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ABSTRACT
We present a new approach to dependence testing in

the presence of induction variables. Instead of look-

ing for closed form expressions, our method computes

monotonic evolution which captures the direction in

which the value of a variable changes. This informa-

tion is then used in the dependence test to help de-

termine whether array references are dependence-free.

Under this scheme, closed form computation and in-

duction variable substitution can be delayed until after

the dependence test and be performed on-demand. To

improve computative e�ciency, we also propose an op-

timized (non-iterative) data-ow algorithm to compute

evolution. Experimental results show that dependence

tests based on evolution information matches the accu-

racy of that based on closed-form computation (imple-

mented in Polaris), and when no closed form expres-

sions can be calculated, our method is more accurate

than that of Polaris.

1. INTRODUCTION
Many optimizations are based on induction variable

(IV) detection and classi�cation, the most important

ones being loop transformations for parallelization [3]

and strength reduction [1]. An induction variable is

broadly de�ned as any scalar variable or array element

that is referenced in a cycle of a def-use graph. Although

production compilers only implement well-known tech-

niques for linear IVs [1], more general IV classes have

been proposed for parallelizing compilers [8].

In classical dependence analyses, induction variable

occurrences are replaced by closed form expressions

in order to break dependences inherent in inductions

and enable accurate dependence analysis. Previous

substitution-based approaches, however, have several

drawbacks:

� A dependence test may report false dependences

on some closed form expressions. Consider Fig-

ure 1.a, the closed form expression of ijk is

(j-1)*ns*3 + (k-1)*3 + l:

Since the expression is symbolic (due to the co-

e�cient ns), most tests will report loop-carried

dependences over the j-loop.

� Sometimes, it is not possible to represent the value

of an induction variable as a closed form expres-

sion. This is the case for nred in Figure 1.b. How-

ever, if the compiler could determine that nred is

strictly increasing across iterations, then, it could

also decide that the loop carries no dependence

over array lisred.

� Closed form expressions can be complex, and test-

ing dependences on them may be expensive.

In this paper, we present a method that exploits IV

information in dependence testing without closed form

computation. We observe that the values of most induc-

tion variables change (\evolve") monotonically. Con-

sider the example in Figure 1.a again, any path in the

control-ow graph from statement p back to itself must

also traverse statement ijk = ijk+1. This means that

the value of ijk increases between any two visits of p.

In other words, values of ijk at p are strictly increas-

ing. With the information on the monotonicity of ijk,

the compiler can prove that di�erent executions of p ac-

cess di�erent array elements, even when a closed form

expression can not be captured as is the case in the ex-

ample of Figure 1.b. Therefore, our analysis tries to

identify monotonic evolution which captures the mono-

tonicity of variables over paths of a control-ow graph.

There has been some related work on monotonic vari-

ables [10, 9] that target sequence properties of a single

reference. Monotonic evolution is more general since

it can be computed between any two statements and



| mdg predic do1000 | line 758 |

ijk = 0

do j = 1,ns

do k = 1,ns

do l = 1,3

ijk = ijk+1

p zc(ijk) = � � �

end do

end do

end do

(a) IV with a closed form expression

| qcd setcol do1 | line 2387 |

do l = 1,latt(1)

if (� � � ) then

nred = nred+1

lisred(nred) = � � �

else

� � �

endif

� � �

end do

(b) IV with no closed form expression

Figure 1: Motivating examples from the Perfect Benchmark suite

along selected paths between the two statements. The

latter feature is especially useful to distinguish between

intra-loop and loop-carried dependences.

The rest of the paper is organized as follows. Section 2

de�nes the concept of monotonic evolution. Section 3

presents the dependence test based on monotonic evolu-

tion. To improve precision, we propose a simple exten-

sion to the lattice of evolution states in Section 4. Sec-

tion 5 modi�es the dependence test to take advantage of

this new lattice. Section 6 gives an e�cient non-iterative

algorithm to compute evolution. Algorithm complexity

is studied in Section 7. Section 8 presents experimental

results. Section 9 compares our technique with others.

Section 10 outlines future work and concludes.

2. MONOTONIC EVOLUTION
The rest of the paper uses the following notions: a

control-ow path refers to a path in a control-ow graph;

a statement instance refers to an execution of a state-

ment; the value of i at p refers to the value of variable

i immediately before statement instance p is executed.

2.1 Evolution
For dependence testing, it is important to determine

whether a variable that appears in subscript expres-

sions may have the same value at di�erent statement

instances. Given an execution sequence and a variable

i, themonotonic evolution (evolution) of i describes how

the value of i changes from the beginning to the end of

the sequence. The values of an evolution can be:

> unknown evolution;

� monotonically increasing;

� strictly monotonically increasing;

� monotonically decreasing;

� strictly monotonically decreasing;

� constant evolution;

? no evolution.

These values are arranged as the lattice of evolution

states as shown in Figure 2. The join operator is t.

>

� �

� � �

?

Figure 2: The lattice of evolution states

Any execution sequence corresponds to a control-ow

path where each node along the path represents a state-

ment instance. We de�ne evolutions in terms of control-

ow paths. Each statement is thus interpreted as a

transfer function of evolution values. Given a variable

i, we classify a statement as:

� an identity statement if it does not change the value

of i, such as j = n;

� a forward induction if it always increases the value

of i, such as i = i+1;

� a backward induction if it always decreases the

value of i, such as i = i-3;

� an arbitrary assignment if it may assign an arbi-

trary value to i, such as i = n.

The transfer functions corresponding to each class of

statements are given in Table 1.

? � � � � � >

Identity ? � � � � � >

Forward ? � � � > > >

Backward ? > > � � � >

Arbitrary ? > > > > > >

Table 1: Transfer functions of evolution values

The notation p a

N

i

q represents the join (t) of the evo-

lution of i over all paths that starts from p and ends at



1 do

2 i = 0

3 do

4 i = i+1

5 � � �

6 � � �

b

a

Figure 3: An example

q (immediately before the last q is executed), excluding

those traversing any edges in the set N . A special case

is when q can not be reached from p, then p a

i

q is ?.

Intuitively, p a

N

i

q tells us how the value of i changes

when the program executes from an instance of p to an

instance of q. The set N is introduced to be able to

represent evolutions for a selected part of a control-ow

graph. For instance, we may exclude the back-edge of

a loop from an evolution. This can be used to analyze

the evolution within a single loop iteration.

For dependence testing, we are also interested in evolu-

tions that must traverse an intermediate node. We use,

p a

N

i

r a

N

i

q, to denote such an evolution of i along all

paths from p via r before �nally reaching q, excluding

those that traverse any edge in N .

A simple example is presented in Figure 3 where state-

ment \� � � " does not change the value of i. Nodes in

the graph are named by statement labels. Evolutions

below can be computed following paths in the control-

ow graph.

� 3 a

i

3 = >, since i = 0 is traversed along some

paths from 3 to 3;

� 5 a

b

i

4 = ?, since b is excluded, 4 can not be

reached from 5;

� 4 a

b

i

5 = �, after b is excluded, there is only one

path from 4 to 5, and it traverses i = i+1;

� 3 a

a

i

6 = �, 3 may directly follow the exit edge of

loop 3 to reach 6 without traversing i = i+1.

We make the following observations from this exam-

ple. First, evolutions are not symmetric: for instance,

4 a

b

i

5 = � and 5 a

b

i

4 = ?. Second, the transfer

function for arbitrary assignments is very conservative:

3 a

i

3 is evaluated to > because of the traversal of i =

0. However, knowing that i at 3, immediately following

i = 0, is always a constant, 3 a

i

3 should rather be �.

The precise handling of arbitrary assignments is left for

future work.

2.2 The Iterative Algorithm
One may check that the lattice of evolution states is

�nite and that transfer functions are distributive and

monotonic over this lattice. Therefore, p a

N

i

q can be

computed as the least �xed point of an iterative applica-

tion of transfer functions [13] over a \pruned" control-

ow graph (to exclude edges in N). For each statement

s, let f

s

be the transfer function of s and pred(s) be the

set of predecessors of s in the control-ow graph. Let

in

s

and out

s

hold the values of the evolution that ends

right before and immediately after s, respectively. For

q, we also keep a special state, state

q

, that holds the

�nal result of the computation. The following data ow

equations have to be solved:

in

s

=

G

i2pred(s)

out

i

out

s

= f

s

(in

s

) (1)

To compute p a

N

i

q, the iterative algorithm starts from

node p. Initially, we have in

p

 �, state

q

 ?, and

out

s

 ? for all statement s. The algorithm iteratively

solves the data-ow equations (1). During this process,

every time in

q

is updated,

1

the new state is joined to

state

q

, i.e., state

q

 state

q

t in

q

. The algorithm ter-

minates when it reaches a �xed point, and state

q

yields

the result of p a

N

i

q. An early termination is also pos-

sible as soon as state

q

is set to >. In Section 6, we will

present a more e�cient non-iterative method to com-

pute evolution.

As opposed to traditional data-ow schemes, this al-

gorithm starts from a node p that may be on a cy-

cle on a control-ow graph. Joining in

q

to state

q

at

each update is thus mandatory because in

q

does not

necessarily increase (in the lattice) across each itera-

tion, as required by the safety and termination proofs

in [13]. For instance, applying the algorithm to 5 a

i

3

in Figure 3 yields in

3

= � at the �rst iteration after

traversing 5, and in

3

= � after traversing 5; 3; 4; 5, yet

5 a

i

3 = state

3

= �.

2.3 Evolution Composition
The composition operator (�) \chains" two evolutions

into a single one where the ending node of the �rst evo-

lution is also the starting node of the second one. The

value of p a

N

i

r�r a

M

i

q is state

q

of the second evolution

which is computed by the iterative algorithm starting

with in

r

 p a

N

i

r (instead of in

r

 �). Composition

can be used to compute evolutions that must traverse

an intermediate node. In fact,

p a

N

i

r a

N

i

q = p a

N

i

r � r a

N

i

q (2)

In practice, composition of evolution does not need to

be computed in order. We may compute each evolution

in the composition independently, then, compose their

evolution states. Figure 4 de�nes this operation. Notice

1

When q = p, the initial value of in

p

(�) is not joined

to state

p

, since it is not computed (updated) from the

data-ow equations.



� ? � � � � � >

? ? ? ? ? ? ? ?

� ? � � � > > >

� ? � � � > > >

� ? � � � � � >

� ? > > � � � >

� ? > > � � � >

> ? > > > > > >

Figure 4: Composition of evolution states

that composition is idempotent, i.e., a � a = a; and � is

the neutral element, i.e., � � a = a. Composition is also

commutative and associative. In fact, an evolution along

a path consisting of two consecutive paths A and B can

be computed as the evolution state along A composed

with that along B. Consider Figure 3, the evolution

of i along path (4; 5) is �, which can be computed as

the composition of the evolutions along 4 and 5 (i.e.,

� � �). Thus, we may re-de�ne transfer functions given

in Table 1 in terms of composition as follows:

� Identity(state) = state

� Forward(state) = state ��

� Backward(state) = state ��

� Arbitrary(state) = state � >

In fact, transfer functions may be de�ned for sub-graphs

with a single entry and a single exit such as basic blocks.

Consider a sub-graph with an entry node, x. Let y be

the node that immediately follows the exit node of the

subgraph. The transfer function of the sub-graph com-

poses the input state with the evolution that traverses

the entire sub-graph from x to y (not including y).

2.4 Evolution of Expressions
We compute p a

N

e

q where expression e is the sum of

several terms. When e is a constant expression, p a

N

e

q

is constant (�) if q can be reached from p (otherwise,

?). Considering expression -i, the state of p a

N

�i

q is

always the \opposite" of the state of p a

N

i

q. Operator

� computes the \opposite" of an evolution state:

state ? � � � � � >

�state ? � � � � � >

In general, when e is of the form a*i, p a

N

a�i

q equals

p a

N

i

q when a > 0, or �(p a

N

i

q) when a < 0.

Finally, when e of the form e

1

+ e

2

, the evolution of e

shall be the sum of those of e

1

and e

2

. This can be

easily computed since the sum of two evolution states

can be computed by composition. For instance, suppose

that e is 2i-3j+6,

p a

N

e

q = p a

N

i

q � �(p a

N

j

q) � p a

N

6

q:

1 do

2 if

3 a(i) = � � �

4 i = i+1

b

5 � � � = a(i)

o

b

Figure 5: Dependence test example

3. DEPENDENCE TEST
We use evolution to determine dependences between ar-

ray references subscripted by expressions involving in-

duction variables. Consider statements 3 and 5 in Fig-

ure 5. A dependence test shall determine whether values

of i at 3 may overlap with those of i at 5. We observe

that the evolution of i from 3 to 5 is strictly increasing

(3 a

i

5 = �), i.e., the value of i at 3 is less than the

value of i at any later instance of 5. If the same can be

proven for 5 a

i

3, then values of i at 3 and 5 are always

distinct, meaning that 3 and 5 are not dependent. In

this example, however, 5 a

i

3 is evaluated to �, and

therefore it has to be assumed that 3 is anti-dependent

on 5.

Consider an expression e and two statements p and q

with identical array access a(e), at least one of them

being on the left-hand side of an assignment statement.

The observation is that, if there are dependences be-

tween p and q, then p a

i

q and q a

i

p cannot both be

strict (�, �) or unreachable (?). To prove the absence

of any dependence, we may check that the evolutions be-

tween p and q are either �, �, or ?. On the other hand,

if a dependence may exist, the test needs to further clas-

sify them as intra-loop or loop-carried. In our scheme,

intra-loop and loop-carried dependences are tested in

separate steps for each single loop ` of a nest.

� Intra-loop dependences are concerned with in-

stances that are spawned by the same iteration

of a loop. Thus, evolutions used in the test only

need to consider paths between p and q that do

not traverse any back-edge of loop `. As discussed

below, we assume that loops only exit at the top.

Therefore, paths that start within the loop and do

not traverse a back-edge never leave the body of

the loop.

There is no intra-loop dependence between p and

q for loop `, if,

p a

B

e

q 2 f?;�;�g ^ q a

B

e

p 2 f?;�;�g (3)

where B is the set of all back-edges of the loop.

Consider the previous example again, since 3 a

b

i



do i = 1,100

a(k) = a(k+1) + � � �

k = k+2

end do

do i = 1,100

a(k) = a(k+1) + � � �

if (� � � ) k = k+1

k = k+2

end do

1 do i = 1,100

2 k = k+2

3 t = a(k)

4 a(k) = a(k+1)

5 a(k+1) = t

6 end do

Figure 6: Induction variables with o�sets

5 = � and 5 a

b

i

3 = ?, we conclude that there is

no intra-loop dependence between 3 and 5.

� Loop-carried dependences are concerned with in-

stances that are spawned by di�erent iterations

of a loop, `, but the same iteration of any loop

that surrounds `. Thus, evolutions used in the

test must traverse a back-edge of `, and must

not traverse any exit edge of `. Note that any

path traversing a back-edge of a loop also tra-

verses the header of the loop (the statement that

checks for the loop's termination). Thus, forcing

the traversal of a back-edge is equivalent to forcing

the traversal of the loop header.

There is no loop-carried dependence between p

and q for loop `, if,

p a

E

e

h a

E

e

q 2 f?;�;�g

^ q a

E

e

h a

E

e

p 2 f?;�;�g (4)

where E is the set of exit edges of ` and h is the

header of `.

In the previous example, since 3 a

o

i

1 a

o

i

5 = �

and 5 a

o

i

1 a

o

i

3 = �, there is a loop-carried de-

pendence between 3 and 5 for loop 1.

4. LATTICE EXTENSION
The lattice of evolution states is useful to detect value

changes in induction variables but not to quantify such

changes. Dependence testing for some cases require a

little more information.

Consider the examples in Figure 6 where array a is ac-

cessed with subscripts k and k+1. If the dependence test

knows that values of k change by a minimum of 2, it will

detect no loop-carried dependence for accesses to a.

We introduce new lattice elements to discover such in-

formation. For all n � 0, �

n

and �

n

describe increasing

and decreasing evolutions, respectively, where the di�er-

ence between values of the variable must be greater than

or equal to n. In other words, n characterizes the mini-

mal di�erence between any two values of the variable at

the starting and ending points of the evolution. We call

n the minimal distance of the evolution. The evolution

states �

1

and �

1

correspond to � and � of the original

lattice, respectively, where the only information is that

\the value has changed" in some direction; and �

0

/�

0

correspond to �/�, where the value might have been

constant but the direction is known in case of a change.

Table 2 gives the formal de�nition of t using the min-

imum of distances when joining two increasing or two

decreasing evolution states.

t ? �

p

� �

p

>

? ? �

p

� �

p

>

�

q

�

q

�

min(p;q)

�

0

> >

� � �

0

� �

0

>

�

q

�

q

> �

0

�

min(p;q)

>

> > > > > >

Table 2: Distance-extended lattice

Operator � needs to be updated as well. The new table

is given in Table 3. The main di�erence is that com-

posing �

p

with �

q

yields �

p+q

. According to this new

de�nition, � is still commutative and associative, but

not idempotent anymore, e.g., �

p

��

p

= �

2p

.

� ? �

p

� �

p

>

? ? ? ? ? ?

�

q

? �

p+q

�

q

> >

� ? �

p

� �

p

>

�

q

? > �

q

�

p+q

>

> ? > > > >

Table 3: Distance-extended composition

We de�ne a new binary operator � that multiplies an

evolution state by a positive number.

state ? �

a

� �

a

>

state� n ? �

a�n

� �

a�n

>

Transfer functions have changed to cope with new ele-

ments of the lattice, but the algorithm that drives the

iterative computation remains the same. The distance

after an induction i = i+q is the sum of current dis-

tance, call it p, with q. Notice that q has to be known

at compile-time (possibly after constant propagation).

Consider the previous examples, all evolutions between

assignments to k across iterations yield �

2

.

? �

p

� �

p

>

Identity ? �

p

� �

p

>

Forward

q

(with step q) ? �

p+q

�

q

> >

Backward

q

(with step q) ? > �

q

�

p+q

>

Arbitrary ? > > > >



This extension makes the lattice in�nite, even of in�nite

height. However, since state � state < state holds, we

still have an interesting property:

state t state � state = state:

This means that all descending chains (using operator

t) are of �nite length during the �xed point computa-

tion. This property guarantees the termination of the

�xed point computation.

5. IMPROVED DEPENDENCE TEST
We devise a new dependence test to exploit the addi-

tional minimal distance information. This test shares

some similarities with the range test used in Polaris [4].

Consider two accesses, a(i) at p and a(i+d) at q, i

being an induction variable and d being a constant.

2

The value di�erence between i at p and i+d at q is used

in the dependence test. However, since subscripts of

a at p and q are di�erent, this information cannot be

computed directly from evolutions. Of course, i+d � i

if d � 0 at q. Therefore, we may compute the evolution

of i from p to q, then compose it with �

d

. The resulting

evolution captures the di�erence between the value of

i at an instance of p and the value of i+d at any later

instance of q.

Consider a loop `, two accesses, a[e] at p and a[e+d]

at q. Let B and E denote the sets of back-edges and

exit edges of `, respectively.

� If d > 0, there is no intra-loop dependence be-

tween p and q for loop ` when,

p a

B

e

q ��

d

=2 f>; �;�

0

;�

0

g

^ q a

B

e

p ��

d

=2 f>; �;�

0

;�

0

g: (5)

If d < 0, �

d

(resp. �

d

) is replaced by �

�d

(resp.

�

�d

) in (5).

� If d > 0, there is no loop-carried dependence be-

tween p and q for loop ` when,

p a

E

e

h a

E

e

q ��

d

=2 f>; �;�

0

;�

0

g

^ q a

E

e

h a

E

e

p ��

d

=2 f>; �;�

0

;�

0

g: (6)

If d < 0, �

d

(resp. �

d

) is replaced by �

�d

(resp.

�

�d

) in (6).

Consider the right-most loop in Figure 6, which swaps

every pair of elements of array a. Since k is incremented

by 2 per iteration, to test loop-carried dependence be-

tween 3 and 5, we have,

3 a

k

1 a

k

5 ��

1

= �

2

��

1

= �

3

5 a

k

1 a

k

3 ��

1

= �

2

��

1

= �

1

2

Accesses of the form a[i+d

1

] and a[i+d

2

] can be han-

dled as a[j] and a[j+(d

2

� d

1

)].

This proves there is no loop-carried dependence between

3 and 5. In Section 8, we will show that the new depen-

dence test is able to parallelize many more nests.

6. EFFICIENT COMPUTATION
This section presents the core techniques for e�cient

computation of evolutions. These techniques are then

combined into an optimized and non-iterative algo-

rithm. This section uses the following notations:

� h

k

denotes the header of any loop `

k

.

� `

p

denotes the loop that immediately encloses p.

3

6.1 The Basic Algorithm
We �rst give a basic (non-iterative) algorithm to com-

pute evolutions which traverse no back-edges in the

control-ow graph. This algorithm is the core of the

non-iterative method. Any general evolution can be de-

composed into segments, each of which can be computed

by the basic algorithm.

We make some assumptions about the control-ow

graph. Loop headers do not change any program vari-

able. One may suppose, without loss of generality, that

a loop always exits from its header. An early exit is

interpreted as a continue statement (i.e., an uncondi-

tional branch to the loop header) immediately followed

by a normal loop exit. We also assume that each node

s of the control-ow graph is assigned a number, d

s

,

according to its depth-�rst search ordering [1] (a.k.a.

topological ordering [6]).

The basic algorithm takes, as input, an innermost loop

` with header h, two nodes p and q in `, and a \pruned"

control-ow graph that excludes edges in a set N . There

are two cases:

� The �rst case is when q 6= h. The algorithm

returns the value of p a

N[O

i

q where O is the

set of outgoing edges of `. Testing reachability

is straightforward: the algorithm returns ? when

d

p

> d

q

. Then, if q is reachable from p, the al-

gorithm starts from p and processes every node s

such that d

p

� d

s

< d

q

in increasing depth-�rst

search order. Let f

s

be the transfer function of s

and pred(s) be the predecessors of s inside loop

`. Initially, the algorithm sets in

p

 �. Then,

in

s

and out

s

are computed for each node s using

equation (1). When in

q

is computed, the algo-

rithm returns in

q

and terminates.

� The second case is when q = h. The algorithm re-

turns ?, if all back-edges of ` are excluded. Oth-

erwise, q is reachable from p. Then, the algorithm

is similar to the previous case except that it pro-

cesses every node s such that d

s

� d

p

. After every

out

s

is computed, the �nal result, in

h

, is computed

as the join of all out

s

from the back-edges.

3

When p is the header of a loop `, the innermost en-

closing loop of p is the loop that immediately encloses

`.



1 do

2 if

4 a(i) = � � �

3 i = i+1 5 i = i+2

b

6 � � � = a(i)

a

o

b

Figure 7: Using the basic algorithm

Consider the example in Figure 7, where the statement

label is also the depth-�rst numbering of the statement.

To compute The basic algorithm computes 2 a

b

i

6 fol-

lowing the depth-�rst order: in

2

= �, out

2

= �, in

3

= �,

out

3

= �

1

, in

4

= �, out

4

= �, in

5

= �, out

5

= �

2

, and

in

6

= �

1

t�

2

= �

1

. The result is 2 a

b

i

6 = in

6

= �

1

.

Now, consider an evolution that ends at a loop header,

2 a

a;o

i

1. The basic algorithm computes the evolution in

two steps: it �rst computes out

6

= �

1

; then, 6 being

the only predecessor of 1 in the loop, the result is 2 a

b

i

1 = in

1

= �

1

as well.

6.2 Definition of Stride
In a structured program, all cyclic paths arise from

loop constructs. We are interested in evolutions that

traverse at most one iteration of a loop, called strides.

With stride information, it is possible to compute evo-

lutions that traverse loops without actually iterating on

the graph.

Consider a loop ` with a header h and a statement p

enclosed in `. We de�ne three strides between p and h:

� Up

i;N

(p; h) denotes an evolution from p up to the

�rst h reached, excluding edges in N . It captures

the value di�erence of i from an instance of p to

the �rst instance of h that follows it. Up

i;N

(p; h)

is called an up-stride of p. When p is immediately

enclosed by `, Up

i;N

(p; h) is called the local up-

stride of p.

� Down

i;N

(h; p) denotes an evolution from h down

to p without traversing h twice, excluding edges in

N . It is also called a down-stride of p. It When

p is immediately enclosed by `, Down

i;N

(h; p) is

called the local down-stride of p.

� Stride

i;N

(`) denotes an evolution from h to the

next h, excluding edges in N and the exit edge

of `. It is a special case of Down

i;N

(h; p) and

Up

i;N

(p; h) when p = h. Since Stride

i;N

(`) cap-

tures the e�ect of iterating exactly one iteration

of `, it is called the local stride of `.

Let us illustrate strides on the example in Figure 8.

1 do

loop `

1

2 i = i+2

3 do j=1,8

loop `

3

4 i = i+1

5 � � �

6 � � �

c

d

b

a

Figure 8: Stride information

� Down

i

(3; 5) = �

1

is the evolution along the path

3; 4; 5;

� Up

i

(5; 3) = � is the evolution along the path 5; 3;

� Stride

i

(`

3

) = �

1

is the evolution along the path

3; 4; 5; 3;

� Down

i

(1; 3) = �

2

is the evolution along all paths

1; 2; 3(; 4; 5; 3; � � � ). This path traverses 2 once, but

may not traverse any node in `

3

;

� Up

i

(3; 1) = �

0

is the evolution along all paths

(3; 4; 5; � � � ; )3; 6; 1. It traverses 6, but may not

traverse any node in `

3

;

� Down

i

(1; 5) = �

3

is the evolution along paths

1; 2; 3; (4; 5; 3; � � � ; )4; 5. It enters the inner loop

at least once (reach 5) and traverses statement 2

exactly once;

� Up

i

(5; 1) = �

0

is the evolution along all paths

5; 3; (4; 5; 3; � � � ; )6; 1.

� Stride

i

(`

1

) = �

10

is the evolution that traverses

one iteration of loop `

1

. It traverses 2 once and

the entire inner loop once (knowing `

3

has 8 iter-

ations).

6.3 Computing Stride
To compute evolution e�ciently, we break down evolu-

tions into up- and down-strides. This section describes

how to compute strides e�ciently. We start with lo-

cal strides, which are computed by the basic algorithm.

Then, non-local strides are computed as the composi-

tion of local strides.

Local Strides
We �rst show how to compute Stride

i;N

(`). The al-

gorithm starts from the innermost loops and proceeds

outwards. Consider an innermost loop `

x

. Stride

i;N

(`

x

)

can be computed by the basic algorithm. Then, `

x

is

reduced to a single abstract node x, where exit edges of

`

x

now leave from x instead, and the incoming edges of

the loop header (excluding those from within the loop)

now point to x. The transfer function for node x is,

f

x

(in) = in � (Stride

i;N

(`

x

)� it

x

);



1 do

loop `

1

2 i = i+2

x f

x

(in) = in ��

8
abstract node

6 � � �

a

Figure 9: Abstract nodes

where it

x

is the minimal number of iterations of `

x

.

Loops with early exits or continue statements have

it

x

= 1. When all the innermost oops are reduced to

single abstract nodes, loops immediately enclosing them

become \innermost" and the stride can be computed by

the basic algorithm.

Considering Figure 8, Stride

i

(`

1

) is computed in three

steps.

1. Stride

i

(`

3

) = �

1

is computed by the basic algo-

rithm.

2. Loop `

3

is abstracted to a single node x as shown

in Figure 9; knowing `

3

executes exactly 8 itera-

tions, the transfer function is

f

x

(in) = in � (�

1

� 8) = in ��

8

:

3. Stride

i

(`

1

) = �

10

is computed by the basic algo-

rithm on the transformed graph.

When p is not a loop header, Down

i;N

(h

p

; p) and

Up

i;N

(p; h

p

) can be computed by the same algorithm

using the appropriate starting and ending nodes.

When p is the header of a loop `

0

that is immediately

enclosed by `

1

, local strides of p (h

0

) are computed:

Up

i;N

(h

0

; h

1

) = Up

i;N[OnE

(h

0

; h

1

) (7)

� (Stride

i;N

(`)� 0)

Down

i;N

(h

1

; h

0

) = Down

i;N[O

(h

1

; h

0

) (8)

� (Stride

i;N

(`)� 0);

where O is the set of outgoing edges of h

0

, and E is

the exit edge of `

0

. By excluding edges entering loop

`

0

, Down

i;N[O

(h

1

; h

0

) and Up

i;N[OnE

(h

0

; h

1

) can be

computed by the basic algorithm.

Consider Figure 8 again, the local strides of 3 can be

computed as,

Up

i

(3; 1) = Up

i;c

(3; 1) � (Stride

i

(`

3

)� 0)

= � � (�

1

� 0) = �

0

Down

i

(1; 3) = Down

i;fc;dg

(1; 3) � (Stride

i

(`

3

)� 0)

= �

2

� (�

1

� 0) = �

2

Non-local Strides
Consider a statement p enclosed in a loop nest `

n

; : : : ; `

0

where `

0

= `

p

. Let us consider the down-stride of p for

an arbitrary header h

k+1

. Since any path from h

k+1

to p

also traverses h

k

, Down

i;N

(h

k+1

; p) can be decomposed

into two segments: one is from h

k+1

to h

k

; the other is

from h

k

to h

p

. Up

i;N

(p; h

k+1

) can be decomposed in a

similar way:

Up

i;N

(p; h

k+1

) = Up

i;N

(p; h

k

) (9)

� Up

i;N

(h

k

; h

k+1

)

Down

i;N

(h

k+1

; p) = Down

i;N

(h

k+1

; h

k

) (10)

� Down

i;N

(h

k

; p)

Since Down

i;N

(h

k+1

; h

k

) and Up

i;N

(h

k

; h

k+1

) are local

strides, this leads to an inductive computation of non-

local strides using (9) and (10).

Using previously computed stride information, we apply

these equations to the example in Figure 8.

Up

i

(5; 1) = Up

i

(5; 3) �Up

i

(3; 1)

= � ��

0

= �

0

Down

i

(1; 5) = Down

i

(1; 3) � Down

i

(3; 5)

= �

2

��

1

= �

3

6.4 Non-iterative Algorithm
We give a non-iterative algorithm to compute evolu-

tions using the basic algorithm and the stride informa-

tion. The algorithm is presented in two steps. First, we

describe how to compute evolutions that traverse an in-

termediate loop header. Then, we show how to compute

general evolutions.

1. The �rst step computes evolutions that traverse

intermediate loop headers. Such evolutions are

needed in the next step to compute general evo-

lutions (in form of p a

N

i

q). They are also used

in dependence tests to determine loop-carried de-

pendences.

Consider such an evolution, p a

N

i

h

0

a

N

i

q, where

loop `

0

encloses both p and q and is enclosed in

a loop nest, `

n

; : : : ; `

1

. The algorithm proceeds as

follows. For each loop `

k

where 0 � k � n, it com-

putes an intermediate result cycl

k

starting from

`

0

: cycl

k

is the evolution of i from p to q without

traveling outside `

k

. Finally, p a

N

i

h a

N

i

q, which

is con�ned to the outermost loop `

n

, is computed

as cycl

n

. We �rst describe how to compute cycl

0

.

Any path from p to q via h

0

within `

0

can be split

into three segments:

cycl

0

= Up

i;N

(p; h

0

)

� (Stride

i;N

(`

0

)� 0)

� Down

i;N

(h

0

; q): (11)

Now, consider any cycl

k+1

. Then, the corrsepond-

ing evolution is either con�ned to `

k

(i.e., cycl

k

)

or travels outside `

k

but within `

k+1

(i.e., from p



to q via h

k+1

). Hence,

cycl

k+1

= cycl

k

t

�

Up

i;N

(p; h

k+1

)

� (Stride

i;N

(`

k+1

)� 0)

�Down

i;N

(h

k+1

; p)

�

(12)

This leads to an inductive computation of p a

N

i

h

0

a

N

i

q as cycl

n

using (11) and (12).

2. The second step computes general evolutions in

form of p a

N

i

q. Let `

p;q

be the loop that im-

mediately encloses p and q. Paths traversed by

p a

N

i

q can be separated in two sets, depending on

whether they traverse h

p;q

or not:

p a

N

i

q = p a

N[B

i

q t p a

N

i

h

p;q

a

N

i

q (13)

where B is the set of back-edges of `

p;q

. Since

the second term in (13) is computed in the �rst

step, we focus on describing the computation of

p a

N[B

i

q.

Let `

1

(resp. `

2

) be the outermost enclosing loop

of p (resp. q) within `

p;q

. We would like to split

p a

N[B

i

q around h

1

and h

2

into the following

segments,

p a

N[B

i

q = Up

i;N

(p; h

1

)

� (Stride

i;N

(`

1

)� 0)

� h

1

a

N

0

i

h

2

� (Stride

i;N

(`

2

)� 0)

� Down

i;N

(h

2

; q)

where

N

0

= N [B [ (O

1

n E

1

) [O

2

(14)

where O

1

and O

2

are the sets of outgoing edges

of `

1

and `

2

, respectively; E

1

is the exit edge of

`

1

. Basically, N

0

ensures h

1

a

N

0

i

h

2

traverses no

cycle around h

1

or h

2

so that the evolution can be

computed by the basic algorithm.

When p is immediately enclosed in `

p;q

, `

1

does

not exist. Under such case, the composition with

Up

i;N

(p; h

1

)� (Stride

i;N

(`

1

)�0) is removed from

(14), h

1

is replaced by p. The same applies to `

2

.

To illustrate step one, we compute 5 a

i

3 a

i

5 in Fig-

ure 8. Since 3 is enclosed in `

1

and `

3

, this evolution is

computed as cycl

1

as follows:

5 a

d

i

3 a

d

i

5 = cycl

0

= Up

i

(5; 3)

� (Stride

i

(`

3

)� 0)

� Down

i

(3; 5)

= � � (�

1

� 0) ��

1

= �

1

5 a

i

3 a

i

5 = cycl

1

= cycl

0

t (Up

i

(5; 1)

� (Stride

i

(`

1

)� 0)

�Down

i

(1; 5))

= �

1

t (�

0

� (�

10

� 0) ��

3

) = �

1

1 do

loop `

1

2 do

loop `

2

3 i = i+1

4 a[i] = � � �

5 i = i+1

6 do

loop `

6

7 i = i+1

8 a[i] = � � �

9 � � �

b

c

d

a

Figure 10: Evolution across loops

To illustrate (14), we compute 4 a

a

i

8 in Figure 10,

where `

1

is the innermost loop that encloses 4 and 8.

4 a

a

i

8 = Up

i

(4; 2) � (Stride

i

(`

2

)� 0)

� 2 a

a;b;c;d

i

6

� (Stride

i

(`

6

)� 0) �Down

i

(6; 8)

= � � (�

1

� 0) ��

1

� (�

1

� 0) ��

1

= �

2

6.5 Caching Intermediate Evolution
The dependence test computes two evolutions, for any

pair of accesses, and for each surrounding loop to be

tested (e.g., from p to q, and from q to p). Obviously,

computation will not be e�cient without optimizing

computations across di�erent evolutions. We propose

to cache and reuse intermediate evolutions. Note that,

the non-iterative algorithm decomposes evolutions into

standard segments, i.e., up-strides, down-strides, and

strides of loops. We can compute and tabulate these

stride informations for each statement and loop to be

tested. To further optimize the algorithm, for each ba-

sic block, we compute (on demand) local evolutions that

traverse an entire block, and store the results. During

later computations, the algorithm may \short-cut" the

basic block by composing its (cached) local state with

the input state.

7. COMPLEXITY ANALYSIS
We are interested in an upper bound on the complexity

of computing all evolutions for the dependence test of

the overall program. Of course, we would like to take

the \caching" of intermediate results into account.

Since dependence tests are local to individual loop nests,

we consider an arbitrary loop nest L and an induction

variable i. Let e be the number of edges in L, and m be



the maximal nesting of L. Suppose that k statements in

L are involved in the dependence test. The dependence

test computes p a

N

i

h a

N

i

q and p a

N

i

q, for all possi-

ble p, q and h, where N may only contain back-edges

and exit edges. In fact, when computing intermediate

evolutions, we can drop N and explicitly compute those

evolutions for each loop. The computation is performed

in �ve passes:

Pass 1 computes local strides for every statement p in-

volved in dependence test, and local strides for

every loop ` in L. Using the basic algorithm, all

local down-strides and local strides of loops can

be computed in one traversal of the control-ow

graph. To compute all local up-strides in a sin-

gle traversal, however, present some di�culties.

Consider statements, p and q, enclosed in a loop

` with a header h. If we compute Up

i;N

(p) and

then Up

i;N

(q), some control-ow edges will be tra-

versed twice. To overcome this problem, we can

start the computation from h and follow the op-

posite direction of the control-ow edges in ` ap-

plying the basic algorithm. In this way, all local

up-strides can be computed in a single traversal of

the control-ow graph.

During each traversal, According to (1), for any

node s, it takes one operation to compute out

s

and (e

s

� 1) operations to compute in

s

where e

s

is the number of incoming edges of s. As a whole,

this pass takes 2e operations.

Pass 2 computes Down

i

(h; p) and Up

i

(p; h) for every

p and the header h of every enclosing loop of p, as

well as Down

i

(h

0

) and Up

i

(h

0

) for every header h

0

.

According to (7-10), each up-stride/down-stride

takes at most 2 operations. In total, 4mk oper-

ations are needed.

Pass 3 computes p a

N

i

h a

N

i

q for every triplet (p; q; h)

and every enclosing loop of the triplet (by spec-

ifying di�erent N), h being the header of an en-

closing loop of p and q. According to (11) and

(12), p a

N

i

h a

N

i

q for di�erent N (i.e., di�er-

ent enclosing loops of (p; q; h)) can be computed

inductively in m steps. Each takes at most 4 op-

erations. Then, counting all possible (p; q; h), this

pass takes 4m

2

k

2

operations.

Pass 4 computes all h

1

a

N

0

i

h

2

where h

1

and h

2

can be

any statement involved in the dependence test or

the header of any surrounding loop of such state-

ments. N

0

is designed such that h

1

a

N

0

i

h

2

will

not traverse inside `

1

or `

2

or back-edges of any

loop that surrounds h

1

and h

2

. In fact, N

0

is �xed

for any given h

1

and h

2

.

Following the lines of the �rst pass, all h

1

a

N

0

i

h

2

starting from the same h

1

can be computed to-

gether in one traversal of the control-ow graph.

Furthermore, all h

1

a

N

0

i

h

2

with h

1

from di�erent

loops traverse no common edges (assuming that

loops are reduced to abstract nodes). Therefore,

a conservative estimate is that evolutions start-

ing from a statement p and from the header of

the surrounding loop of p can be computed in one

traversal of the control-ow graph (i.e., in e opera-

tions). Counting all the statements and summing

up, this pass takes ek operations.

Pass 5 computes p a

N

i

q for every pair of p and q

and every enclosing loop of the pair. According

to (14) and (13), p a

N

i

q takes at most 7 opera-

tions. Counting all possible p, q, and N , this pass

takes at most 7mk

2

operations.

Putting them all together, the number of operations of

the whole dependence test is bounded by,

2e+ 4mk + 4m

2

k

2

+ ke+ 7mk

2

: (15)

The complexity of the dependence test is thus,

O(ek +m

2

k

2

): (16)

Any ow-sensitive, statement-wise dependence test for

k statements in a loop nest of depthmmust take at least

mk

2

steps, our test is no exception. In our scheme, de-

pendency is tested individually for each loop of a nest

(as reected by the occurrence of m in (15) and (16)).

Therefore, compared to classical dependence tests with-

out induction variable recognition, our scheme requires

more steps.

4

However, (15) estimates the number of op-

erations (i.e., �, �, and t) involved in the dependence

test: the formula gives a fairly accurate account of the

cost of the test. On the other hand, for classical de-

pendence tests, depending on the mathematical tools

employed, the cost of individual operations is di�cult

to estimate.

8. EXPERIMENTAL RESULTS
For our experimental studies, we used Polaris [5], a For-

tran source-to-source parallelizing compiler, as the basis

for comparison. In Polaris, there is a dedicated idiom

recognition pass to identify induction variables and �nd

their closed forms. Each induction variable is then sub-

stituted by its closed form expression before the depen-

dence test is performed. In the context of dependence

testing for array accesses, we focus on integer induction

variables (IIVs) which are used in array subscripts, and

we do not deal with IIVs unrelated to any dependences,

e.g., IIVs used in subscripts for arrays that only ap-

pear in right-hand side. Other IIVs may still be used to

drive locality optimizations and to prove array proper-

ties such as the injectivity of array values [14], but these

applications are left for future work.

In the experiment, we used Polaris to �nd candidate

IIVs from the Perfect Club benchmark suite. Three

programs have been omitted: arc2d and track because

they contain no loop with IIVs, and spice because it

4

m times, when testing a large number of array accesses,

i.e., when k is close to e.



Loops with IIVs Parallel Loops with IIVs

Total Subscript Targeted Polaris Monotonic w/ Distance Best

adm 17 17 5 3 2 3 3

bdna 63 62 60 22 34 34 34

dyfesm 15 11 8 7 8 8 8

flo52 15 15 15 12 12 12 12

mdg 29 29 24 12 12 12 13

mg3d 97 97 89 5 5 5 5

ocean 11 6 6 5 4 4 5

qcd 69 69 69 58 63 63 63

spec77 99 59 54 44 1 44 44

trfd 13 13 9 7 6 6 7

Table 4: Experiments with the Perfect Club benchmark suite

could not be handled by Polaris. Applying our depen-

dence test by hand (for dependences involving IIVs) and

using the dependence information reported by Polaris

(for other dependences), we detected parallel loops in-

volving IIVs by hand. Table 4 presents the experimen-

tal results. The �rst three columns classify loops with

IIVs into three sets: loops containing IIVs (Total); loops

where IIVs appear as subscripts (Subscript); and loops

where the analysis of IIVs is required for paralleliza-

tion (Targeted), that is, loops that are the target of our

technique. The next four columns give the number of

loops with IIVs parallelized by di�erent techniques: by

Polaris (Polaris), by our dependence analysis with ei-

ther the original (Monotonic) or the distance-extended

(w/ Distance) lattice, and by combining Polaris with

our technique (Best). Note that, in columns Mono-

tonic and w/Distance, a loop counted as parallel simply

means that when disabling IV substitution in Polaris

and \plugging in" our analysis, Polaris reports no loop-

carried dependence for the loop except for those due

to assignments to IVs themselves. Such dependences

can be handled either by �nding closed form expressions

and performing the substitution, or by the techniques

described in the next paragraph.

Let us comment on the results. Our dependence test

matches or outperforms Polaris on all but four loops

with IIVs. These cases are studied in greater detail

in Section 8.2. In addition, we detect 19 more loops

whose only dependences came from operations on in-

duction variables themselves that Polaris can not han-

dle. Among them, one (in mdg) does have a closed form,

but the dependence test in Polaris failed to handle the

closed form expression. Twelve (11 in bdna and 1 in

dyfesm) have no closed form expressions because the

loop bounds involve array references, but using a par-

allel reduction scheme, they can be parallelized with-

out much overhead. The other six (5 in qcd and 1

in bdna) involve conditional induction variable updates.

One may resort to a more general doacross technique

to parallelize such loops: the loop body is split into a

\head" sequential part for induction variable computa-

tion and a \tail" part which can be run in parallel with

the next iteration.

We also found numerous cases where our technique re-

ports less dependences than Polaris does. Such addi-

tional precision may be exploited by other paralleliza-

tion algorithms|such as loop splitting and skewing

or general expansion and scheduling algorithms|which

are not implemented in Polaris.

These results allow us to draw an early conclusion: when

dealing with induction variables, our technique is e�-

cient and matches the precision of Polaris. Thus, closed

form computation can be delayed until after the depen-

dence test and performed only for loops free of other

loop-carried dependences. This would not only enable

closed form expression computation to be on demand

(to remove sequential induction computations), but also

avoid expensive dependence testing on complex sub-

scripts due to closed form substitution. Such a scheme

would only miss three loops that can be parallelized by

Polaris using closed form expressions, but �nds 19 more

parallel loops (or 13 without considering conditional in-

duction variable updates) than can Polaris.

8.1 Successfully Analyzed Loop Patterns
In this section, we discuss several loops because they ex-

pose non-trivial induction variables and our dependence

test is able to analyze them precisely. For some of these

loops, Polaris reports false dependences.

Pattern1: IVs spanning nested loops.
An example of such IVs has been described in Fig-

ure 1.a. Polaris succeeds in computing a closed form

expression for IIV ijk but detects false dependences

because ijk spans a triple-nested loop and its closed

form expression is a non-a�ne function of loop counters

and invariants. Conversely, our dependence test easily

checks that ijk is strictly increasing between any two

iterations of each loop and concludes that all of them

are parallel.

Pattern2: complex loop bounds.
| dyfesm sethm do15 | line 6120 |

do iss = 1,nblock-1

irel = 1

do i = 1,nnpss(iss)



node = node+1

iwherd(node,1) = iss

iwherd(node,2) = irel

irel = irel+nddf

end do

end do

In this example, a closed form expression is still lack-

ing for induction variable node because it would depend

on the bound of the inner loop (nnpss(iss)) which is

subscripted by the outer loop counter. Our analysis de-

tects that variable node is strictly increasing between

two references to iwherd. Thus, the outer loop contains

no loop-carried dependence except for computing the

value of node. In fact, values of node could be gener-

ated from the source code as a sum of values in array

nnpss. The outer loop may be executed in two parts. A

parallel reduction part sums elements in nnpss, and a

simple parallel loop computes the rest of the code. Our

analysis found 12 loops in bdna and dyfsem that could

be parallelized this way .

Pattern3: conditional increments.
An example of loops where IVs are conditionally incre-

mented has been described in Figure 1.b. Because of

conditionals, Polaris and other recognition techniques

[2, 9, 11] fail to compute closed forms for IIVs. We

can easily prove that there are no dependences on array

lisred because nred is strictly increasing. However,

parallelization is di�cult because evaluation of nred

still has to be sequential, yielding a pipelined execution

scheme. Six loops in qcd and bdna share this pattern.

One of these (in qcd) as shown below has increments

interleaved with array accesses.

| qcd qqqlps do21 | line 1921 |

do ntrans = 1,2

� � �

do i = 0,r3-1

str(ctr) = temp

ctr = ctr+1

end do

� � �

ctr = ctr+1

� � �

if (r3.ne.0) then

str(ctr) = 36

ctr = ctr+1

else

do i = 0,t-1

str(ctr) = 4

ctr = ctr+1

end do

� � �

endif

� � �

end do

Because of the conditionals, Polaris �nds no closed form

expression for ctr, and neither would more powerful

techniques such as [2, 9, 11]. Therefore, Polaris is able

to parallelize the inner loops, but fails to discover that

there is no dependence carried by the outer loop. The

method proposed in [9] is able classify each static refer-

ence of ctr as \strictly monotonic" but not to compare

ctr occurring in di�erent statements (accessing to array

str). It would thus fail to parallelize the outer loop.

Pattern4: strides and offsets.
| adm rffti1 do108 | line 4964 |

do ii = 3,ido,2

i = i+2

fi = fi+1.

arg = fi*argld

wa(i-1) = cos(arg)

wa(i) = sin(arg)

end do

It is quite simple to compute the closed form expression

of i and to infer that the loop carries no dependence

over array wa. However, our basic lattice is not expres-

sive enough to capture the information that values of i

for distinct iterations always di�er by a distance greater

than 1 (in this case, the minimal distance is 2). The

distance-extended lattice solves the problem. Forty four

loops with various o�sets and strides have been found

and successfully parallelized this way in spec77.

8.2 Patterns that Could not be Handled
The following nests illustrate the two most common

cases where our technique could not successfully detect

parallel loops.

Pattern 1: Monotonic small- and big-step
| trfd olda do100 | line 331 |

do mrs = 1,nrs

� � �

mrsij = mrsij0

do mi = 1,morb

� � �

do mj = 1,mi

mrsij = mrsij+1

xrsij(mrsij) = xij(mj)

end do

end do

mrsij0 = mrsij0+nrs

end do

In this case, variable mrsij is incremented by a \small"

step (1) in every iteration of the inner loop, and is re-

assigned to the value of mrsij0 in every iteration of the

outer loop. Variable mrsij0 itself is an induction vari-

able incremented by a \big" step nrs by the outer loop.

As opposed to the stride and o�set pattern, proving

there is no dependence requires comparing the accumu-

lative e�ect of the \small" step of the inner loop|which



usually depends on the bounds of the inner loop and the

step|with the big step of the outer loop.

Polaris detects no dependences carried by any of the

loops because the closed form expression of mrsij

yielded disjoint intervals [4]. This is illustrated in the

�gure below:

big steps

small steps

there are no dependences carried by the outer loop be-

cause the dotted lines|the last value of mrsij|always

precede the dashed ones|the next value of mrsij0. Be-

cause of its inability to precisely handle arbitrary assign-

ments (mrsij = mrsij0) and capture ranges of integer

values, our technique may only parallelize the two in-

ner loops of the three-nested loops based on the strict

monotonicity of mrsij.

Pattern 2: Interleaved big- and small-step
Our distance-extended lattice handles complex combi-

nations of o�sets and strides spanning multiple loops,

as long as o�sets are explicit in every reference. In

many benchmarks, a comparison is required between

the stride of an inner loop and an outer loop bound

(the opposite of the previous pattern).

| mdg correc do1000 | line 989 |

do i = 1,nt

� � �

jj = i

do j = 1,nor1

var(jj) = var(jj) + � � �

jj = jj+nt

end do

end do

To parallelize the outer loop, one has to show that i |

hence the initial value of jj | is always greater than

0 and less than or equal nt. This is illustrated in the

�gure below:

big steps

small steps

There are no dependences carried by the outer loop be-

cause the dotted line|the greatest possible value of i|

precedes the dashed one|the stride of jj. Polaris can-

not handle this pattern either.

9. RELATED WORK

Most dependence tests handle induction variables by

idiom recognition and closed form substitution. Those

closed form expressions usually involve only the indices

of the surrounding loops and loop invariants. Using pat-

terns proposed by Pottenger and Eigenmann [15], the

Polaris compiler recognizes polynomial sequences that

are not limited to scalar and integer induction variables.

Other closed form computation techniques explore vari-

ous approaches. Abstract interpretation is used by Am-

marguellat and Harrison [2] to compute symbolic ex-

pressions and compare it with known templates, but

it leads to a rather ine�cient algorithm and does not

handle irregular nests. Two general classi�cation tech-

niques have been designed. The �rst one by Gerlek,

Stoltz and Wolfe [9] is based on a SSA representation

[7] optimized for e�cient demand-driven traversals. It

relies on Tarjan's algorithm to detect strongly connected

components. The second one is designed by Haghighat

and Polychronopoulos for the Parafrase 2 compiler[11].

It combines symbolic execution (iterated forward sub-

stitution) and recurrence interpolation. Both of them

handle a broad scope of closed form expressions, such

as linear, arithmetic (polynomial), geometric (with ex-

ponential terms), periodic, and wrap-around.

Closed form expression computation has obvious ben-

e�ts for optimizations. It is also critical for removing

dependences due to computation of induction variables

themselves. For irregular nests with while loops or com-

plex bounds (e.g., with array accesses), and for condi-

tional IV updates, closed form expressions are gener-

ally not hoped for. Gupta and Spezialetti extended the

linear IV detection framework with arithmetic and ge-

ometric sums, as well as monotonic sequences [10], for

non-nested loops only. Their technique is applied to

optimizations such as e�cient run-time array bounds

checking. Lin and Padua [14] also studied monotonicity

for values of index arrays in the context of paralleliz-

ing irregular codes. This property can be used later to

detect dependences between accesses to sparse matri-

ces through index arrays. Like in our technique, they

compute monotonicity on-demand from non-iterative

traversals of the control-ow graph, but their technique

does not target general induction variables. More gen-

eral monotonic sequences could be detected by Gerlek,

Stoltz and Wolfe as a special class of induction vari-

ables [9], as soon as a strongly connected component

in the SSA graph traverses a �-function. As far as the

monotonic class of IVs is concerned, their classi�cation

of sequences is less powerful than our evolution in the

following ways:

� Monotonicity is estimated for each sequence of val-

ues associated with a variable. Since SSA gives

di�erent names after each de�nition, references to

the same variable separated by induction variable

updates can not be compared. This may yield

spurious dependences.

� It is not clear whether sequences are de�ned

loop-wise or for the whole nest. In the latter



case, it may make too conservative assumptions

for inner loops. Extending their technique for

statement-to-statement evolutions seems di�cult:

SSA graphs are not well suited for disabling traver-

sal of control-ow edges.

� Stride-extended monotonicity information is not

computed, but closed form expressions associated

with other IV classes may be suitable for such se-

quences. This would incur a higher analysis cost

and is likely to blur further dependence testing.

It is worth noticing that recursive pointer \chasing" like

p = p->next may also be interpreted as a form of in-

duction. Dealing with pointer and dependence analysis

in the presence of recursive data structures, some tech-

niques use abstractions closely related to monotonicity

to compare pointer variables. For instance, Hendren,

Hummel and Nicolau [12] are able to discover when a

tree access is \below" another one or when two accesses

target distinct branches. They abstract access paths

with regular expressions that might be interpreted as

monotonicity and strides generalized to multiple inde-

pendent dimensions.

10. CONCLUSION
We use monotonic evolution for dependence testing on

array accesses indexed by induction variables. This

method requires no closed form expression computation.

The experiment showed that our technique matches the

precision of Polaris when closed form expressions are

available, and when there are no closed form expres-

sions, our technique can detect additional parallel loops.

An e�cient non-iterative algorithm is devised, achiev-

ing incremental computation of evolutions at a very low

cost. IV substitution only needs to be performed after

the dependence analysis, and it can be performed on de-

mand. This saves unnecessary closed form computation

on loops that eventually may not be parallelized.

We plan to extend the algorithm to handle arbitrary

assignments, such as i = j, more precisely. This may

lead us to solving the two patterns yet to be handled.

Furthermore, since arbitrary assignments link the values

of two variables, they may be used as reference points

to compare di�erent variables. From the lattice side, we

would like to compute both the maximal and minimal

distance of an evolution. Dependence tests may exploit

such information [4].
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