Peng Wu
email: pengwu@cs.uiuc.edu

Albert Cohen
email: albert.cohen@inria.frjay.p.hoeflinger@intel.com

Jay Hoeflinger

David Padua
email: padua@cs.uiuc.edu

Monotonic Evolution: an Alternative to Induction Variable Substitution for Dependence Analysis

We present a new approach to dependence testing in the presence of induction variables. Instead of looking for closed form expressions, our method computes monotonic evolution which captures the direction in which the value of a variable changes. This information is then used in the dependence test to help determine whether array references are dependence-free. Under this scheme, closed form computation and induction variable substitution can be delayed until after the dependence test and be performed on-demand. To improve computative e ciency, we also propose an optimized (non-iterative) data-ow algorithm to compute evolution. Experimental results show that dependence tests based on evolution information matches the accuracy of that based on closed-form computation (implemented in Polaris), and when no closed form expressions can be calculated, our method is more accurate than that of Polaris.

INTRODUCTION

Many optimizations are based on induction variable (IV) detection and classi cation, the most important ones being loop transformations for parallelization 3] and strength reduction 1]. An induction variable is broadly de ned as any scalar variable or array element that is referenced in a cycle of a def-use graph. Although production compilers only implement well-known techniques for linear IVs 1], more general IV classes have been proposed for parallelizing compilers 8].

In classical dependence analyses, induction variable occurrences are replaced by closed form expressions in order to break dependences inherent in inductions and enable accurate dependence analysis. Previous substitution-based approaches, however, have several drawbacks:

A dependence test may report false dependences on some closed form expressions. Consider Figure 1.a, the closed form expression of ijk is (j-1)*ns*3 + (k-1)*3 + l:

Since the expression is symbolic (due to the coe cient ns), most tests will report loop-carried dependences over the j-loop. Sometimes, it is not possible to represent the value of an induction variable as a closed form expression. This is the case for nred in Figure 1.b. However, if the compiler could determine that nred is strictly increasing across iterations, then, it could also decide that the loop carries no dependence over array lisred. Closed form expressions can be complex, and testing dependences on them may be expensive.

In this paper, we present a method that exploits IV information in dependence testing without closed form computation. We observe that the values of most induction variables change (\evolve") monotonically. Consider the example in Figure 1.a again, any path in the control-ow graph from statement p back to itself must also traverse statement ijk = ijk+1. This means that the value of ijk increases between any two visits of p. In other words, values of ijk at p are strictly increasing. With the information on the monotonicity of ijk, the compiler can prove that di erent executions of p access di erent array elements, even when a closed form expression can not be captured as is the case in the example of Figure 1.b. Therefore, our analysis tries to identify monotonic evolution which captures the monotonicity of variables over paths of a control-ow graph.

There has been some related work on monotonic variables 10, 9] that target sequence properties of a single reference. Monotonic evolution is more general since it can be computed between any two statements and along selected paths between the two statements. The latter feature is especially useful to distinguish between intra-loop and loop-carried dependences.

The rest of the paper is organized as follows. Section 2 de nes the concept of monotonic evolution. Section 3 presents the dependence test based on monotonic evolution. To improve precision, we propose a simple extension to the lattice of evolution states in Section 4. Section 5 modi es the dependence test to take advantage of this new lattice. Section 6 gives an e cient non-iterative algorithm to compute evolution. Algorithm complexity is studied in Section 7. Section 8 presents experimental results. Section 9 compares our technique with others. Section 10 outlines future work and concludes.

MONOTONIC EVOLUTION

The rest of the paper uses the following notions: a control-ow path refers to a path in a control-ow graph; a statement instance refers to an execution of a statement; the value of i at p refers to the value of variable i immediately before statement instance p is executed.

Evolution

For dependence testing, it is important to determine whether a variable that appears in subscript expressions may have the same value at di erent statement instances. Given an execution sequence and a variable i, the monotonic evolution (evolution) of i describes how the value of i changes from the beginning to the end of the sequence. The values of an evolution can be: > unknown evolution; monotonically increasing; strictly monotonically increasing; monotonically decreasing; strictly monotonically decreasing; constant evolution; ? no evolution. These values are arranged as the lattice of evolution states as shown in Figure 2. The join operator is t.

> ?

Figure 2: The lattice of evolution states Any execution sequence corresponds to a control-ow path where each node along the path represents a statement instance. We de ne evolutions in terms of controlow paths. Each statement is thus interpreted as a transfer function of evolution values. Given a variable i, we classify a statement as: an identity statement if it does not change the value of i, such as j = n; a forward induction if it always increases the value of i, such as i = i+1; a backward induction if it always decreases the value of i, such as i = i-3; an arbitrary assignment if it may assign an arbitrary value to i, such as i = n.

The transfer functions corresponding to each class of statements are given in Table 1.

? > Identity ? > Forward ? > > > Backward ? > > > Arbitrary ? > > > > > >

Table 1: Transfer functions of evolution values

The notation p a N i q represents the join (t) of the evolution of i over all paths that starts from p and ends at q (immediately before the last q is executed), excluding those traversing any edges in the set N. A special case is when q can not be reached from p, then p a i q is ?. Intuitively, p a N i q tells us how the value of i changes when the program executes from an instance of p to an instance of q. The set N is introduced to be able to represent evolutions for a selected part of a control-ow graph. For instance, we may exclude the back-edge of a loop from an evolution. This can be used to analyze the evolution within a single loop iteration.

For dependence testing, we are also interested in evolutions that must traverse an intermediate node. We use, p a N i r a N i q, to denote such an evolution of i along all paths from p via r before nally reaching q, excluding those that traverse any edge in N.

A simple example is presented in Figure 3 where statement \ " does not change the value of i. Nodes in the graph are named by statement labels. Evolutions below can be computed following paths in the controlow graph. We make the following observations from this example. First, evolutions are not symmetric: for instance, 4 a b i 5 = and 5 a b i 4 = ?. Second, the transfer function for arbitrary assignments is very conservative:

3 a i 3 is evaluated to > because of the traversal of i = 0. However, knowing that i at 3, immediately following i = 0, is always a constant, 3 a i 3 should rather be .

The precise handling of arbitrary assignments is left for future work.

The Iterative Algorithm

One may check that the lattice of evolution states is nite and that transfer functions are distributive and monotonic over this lattice. Therefore, p a N i q can be computed as the least xed point of an iterative application of transfer functions 13] over a \pruned" controlow graph (to exclude edges in N). For each statement s, let fs be the transfer function of s and pred(s) be the set of predecessors of s in the control-ow graph. Let ins and outs hold the values of the evolution that ends right before and immediately after s, respectively. For q, we also keep a special state, stateq, that holds the nal result of the computation. The following data ow equations have to be solved:

ins = G i2pred(s) outi outs = fs(ins) (1)
To compute p a N i q, the iterative algorithm starts from node p. Initially, we have inp , stateq ?, and outs ? for all statement s. The algorithm iteratively solves the data-ow equations (1). During this process, every time inq is updated, 1 the new state is joined to stateq, i.e., stateq stateq t inq. The algorithm terminates when it reaches a xed point, and stateq yields the result of p a N i q. An early termination is also possible as soon as stateq is set to >. In Section 6, we will present a more e cient non-iterative method to compute evolution.

As opposed to traditional data-ow schemes, this algorithm starts from a node p that may be on a cycle on a control-ow graph. Joining inq to stateq at each update is thus mandatory because inq does not necessarily increase (in the lattice) across each iteration, as required by the safety and termination proofs in 13]. For instance, applying the algorithm to 5 a i 3 in Figure 3 yields in3 = at the rst iteration after traversing 5, and in3 = after traversing 5; 3; 4; 5, yet 5 a i 3 = state3 = .

Evolution Composition

The composition operator () \chains" two evolutions into a single one where the ending node of the rst evolution is also the starting node of the second one. The value of p a N i r r a M i q is stateq of the second evolution which is computed by the iterative algorithm starting with inr p a N i r (instead of inr

). Composition can be used to compute evolutions that must traverse an intermediate node. In fact, p a N i r a N i q = p a N i r r a N i q (2)

In practice, composition of evolution does not need to be computed in order. We may compute each evolution in the composition independently, then, compose their evolution states. Figure 4 de nes this operation. Notice 1 When q = p, the initial value of inp () is not joined to statep, since it is not computed (updated) from the data-ow equations.

? > ? ? ? ? ? ? ? ? ? > > > ?

> > > ? > ? > > > ? > > > > ? > > > > > > Figure 4: Composition of evolution states that composition is idempotent, i.e., a a = a; and is the neutral element, i.e., a = a. Composition is also commutative and associative. In fact, an evolution along a path consisting of two consecutive paths A and B can be computed as the evolution state along A composed with that along B. Consider Figure 3, the evolution of i along path (4; 5) is , which can be computed as the composition of the evolutions along 4 and 5 (i.e.,

). Thus, we may re-de ne transfer functions given in Table 1 In fact, transfer functions may be de ned for sub-graphs with a single entry and a single exit such as basic blocks. Consider a sub-graph with an entry node, x. Let y be the node that immediately follows the exit node of the subgraph. The transfer function of the sub-graph composes the input state with the evolution that traverses the entire sub-graph from x to y (not including y).

Evolution of Expressions

We compute p a N e q where expression e is the sum of several terms. When e is a constant expression, p a N e q is constant () if q can be reached from p (otherwise, ?). Considering expression -i, the state of p a N i q is always the \opposite" of the state of p a N i q. Operator computes the \opposite" of an evolution state: state ? > state ? > In general, when e is of the form a*i, p a N a i q equals p a N i q when a > 0, or (p a N i q) when a < 0. Finally, when e of the form e1 + e2, the evolution of e shall be the sum of those of e1 and e2. This can be easily computed since the sum of two evolution states can be computed by composition. For instance, suppose that e is 2i-3j+6, p a N e q = p a N i q (p a N j q) p a N A dependence test shall determine whether values of i at 3 may overlap with those of i at 5. We observe that the evolution of i from 3 to 5 is strictly increasing (3 a i 5 =), i.e., the value of i at 3 is less than the value of i at any later instance of 5. If the same can be proven for 5 a i 3, then values of i at 3 and 5 are always distinct, meaning that 3 and 5 are not dependent. In this example, however, 5 a i 3 is evaluated to , and therefore it has to be assumed that 3 is anti-dependent on 5.

Consider an expression e and two statements p and q with identical array access a(e), at least one of them being on the left-hand side of an assignment statement.

The observation is that, if there are dependences between p and q, then p a i q and q a i p cannot both be strict (,) or unreachable (?). To prove the absence of any dependence, we may check that the evolutions between p and q are either , , or ?. On the other hand, if a dependence may exist, the test needs to further classify them as intra-loop or loop-carried. In our scheme, intra-loop and loop-carried dependences are tested in separate steps for each single loop `of a nest.

Intra-loop dependences are concerned with instances that are spawned by the same iteration of a loop. Thus, evolutions used in the test only need to consider paths between p and q that do not traverse any back-edge of loop `. As discussed below, we assume that loops only exit at the top. Therefore, paths that start within the loop and do not traverse a back-edge never leave the body of the loop.

There is no intra-loop dependence between p and q for loop `, if, p a B e q 2 f?; ; g ^q a B e p 2 f?; ; g [START_REF] Ammarguellat | Automatic recognition of induction & recurrence relations by abstract interpretation[END_REF] where B is the set of all back-edges of the loop.

Consider the previous example again, since 3 a b i 3 = ?, we conclude that there is no intra-loop dependence between 3 and 5.

i do i = 1,100 a(k) = a(k+1) + k = k+2 end do do i = 1,100 a(k) = a(k+1) + if () k = k+1 k = k+2 end do 1 do i = 1,100 2 k = k+2 3 t = a(k) 4 a(k) = a(k+1) 5 a(k+1) = t 6 end do
Loop-carried dependences are concerned with instances that are spawned by di erent iterations of a loop, `, but the same iteration of any loop that surrounds `. Thus, evolutions used in the test must traverse a back-edge of `, and must not traverse any exit edge of `. Note that any path traversing a back-edge of a loop also traverses the header of the loop (the statement that checks for the loop's termination). Thus, forcing the traversal of a back-edge is equivalent to forcing the traversal of the loop header.

There is no loop-carried dependence between p and q for loop `, if, p a E e h a E e q 2 f?; ; g ^q a E e h a E e p 2 f?; ; g (4)

where E is the set of exit edges of `and h is the header of `.

In the previous example, since 3 a o i 1 a o i 5 = and 5 a o i 1 a o i 3 = , there is a loop-carried dependence between 3 and 5 for loop 1.

LATTICE EXTENSION

The lattice of evolution states is useful to detect value changes in induction variables but not to quantify such changes. Dependence testing for some cases require a little more information.

Consider the examples in Figure 6 where array a is accessed with subscripts k and k+1. If the dependence test knows that values of k change by a minimum of 2, it will detect no loop-carried dependence for accesses to a.

We introduce new lattice elements to discover such information. For all n 0, n and n describe increasing and decreasing evolutions, respectively, where the di erence between values of the variable must be greater than or equal to n. In other words, n characterizes the minimal di erence between any two values of the variable at the starting and ending points of the evolution. We call n the minimal distance of the evolution. The evolution states 1 and 1 correspond to and of the original lattice, respectively, where the only information is that \the value has changed" in some direction; and 0/ 0 correspond to / , where the value might have been constant but the direction is known in case of a change.

Table 2 gives the formal de nition of t using the minimum of distances when joining two increasing or two decreasing evolution states.

t ?

p p > ? ?

p p > q q min(p;q) 0 > > 0 0 > q q > 0 min(p;q) > > > > > > >
Table 2: Distance-extended lattice

Operator needs to be updated as well. The new table is given in Table 3. The main di erence is that composing p with q yields p+q . According to this new de nition, is still commutative and associative, but not idempotent anymore, e.g., p p = 2p.

? p p > ? ? ? ? ? ? q ? p+q q > > ? p p > q ? > q p+q > > ? > > > >

>

Transfer functions have changed to cope with new elements of the lattice, but the algorithm that drives the iterative computation remains the same. The distance after an induction i = i+q is the sum of current distance, call it p, with q. Notice that q has to be known at compile-time (possibly after constant propagation). Consider the previous examples, all evolutions between assignments to k across iterations yield 2. ? p p > Identity ? p p > Forward q (with step q) ? p+q q > > Backwardq (with step q) ? > q p+q > Arbitrary ? > > > > This means that all descending chains (using operator t) are of nite length during the xed point computation. This property guarantees the termination of the xed point computation.

IMPROVED DEPENDENCE TEST

We devise a new dependence test to exploit the additional minimal distance information. This test shares some similarities with the range test used in Polaris 4].

Consider two accesses, a(i) at p and a(i+d) at q, i being an induction variable and d being a constant. 2 The value di erence between i at p and i+d at q is used in the dependence test. However, since subscripts of a at p and q are di erent, this information cannot be computed directly from evolutions. Of course, i +d i if d 0 at q. Therefore, we may compute the evolution of i from p to q, then compose it with d . The resulting evolution captures the di erence between the value of i at an instance of p and the value of i+d at any later instance of q.

Consider a loop `, two accesses, a e] at p and a e+d] at q. Let B and E denote the sets of back-edges and exit edges of `, respectively.

If d > 0, there is no intra-loop dependence between p and q for loop `when, p a B e q d = 2 f>; ; 0; 0g ^q a B e p d = 2 f>; ; 0; 0g: [START_REF] Blume | The range test: A dependence test for symbolic, non-linear expressions[END_REF] If d < 0, d (resp. d) is replaced by d (resp. d) in [START_REF] Blume | The range test: A dependence test for symbolic, non-linear expressions[END_REF]. If d > 0, there is no loop-carried dependence between p and q for loop `when, p a E e h a E e q d = 2 f>; ; 0; 0g ^q a E e h a E e p d = 2 f>; ; 0; 0g: [START_REF] Blume | Parallel programming with Polaris[END_REF] If d < 0, d (resp. d) is replaced by d (resp. d) in [START_REF] Blume | Parallel programming with Polaris[END_REF].

Consider the right-most loop in Figure 6, which swaps every pair of elements of array a. Since k is incremented by 2 per iteration, to test loop-carried dependence between 3 and 5, we have,

3 a k 1 a k 5 1 = 2 1 = 3 5 a k 1 a k 3 1 = 2 1 = 1
2 Accesses of the form a i+d1] and a i+d2] can be handled as a j] and a j+(d2 d1)].

This proves there is no loop-carried dependence between 3 and 5. In Section 8, we will show that the new dependence test is able to parallelize many more nests.

EFFICIENT COMPUTATION

This section presents the core techniques for e cient computation of evolutions. These techniques are then combined into an optimized and non-iterative algorithm. This section uses the following notations: h k denotes the header of any loop `k. `p denotes the loop that immediately encloses p. 3

The Basic Algorithm

We rst give a basic (non-iterative) algorithm to compute evolutions which traverse no back-edges in the control-ow graph. This algorithm is the core of the non-iterative method. Any general evolution can be decomposed into segments, each of which can be computed by the basic algorithm.

We make some assumptions about the control-ow graph. Loop headers do not change any program variable. One may suppose, without loss of generality, that a loop always exits from its header. An early exit is interpreted as a continue statement (i.e., an unconditional branch to the loop header) immediately followed by a normal loop exit. We also assume that each node s of the control-ow graph is assigned a number, ds, according to its depth-rst search ordering 1] (a.k.a. topological ordering 6]).

The basic algorithm takes, as input, an innermost loop `with header h, two nodes p and q in `, and a \pruned" control-ow graph that excludes edges in a set N. There are two cases:

The rst case is when q 6 = h. The algorithm returns the value of p a N O i q where O is the set of outgoing edges of `. Testing reachability is straightforward: the algorithm returns ? when dp > dq. Then, if q is reachable from p, the algorithm starts from p and processes every node s such that dp ds < dq in increasing depth-rst search order. Let fs be the transfer function of s and pred(s) be the predecessors of s inside loop `. Initially, the algorithm sets inp . Then, ins and outs are computed for each node s using equation (1). When inq is computed, the algorithm returns inq and terminates. The second case is when q = h. The algorithm returns ?, if all back-edges of `are excluded. Otherwise, q is reachable from p. Then, the algorithm is similar to the previous case except that it processes every node s such that ds dp. After every outs is computed, the nal result, in h , is computed as the join of all outs from the back-edges. 3 When p is the header of a loop `, the innermost enclosing loop of p is the loop that immediately encloses `. Consider the example in Figure 7, where the statement label is also the depth-rst numbering of the statement.

To compute The basic algorithm computes 2 a b i 6 following the depth-rst order: in2 = , out2 = , in3 = , out3 = 1, in4 = , out4 = , in5 = , out5 = 2, and in6 = 1 t 2 = 1. The result is 2 a b i 6 = in6 = 1. Now, consider an evolution that ends at a loop header, 2 a a;o i 1. The basic algorithm computes the evolution in two steps: it rst computes out6 = 1; then, 6 being the only predecessor of 1 in the loop, the result is 2 a b i 1 = in1 = 1 as well.

Definition of Stride

In a structured program, all cyclic paths arise from loop constructs. We are interested in evolutions that traverse at most one iteration of a loop, called strides. With stride information, it is possible to compute evolutions that traverse loops without actually iterating on the graph.

Consider a loop `with a header h and a statement p enclosed in `. We de ne three strides between p and h: Upi;N(p; h) denotes an evolution from p up to the rst h reached, excluding edges in N. It captures the value di erence of i from an instance of p to the rst instance of h that follows it. Upi;N(p; h) is called an up-stride of p. When p is immediately enclosed by `, Upi;N(p; h) is called the local upstride of p. Downi;N(h; p) denotes an evolution from h down to p without traversing h twice, excluding edges in N. It is also called a down-stride of p. It When p is immediately enclosed by `, Downi;N(h; p) is called the local down-stride of p. Stridei;N(`) denotes an evolution from h to the next h, excluding edges in N and the exit edge of `. It is a special case of Downi;N(h; p) and Upi;N(p; h) when p = h. Since Stridei;N(`) captures the e ect of iterating exactly one iteration of `, it is called the local stride of `.

Let us illustrate strides on the example in Figure 8. Stridei(`3) = 1 is the evolution along the path 3; 4; 5; 3; Downi(1; 3) = 2 is the evolution along all paths 1; 2; 3(; 4; 5; 3;). This path traverses 2 once, but may not traverse any node in `3; Upi(3; 1) = 0 is the evolution along all paths (3; 4; 5; ;)3; 6; 1. It traverses 6, but may not traverse any node in `3; Downi(1; 5) = 3 is the evolution along paths 1; 2; 3; (4; 5; 3; ;)4; 5. It enters the inner loop at least once (reach 5) and traverses statement 2 exactly once; Upi(5; 1) = 0 is the evolution along all paths 5; 3; (4; 5; 3; ;)6; 1. Stridei(`1) = 10 is the evolution that traverses one iteration of loop `1. It traverses 2 once and the entire inner loop once (knowing `3 has 8 iterations).

Computing Stride

To compute evolution e ciently, we break down evolutions into up-and down-strides. This section describes how to compute strides e ciently. We start with local strides, which are computed by the basic algorithm. Then, non-local strides are computed as the composition of local strides.

Local Strides

We rst show how to compute Stridei;N(`). The algorithm starts from the innermost loops and proceeds outwards. Consider an innermost loop `x. Stridei;N(`x) can be computed by the basic algorithm. Then, `x is reduced to a single abstract node x, where exit edges of `x now leave from x instead, and the incoming edges of the loop header (excluding those from within the loop) now point to x. The transfer function for node x is, fx(in) = in (Stridei;N(`x) itx); loop `1

2 i = i+2
x fx(in) = in 8 abstract node 6 a Figure 9: Abstract nodes where itx is the minimal number of iterations of `x. Loops with early exits or continue statements have itx = 1. When all the innermost oops are reduced to single abstract nodes, loops immediately enclosing them become \innermost" and the stride can be computed by the basic algorithm.

Considering Figure 8, Stridei(`1) is computed in three steps.

1. Stridei(`3) = 1 is computed by the basic algorithm. 2. Loop `3 is abstracted to a single node x as shown in Figure 9; knowing `3 executes exactly 8 iterations, the transfer function is fx(in) = in (1 8) = in 8:

3. Stridei(`1) = 10 is computed by the basic algorithm on the transformed graph.

When p is not a loop header, Downi;N(hp; p) and Upi;N(p; hp) can be computed by the same algorithm using the appropriate starting and ending nodes.

When p is the header of a loop `0 that is immediately enclosed by `1, local strides of p (h0) are computed: Upi;N(h0; h1) = Up i;N OnE (h0; h1) (7) (Stridei;N(`) 0) Downi;N(h1; h0) = Downi;N O (h1; h0) [START_REF] Cytron | E ciently computing static single assignment form and the control dependence graph[END_REF] (Stridei;N(`) 0); where O is the set of outgoing edges of h0, and E is the exit edge of `0. By excluding edges entering loop `0, Downi;N O (h1; h0) and Up i;N OnE (h0; h1) can be computed by the basic algorithm.

Consider Figure 8 again, the local strides of 3 can be computed as, Upi(3; 1) = Upi;c(3; 1) (Stridei(`3) 0) = (1 0) = 0 Downi(1; 3) = Down i;fc;dg (1; 3) (Stridei(`3) 0) = 2 (1 0) = 2

Non-local Strides

Consider a statement p enclosed in a loop nest `n; : : : ; `0 where `0 = `p. Let us consider the down-stride of p for an arbitrary header h k+1 . Since any path from h k+1 to p also traverses h k , Downi;N(h k+1 ; p) can be decomposed into two segments: one is from h k+1 to h k ; the other is from h k to hp. Upi;N(p; h k+1) can be decomposed in a similar way: Upi;N (p; h k+1) = Upi;N(p; h k) (9) Upi;N(h k ; h k+1) Downi;N (h k+1 ; p) = Downi;N(h k+1 ; h k) (10) Downi;N(h k ; p) Since Downi;N(h k+1 ; h k) and Upi;N(h k ; h k+1) are local strides, this leads to an inductive computation of nonlocal strides using (9) and [START_REF] Gerlek | Beyond induction variables: detecting and classifying sequences using a demand-driven ssa form[END_REF].

Using previously computed stride information, we apply these equations to the example in Figure 8.

Upi(5; 1) = Upi(5; 3) Upi(3; 1) = 0 = 0 Downi(1; 5) = Downi(1; 3) Downi(3; 5)

= 2 1 = 3

Non-iterative Algorithm

We give a non-iterative algorithm to compute evolutions using the basic algorithm and the stride information. The algorithm is presented in two steps. First, we describe how to compute evolutions that traverse an intermediate loop header. Then, we show how to compute general evolutions.

1. The rst step computes evolutions that traverse intermediate loop headers. Such evolutions are needed in the next step to compute general evolutions (in form of p a N i q). They are also used in dependence tests to determine loop-carried dependences.

Consider such an evolution, p a N i h0 a N i q, where loop `0 encloses both p and q and is enclosed in a loop nest, `n; : : : ; `1. The algorithm proceeds as follows. For each loop `k where 0 k n, it computes an intermediate result cycl k starting from `0: cycl k is the evolution of i from p to q without traveling outside `k. Finally, p a N i h a N i q, which is con ned to the outermost loop `n, is computed as cycln. We rst describe how to compute cycl0. Any path from p to q via h0 within `0 can be split into three segments: cycl0 = Upi;N(p; h0) (Stridei;N(`0) 0) Downi;N(h0; q): (11) Now, consider any cycl k+1 . Then, the corrseponding evolution is either con ned to `k (i.e., cycl k) or travels outside `k but within `k+1 (i.e., from p to q via h k+1). Hence, cycl k+1 = cycl k t Upi;N(p; h k+1) (Stridei;N(`k +1) 0) Downi;N(h k+1 ; p) (12) This leads to an inductive computation of p a N i h0 a N i q as cycln using [START_REF] Gupta | Loop monotonic computations: An approach for the e cient run-time detection of races[END_REF] and (12). 2. The second step computes general evolutions in form of p a N i q. Let `p;q be the loop that im- mediately encloses p and q. Paths traversed by p a N i q can be separated in two sets, depending on whether they traverse hp;q or not: p a N i q = p a N B i q t p a N i hp;q a N i q (13) where B is the set of back-edges of `p;q. Since the second term in (13) is computed in the rst step, we focus on describing the computation of p a N B i q. Let `1 (resp. `2) be the outermost enclosing loop of p (resp. q) within `p;q. We would like to split p a N B i q around h1 and h2 into the following segments, p a N B i q = Upi;N(p; h1) (Stridei;N(`1) 0) h1 a N 0 i h2 (Stridei;N(`2) 0) Downi;N(h2; q) where N 0 = N B (O1 n E1) O2 [START_REF] Kam | Monotone data ow analysis frameworks[END_REF] where O1 and O2 are the sets of outgoing edges of `1 and `2, respectively; E1 is the exit edge of `1. Basically, N 0 ensures h1 a N 0 i h2 traverses no cycle around h1 or h2 so that the evolution can be computed by the basic algorithm. When p is immediately enclosed in `p;q, `1 does not exist. Under such case, the composition with Upi;N(p; h1) (Stridei;N(`1) 0) is removed from [START_REF] Kam | Monotone data ow analysis frameworks[END_REF], h1 is replaced by p. The same applies to `2.

To illustrate step one, we compute 5 a i 3 a i 5 in Fig- To illustrate (14), we compute 4 a a i 8 in Figure 10, where `1 is the innermost loop that encloses 4 and 8. (1 0) 1 (1 0) 1 = 2

Caching Intermediate Evolution

The dependence test computes two evolutions, for any pair of accesses, and for each surrounding loop to be tested (e.g., from p to q, and from q to p). Obviously, computation will not be e cient without optimizing computations across di erent evolutions. We propose to cache and reuse intermediate evolutions. Note that, the non-iterative algorithm decomposes evolutions into standard segments, i.e., up-strides, down-strides, and strides of loops. We can compute and tabulate these stride informations for each statement and loop to be tested. To further optimize the algorithm, for each basic block, we compute (on demand) local evolutions that traverse an entire block, and store the results. During later computations, the algorithm may \short-cut" the basic block by composing its (cached) local state with the input state.

COMPLEXITY ANALYSIS

We are interested in an upper bound on the complexity of computing all evolutions for the dependence test of the overall program. Of course, we would like to take the \caching" of intermediate results into account.

Since dependence tests are local to individual loop nests, we consider an arbitrary loop nest L and an induction variable i. Let e be the number of edges in L, and m be the maximal nesting of L. Suppose that k statements in L are involved in the dependence test. The dependence test computes p a N i h a N i q and p a N i q, for all possible p, q and h, where N may only contain back-edges and exit edges. In fact, when computing intermediate evolutions, we can drop N and explicitly compute those evolutions for each loop. The computation is performed in ve passes: Pass 1 computes local strides for every statement p involved in dependence test, and local strides for every loop `in L. Using the basic algorithm, all local down-strides and local strides of loops can be computed in one traversal of the control-ow graph. To compute all local up-strides in a single traversal, however, present some di culties. Consider statements, p and q, enclosed in a loop `with a header h. If we compute Upi;N(p) and then Upi;N(q), some control-ow edges will be traversed twice. To overcome this problem, we can start the computation from h and follow the opposite direction of the control-ow edges in `applying the basic algorithm. In this way, all local up-strides can be computed in a single traversal of the control-ow graph. During each traversal, According to (1), for any node s, it takes one operation to compute outs and (es 1) operations to compute ins where es is the number of incoming edges of s. As a whole, this pass takes 2e operations.

Pass 2 computes Downi(h; p) and Upi(p; h) for every p and the header h of every enclosing loop of p, as well as Downi(h 0) and Upi(h 0) for every header h 0 . According to [START_REF] Cormen | Introduction to Algorithms[END_REF][START_REF] Cytron | E ciently computing static single assignment form and the control dependence graph[END_REF][START_REF] Eigenmann | On the automatic parallelization of the perfect benchmarks[END_REF][START_REF] Gerlek | Beyond induction variables: detecting and classifying sequences using a demand-driven ssa form[END_REF], each up-stride/down-stride takes at most 2 operations. In total, 4mk operations are needed.

Pass 3 computes p a N

i h a N i q for every triplet (p; q; h) and every enclosing loop of the triplet (by specifying di erent N), h being the header of an enclosing loop of p and q. According to [START_REF] Gupta | Loop monotonic computations: An approach for the e cient run-time detection of races[END_REF] and (12), p a N i h a N i q for di erent N (i.e., di erent enclosing loops of (p; q; h)) can be computed inductively in m steps. Each takes at most 4 operations. Then, counting all possible (p; q; h), this pass takes 4m 2 k 2 operations.

Pass 4 computes all h1 a N 0 i h2 where h1 and h2 can be any statement involved in the dependence test or the header of any surrounding loop of such statements. N 0 is designed such that h1 a N 0 i h2 will not traverse inside `1 or `2 or back-edges of any loop that surrounds h1 and h2. In fact, N 0 is xed for any given h1 and h2.

Following the lines of the rst pass, all h1 a N 0 i h2 starting from the same h1 can be computed together in one traversal of the control-ow graph.

Furthermore, all h1 a N 0 i h2 with h1 from di erent loops traverse no common edges (assuming that loops are reduced to abstract nodes). Therefore, a conservative estimate is that evolutions starting from a statement p and from the header of the surrounding loop of p can be computed in one traversal of the control-ow graph (i.e., in e operations). Counting all the statements and summing up, this pass takes ek operations.

Pass 5 computes p a N i q for every pair of p and q and every enclosing loop of the pair. According to (14) and (13), p a N i q takes at most 7 operations. Counting all possible p, q, and N, this pass takes at most 7mk 2 operations.

Putting them all together, the number of operations of the whole dependence test is bounded by, 2e + 4mk + 4m 2 k 2 + ke + 7mk 2 : (15) The complexity of the dependence test is thus, O(ek + m 2 k 2): (16) Any ow-sensitive, statement-wise dependence test for k statements in a loop nest of depth m must take at least mk 2 steps, our test is no exception. In our scheme, dependency is tested individually for each loop of a nest (as re ected by the occurrence of m in (15) and (16)). Therefore, compared to classical dependence tests without induction variable recognition, our scheme requires more steps. 4 However, [START_REF] Lin | Compiler analysis of irregular memory accesses[END_REF] estimates the number of operations (i.e., , , and t) involved in the dependence test: the formula gives a fairly accurate account of the cost of the test. On the other hand, for classical dependence tests, depending on the mathematical tools employed, the cost of individual operations is di cult to estimate.

EXPERIMENTAL RESULTS

For our experimental studies, we used Polaris 5], a Fortran source-to-source parallelizing compiler, as the basis for comparison. In Polaris, there is a dedicated idiom recognition pass to identify induction variables and nd their closed forms. Each induction variable is then substituted by its closed form expression before the dependence test is performed. In the context of dependence testing for array accesses, we focus on integer induction variables (IIVs) which are used in array subscripts, and we do not deal with IIVs unrelated to any dependences, e.g., IIVs used in subscripts for arrays that only appear in right-hand side. Other IIVs may still be used to drive locality optimizations and to prove array properties such as the injectivity of array values 14], but these applications are left for future work.

In the experiment, we used Polaris to nd candidate IIVs from the Perfect Club benchmark suite. Three programs have been omitted: arc2d and track because they contain no loop with IIVs, and spice because it 4 m times, when testing a large number of array accesses, i.e., when k is close to e. We also found numerous cases where our technique reports less dependences than Polaris does. Such additional precision may be exploited by other parallelization algorithms|such as loop splitting and skewing or general expansion and scheduling algorithms|which are not implemented in Polaris.

Loops with

These results allow us to draw an early conclusion: when dealing with induction variables, our technique is ecient and matches the precision of Polaris. Thus, closed form computation can be delayed until after the dependence test and performed only for loops free of other loop-carried dependences. This would not only enable closed form expression computation to be on demand (to remove sequential induction computations), but also avoid expensive dependence testing on complex subscripts due to closed form substitution. Such a scheme would only miss three loops that can be parallelized by Polaris using closed form expressions, but nds 19 more parallel loops (or 13 without considering conditional induction variable updates) than can Polaris.

Successfully Analyzed Loop Patterns

In this section, we discuss several loops because they expose non-trivial induction variables and our dependence test is able to analyze them precisely. For some of these loops, Polaris reports false dependences. In this example, a closed form expression is still lacking for induction variable node because it would depend on the bound of the inner loop (nnpss(iss)) which is subscripted by the outer loop counter. Our analysis detects that variable node is strictly increasing between two references to iwherd. Thus, the outer loop contains no loop-carried dependence except for computing the value of node. In fact, values of node could be generated from the source code as a sum of values in array nnpss. The outer loop may be executed in two parts. A parallel reduction part sums elements in nnpss, and a simple parallel loop computes the rest of the code. Our analysis found 12 loops in bdna and dyfsem that could be parallelized this way .

Pattern 3: conditional increments. An example of loops where IVs are conditionally incremented has been described in Figure 1.b. Because of conditionals, Polaris and other recognition techniques 2, 9, 11] fail to compute closed forms for IIVs. We can easily prove that there are no dependences on array lisred because nred is strictly increasing. However, parallelization is di cult because evaluation of nred still has to be sequential, yielding a pipelined execution scheme. Six loops in qcd and bdna share this pattern. One of these (in qcd) as shown below has increments interleaved with array accesses. Because of the conditionals, Polaris nds no closed form expression for ctr, and neither would more powerful techniques such as 2, [START_REF] Eigenmann | On the automatic parallelization of the perfect benchmarks[END_REF][START_REF] Gupta | Loop monotonic computations: An approach for the e cient run-time detection of races[END_REF]. Therefore, Polaris is able to parallelize the inner loops, but fails to discover that there is no dependence carried by the outer loop. The method proposed in 9] is able classify each static reference of ctr as \strictly monotonic" but not to compare ctr occurring in di erent statements (accessing to array str). It would thus fail to parallelize the outer loop. It is quite simple to compute the closed form expression of i and to infer that the loop carries no dependence over array wa. However, our basic lattice is not expressive enough to capture the information that values of i for distinct iterations always di er by a distance greater than 1 (in this case, the minimal distance is 2). The distance-extended lattice solves the problem. Forty four loops with various o sets and strides have been found and successfully parallelized this way in spec77.

Patterns that Could not be Handled

The following nests illustrate the two most common cases where our technique could not successfully detect parallel loops. In this case, variable mrsij is incremented by a \small" step (1) in every iteration of the inner loop, and is reassigned to the value of mrsij0 in every iteration of the outer loop. Variable mrsij0 itself is an induction variable incremented by a \big" step nrs by the outer loop. As opposed to the stride and o set pattern, proving there is no dependence requires comparing the accumulative e ect of the \small" step of the inner loop|which usually depends on the bounds of the inner loop and the step|with the big step of the outer loop.

Polaris detects no dependences carried by any of the loops because the closed form expression of mrsij yielded disjoint intervals 4]. This is illustrated in the gure below: big steps small steps there are no dependences carried by the outer loop because the dotted lines|the last value of mrsij|always precede the dashed ones|the next value of mrsij0. Because of its inability to precisely handle arbitrary assignments (mrsij = mrsij0) and capture ranges of integer values, our technique may only parallelize the two inner loops of the three-nested loops based on the strict monotonicity of mrsij.

Pattern 2: Interleaved big-and small-step Our distance-extended lattice handles complex combinations of o sets and strides spanning multiple loops, as long as o sets are explicit in every reference. In many benchmarks, a comparison is required between the stride of an inner loop and an outer loop bound (the opposite of the previous pattern). To parallelize the outer loop, one has to show that i | hence the initial value of jj | is always greater than 0 and less than or equal nt. This is illustrated in the gure below: big steps small steps There are no dependences carried by the outer loop because the dotted line|the greatest possible value of i| precedes the dashed one|the stride of jj. Polaris cannot handle this pattern either. Closed form expression computation has obvious bene ts for optimizations. It is also critical for removing dependences due to computation of induction variables themselves. For irregular nests with while loops or complex bounds (e.g., with array accesses), and for conditional IV updates, closed form expressions are generally not hoped for. Gupta and Spezialetti extended the linear IV detection framework with arithmetic and geometric sums, as well as monotonic sequences 10], for non-nested loops only. Their technique is applied to optimizations such as e cient run-time array bounds checking. Lin and Padua 14] also studied monotonicity for values of index arrays in the context of parallelizing irregular codes. This property can be used later to detect dependences between accesses to sparse matrices through index arrays. Like in our technique, they compute monotonicity on-demand from non-iterative traversals of the control-ow graph, but their technique does not target general induction variables. More general monotonic sequences could be detected by Gerlek, Stoltz and Wolfe as a special class of induction variables 9], as soon as a strongly connected component in the SSA graph traverses a -function. As far as the monotonic class of IVs is concerned, their classi cation of sequences is less powerful than our evolution in the following ways: Monotonicity is estimated for each sequence of values associated with a variable. Since SSA gives di erent names after each de nition, references to the same variable separated by induction variable updates can not be compared. This may yield spurious dependences. It is not clear whether sequences are de ned loop-wise or for the whole nest. In the latter case, it may make too conservative assumptions for inner loops. Extending their technique for statement-to-statement evolutions seems di cult: SSA graphs are not well suited for disabling traversal of control-ow edges. Stride-extended monotonicity information is not computed, but closed form expressions associated with other IV classes may be suitable for such sequences. This would incur a higher analysis cost and is likely to blur further dependence testing.

It is worth noticing that recursive pointer \chasing" like p = p->next may also be interpreted as a form of induction. Dealing with pointer and dependence analysis in the presence of recursive data structures, some techniques use abstractions closely related to monotonicity to compare pointer variables. For instance, Hendren, Hummel and Nicolau 12] are able to discover when a tree access is \below" another one or when two accesses target distinct branches. They abstract access paths with regular expressions that might be interpreted as monotonicity and strides generalized to multiple independent dimensions.

CONCLUSION

We use monotonic evolution for dependence testing on array accesses indexed by induction variables. This method requires no closed form expression computation. The experiment showed that our technique matches the precision of Polaris when closed form expressions are available, and when there are no closed form expressions, our technique can detect additional parallel loops. An e cient non-iterative algorithm is devised, achieving incremental computation of evolutions at a very low cost. IV substitution only needs to be performed after the dependence analysis, and it can be performed on demand. This saves unnecessary closed form computation on loops that eventually may not be parallelized.

We plan to extend the algorithm to handle arbitrary assignments, such as i = j, more precisely. This may lead us to solving the two patterns yet to be handled. Furthermore, since arbitrary assignments link the values of two variables, they may be used as reference points to compare di erent variables. From the lattice side, we would like to compute both the maximal and minimal distance of an evolution. Dependence tests may exploit such information 4].

 Figure 1: Motivating examples from the Perfect Benchmark suite

Figure 3 :

 3 Figure 3: An example

3 a i 3

 3 = >, since i = 0 is traversed along some paths from 3 to 3; 5 a b i 4 = ?, since b is excluded, 4 can not be reached from 5; 4 a b i 5 = , after b is excluded, there is only one path from 4 to 5, and it traverses i = i+1; 3 a a i 6 = , 3 may directly follow the exit edge of loop 3 to reach 6 without traversing i = i+1.

Figure 5 :

 5 Figure 5: Dependence test example

Figure 6 :

 6 Figure 6: Induction variables with o sets

Figure 7 :

 7 Figure 7: Using the basic algorithm

Figure 8 :

 8 Figure 8: Stride information

ure 8 .Figure 10 :

 810 Figure 10: Evolution across loops

Pattern 4 :

 4 strides and offsets. | adm rffti1 do108 | line 4964 | do ii = 3,ido,2 i = i+2 fi = fi+1. arg = fi*argld wa(i-1) = cos(arg) wa(i) = sin(arg) end do

Pattern 1 :

 1 Monotonic small-and big-step | trfd olda do100 | line 331 | do mrs = 1,nrs mrsij = mrsij0 do mi = 1,morb do mj = 1,mi mrsij = mrsij+1 xrsij(mrsij) = xij(mj) end do end do mrsij0 = mrsij0+nrs end do

 Most dependence tests handle induction variables by idiom recognition and closed form substitution. Those closed form expressions usually involve only the indices of the surrounding loops and loop invariants. Using patterns proposed by Pottenger andEigenmann 15], the Polaris compiler recognizes polynomial sequences that are not limited to scalar and integer induction variables. Other closed form computation techniques explore various approaches. Abstract interpretation is used by Ammarguellat and Harrison 2] to compute symbolic expressions and compare it with known templates, but it leads to a rather ine cient algorithm and does not handle irregular nests. Two general classi cation techniques have been designed. The rst one by Gerlek, Stoltz and Wolfe 9] is based on a SSA representation 7] optimized for e cient demand-driven traversals. It relies on Tarjan's algorithm to detect strongly connected components. The second one is designed by Haghighat and Polychronopoulos for the Parafrase 2 compiler 11]. It combines symbolic execution (iterated forward substitution) and recurrence interpolation. Both of them handle a broad scope of closed form expressions, such as linear, arithmetic (polynomial), geometric (with exponential terms), periodic, and wrap-around.

 in terms of composition as follows:

	Identity(state) = state
	Forward(state) = state
	Backward(state) = state
	Arbitrary(state) = state >

Table 3 :

 3 Distance-extended compositionWe de ne a new binary operator that multiplies an evolution state by a positive number.

	state ? a state n ? a n	a a n	>

Table 4 :

 4 Experiments with the Perfect Club benchmark suite could not be handled by Polaris. Applying our dependence test by hand (for dependences involving IIVs) and using the dependence information reported by Polaris (for other dependences), we detected parallel loops involving IIVs by hand. Table4presents the experimental results. The rst three columns classify loops with IIVs into three sets: loops containing IIVs (Total); loops where IIVs appear as subscripts (Subscript); and loops where the analysis of IIVs is required for parallelization (Targeted), that is, loops that are the target of our technique. The next four columns give the number of loops with IIVs parallelized by di erent techniques: by Polaris (Polaris), by our dependence analysis with either the original (Monotonic) or the distance-extended (w/ Distance) lattice, and by combining Polaris with our technique (Best). Note that, in columns Monotonic and w/Distance, a loop counted as parallel simply means that when disabling IV substitution in Polaris and \plugging in" our analysis, Polaris reports no loopcarried dependence for the loop except for those due to assignments to IVs themselves. Such dependences can be handled either by nding closed form expressions and performing the substitution, or by the techniques described in the next paragraph.

	adm bdna dyfesm flo52 mdg mg3d ocean qcd spec77 trfd	IIVs Total Subscript Targeted Polaris Monotonic w/ Distance Best Parallel Loops with IIVs 17 17 5 3 2 3 3 63 62 60 22 34 34 34 15 11 8 7 8 8 8 15 15 15 12 12 12 12 29 29 24 12 12 12 13 97 97 89 5 5 5 5 11 6 6 5 4 4 5 69 69 69 58 63 63 63 99 59 54 44 1 44 44 13 13 9 7 6 6 7

Acknowledgment

The work reported in this paper was supported in part by NSF contracts ACI 98-70687 and CCR 00-81265 and by a cooperative agreement between CNRS (Centre National de la Recherche Scienti que) in France and University of Illinois at Urbana-Champaign.