 19 more parallel loops (or 13 without considering
conditional induction variable updates).

8 Induction Variables with Dynamic Structures

By design, monotonic evolution is not limited to scalar intlon variables. Interestingly, many data-intensive algo
rithms use dynamic structures where inductive traversalsnaplemented witlpointers referencesnd/oriterators
Indeed, when dealing with non-numerical programs, arrbgsestheir preeminence with pointer-based structures and
more generatontainercomponents, such as lists, vectors, hash-tables, setsoamil. General-purpose containers
are often provided by standard libraries, such as C++ Stdntamplate Library (STL) and Java Standard Develop-
ment Kit (SDK). Iterators abstract the implementation detnd provide an efficient and portable interface to trager
containers.

In this section, we sketch a few ideas about extending thiysiedo pointer-based data structures and object-
oriented containers. Monotonic evolution is restrictedtroictures with dinked-listbackbone (bidirectional or not).

It can be extended easily to angyclicstructure in defining two evolution directions (e.g., deipth tree or directed
acyclic graph) or extending the lattice with additionakditions.

We use a Java-like syntax. By convention, pointer-basedtstres have aext field, and possibly ar ev field
(such thap. next . prev=p andp. pr ev. next =p, except on the list's head and tail). We only studied a sneall s
of basic container operatiorfsi r st () andl ast () generates a new iterator attached to the conta@rthrance( )
andr et r eat () move aniteratorget (),put (),i nsert () anddel et e() update/accesses a container through
an iterator. The syntax of these operations is borrowed frendava Generic Library (JGE)The semantics is slightly
simplified, e.g., no implicit iterator move in container asses.

Most important, monotonic evolution and dependence tgstimpplied after a statigointer analysis of the loop
nest. This preliminary phase needs to discover three afjioperties that will be assumed in the rest of the section:

1. when dealing with pointer-based structures)-circular listnesgor treeness) is a requirastiapeproperty;

2. when dealing with object-oriented contain@smbnesseeds to be proven to deduce dependence information:
a container is @ombwhen every container element is attached at a single cantpivsition, i.e., when the
mapping between positions and elements is injective;

3. aliased pointers/references induce dependences, independdntipimotonic evolution results; such depen-
dences are not taken into account here.

Many shape and alias analyses have been crafted for pbiased data structures, see [15] for a detailed review;
virtually any one can be used, depending on the precisiatalsitity, and interprocedural requirements. Shape aigly

4A project from ObjectSpace, sé¢t p: / / www. obj ect space. com



of container structures is a new research topic: we havguegditwo techniques to analyze combness (and other static
pointer properties) in general-purpose containers [5]reesied Java arrays [17]. The reader is referred to thesegpape
for details.

static void sparseLU (lterator k) {
while ('k.atEnd ()) {

Iterator j = k.clone ();
while (!j.atEnd ()) { static Node bubbl eSort (Node p) {
hject b =j.get (); Node g = NULL;
List I =j.get (); while (p!=NULL) {
Iterator i =1.first (); r =q;
while (li.atEnd ()) { while (-~ && r.val <p.val)
hject a =i.get (); r = r.next;
ioput (--0); if (o)A
i . advance (); r.prev.next = p;
p. prev. next = p.next;
j . advance (); p. next = r.next;
} }
k. advance (); }
} return q;
} }
(a) Iterator IV (b) Pointer-chasing IV

Figure 8: Examples with dynamic structures

Pointer assignments and iterator updates can be handlée lngtial transfer functions:

o effects ofi . advance() andp=p. next are abstracted byorward;
o effectsofi . retreat () andp=p. pr ev are abstracted bgackward;

e i .delete() andi.insert (o) perform structural container updates but leavenchanged, they are ab-
stracted bydentity;

eiz=l.first(),i=l.last() andp=--- (where--- is notp. next) are considered arbitrary assignments,
hence abstracted rbitrary; it is conservatively the same for = j . cl one();

e C-likep = &x,p = *g and pointer arithmetic are abstractedAmpitrary; it is the same for aliased iterators
(Iterator i = j)because they may hide further moves;

¢ all other statements have no effect on IVs and are abstragtitentity.

Two code fragments are proposed in Figure 8. The first oneeimehts LU factorization using a sparse representa-
tion with lists of lists. The two innermosthi | e loops carry no dependences over the list elements, befadterate
over distinct sub-lists and enumerates elements of each sub-list. Howestencturaldependences remain, i.e., de-
pendences induced by the linear accesses and backbortargrassociated with thel st container. Parallelization
techniques can still be applied, see [18] for details.

The second example implements a bubble sort on a doublgdifikt. This example performs structural updates
on both lists, and a classical shape analysis [15] can phate tandg are unaliased at the beginning of each iteration
of the outer loop, and that the returned list is acyclip ipoints to an acyclic loop. Monotonic evolution only cares
with statement = r. next and accesses val andp. val (it does not deal with structural updates). Of course,
it detects no dependence on the list's elements, but reagturaldependences still hamper parallelization.

This short overview of the interplay of monotonic evolutimd dynamic structures motivates further research in
combining pointer analyses with our dependence test. Shéftifor a promising future work.

9 Reated Work

Most dependence tests handle induction variables by idemagnition and closed form substitution. Those closed
form expressions usually involve only the indices of thesunding loops and loop invariants. Using patterns pro-



posed by Pottenger and Eigenmann [14], the Polaris compite&gnizes polynomial sequences that are not limited to
scalar and integer induction variables. Other closed fammputation techniques explore various approaches. Atistra
interpretation is used by Ammarguellat and Harrison [2]dmpute symbolic expressions and compare it with known
templates, but it leads to a rather inefficient algorithm dods not handle irregular nests. Two general classification
techniques have been designed. The first one by Gerlekz Stodt Wolfe [8] is based on a SSA representation [6]
optimized for efficient demand-driven traversals. It relga Tarjan’s algorithm to detect strongly connected compo-
nents. The second one is designed by Haghighat and Polyappwatos for the Parafrase 2 compiler[10]. It combines
symbolic execution (iterated forward substitution) andureence interpolation. Both of them handle a broad scope
of closed form expressions, such as linear, arithmetig/pohial), geometric (with exponential terms), periodiada
wrap-around.

Closed form expression computation has obvious benefitsgmizations. It is also critical for removing de-
pendences due to computation of induction variables theseFor irregular nests withhi | e loops or complex
bounds (e.g., with array accesses), and for conditionalg¥ates, closed form expressions are generally not hoped
for. Gupta and Spezialetti extended the linear IV detedtiamework with arithmetic and geometric sums, as well as
monotonicsequences [9], for non-nested loops only. Their technigapplied to optimizations such as efficient run-
time array bounds checking. Lin and Padua [13] also studigaatonicity for values of index arrays in the context of
parallelizing irregular codes. This property can be usést k@ detect dependences between accesses to sparse matri-
ces through index arrays. Like in our technique, they computnotonicity on-demand from non-iterative traversals
of the control-flow graph, but their technique does not taggmeral induction variables. More genemadnotonic
sequences could be detected by Gerlek, Stoltz and Wolfe pedas class of induction variables [8], as soon as
a strongly connected component in the SSA graph travergetiaction. As far as the monotonic class of IVs is
concerned, their classification of sequences is less paltben our evolution in the following ways:

e Monotonicity is estimated for eactequence of valuesssociated with a variable. Since SSA gives different
names after each definition, references to the same vasapbrated by induction variable updates sanbe
compared. This may yield spurious dependences.

e It is not clear whether sequences are defined loop-wise ahéowhole nest. In the latter case, it may make
too conservative assumptions for inner loops. Extendieg technique for statement-to-statement evolutions
seems difficult: SSA graphs are not well suited for disabtiagersal of control-flow edges.

¢ Stride-extended monotonicity information is not computaat closed form expressions associated with other
IV classes may be suitable for such sequences. This would adigher analysis cost and is likely to blur
further dependence testing.

It is worth noticing that recursive pointer “chasing” lie = p- >next may also be interpreted as a form of
induction. Dealing with pointer and dependence analydisarpresence aécursive data structuresome techniques
use abstractions closely related to monotonicity to compainter variables. For instance, Hendren, Hummel and
Nicolau [11] are able to discover when a tree access is “Detowther one or when two accesses target distinct
branches. They abstract access paths with regular expmegbiat might be interpreted as monotonicity and strides
generalized to multiple independent dimensions.

10 Conclusion

We use monotonic evolution for dependence testing on agegsaes indexed by induction variables. This method
requires no closed form expression computation. The exyeri showed that our technique matches the precision of
Polaris when closed form expressions are available, and tigge are no closed form expressions, our technique can
detect additional parallel loops. An efficient non-iteratalgorithm is devised, achieving incremental computatio
of evolutions at a very low cost. IV substitution only needse performed after the dependence analysis, and it
can be performed on demand. This saves unnecessary claseddmputation on loops that eventually may not be
parallelized.
We plan to extend the algorithm to handle arbitrary assigimeuch as = j , more precisely. This may lead

us to solving the two patterns yet to be handled. Furtherpsinee arbitrary assignments link the values of two
variables, they may be used as reference points to compféeeedi variables. From the lattice side, we would like
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to compute both the maximal and minimal distance of an eimiutDependence tests may exploit such information
[3]. Eventually, we proposed a first attempt to apply monm@volution on other forms of induction operations,
such as pointer chasing and iterator traversals, wherecalfimsm abstractions are impractical. Applications inelud
parallization and improved pointer analyses. Monotonation is well-suited for dynamic structures since traads
are likely to be monotonic, and closed form abstractionsrapgactical for such accesses.
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