N

N

Induction Variable Analysis Without Idiom Recognition:
Beyond Monotonicity
Peng Wu, Albert Cohen, David Padua

» To cite this version:

Peng Wu, Albert Cohen, David Padua. Induction Variable Analysis Without Idiom Recognition:
Beyond Monotonicity. Languages and Compilers for Parallel Computing, Aug 2001, Cumberland
Falls, Kentucky, United States. hal-01257311

HAL Id: hal-01257311
https://hal.science/hal-01257311
Submitted on 17 Jan 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01257311
https://hal.archives-ouvertes.fr

Induction Variable Analysis without Idiom
Recognition: Beyond Monotonicity

Peng Wu'!, Albert Cohen?, and David Padua®

1 IBM T.J. Watson Research Center
Yorktown Heights, NY 10598
pengwuQus.ibm.com
2 A3 Project, INRIA Rocquencourt
78153 Le Chesnay, France
Albert.Cohen@inria.fr
3 Dept. of Computer Science, U. of Illinois
Urbana, IL 61801
padua@cs.uiuc.edu

Abstract. Traditional induction variable (IV) analyses focus on com-
puting the closed form expressions of variables. This paper presents a
new IV analysis based on a property called distance interval. This prop-
erty captures the value changes of a variable along a given control-flow
path of a program. Based on distance intervals, an efficient algorithm
detects dependences for array accesses that involve induction variables.
This paper describes how to compute distance intervals and how to com-
pute closed form expressions and test dependences based on distance
intervals.

This work is an extension of the previous induction variable anal-
yses based on monotonic evolution [11]. With the same computational
complexity, the new algorithm improves the monotonic evolution-based
analysis in two aspects: more accurate dependence testing and the ability
to compute closed form expressions.

The experimental results demonstrate that when dealing with induc-
tion variables, dependence tests based on distance intervals are both
efficient and effective compared to closed-form based dependence tests.

1 Introduction

Dependence analysis is useful to many parallelization and optimization algo-
rithms. To extract dependence information, array subscripts must be compared
across statements and loop iterations. However, array subscripts often include
variables whose value at each loop iteration is not easily available. An important
class of such variables are induction variables.

In classical dependence analyses, occurrences of induction variable are often
replaced by their closed form expressions. Since most dependence tests handle
affine expressions only, this approach only applies to induction variables with
affine closed form expressions. To handle more general induction variables, in
our previous work, we proposed a dependence test based on a light-weight IV

1 do i =0,n 1
2 do j =0,m 2
3 k = k+1 3
4 a(k) = - 4 coo= a(k+1)
5 end do 5
6 end do 6

Fig. 1. Non-affine closed form expression Fig. 2. IV incremented by step of 2

property called monotonic evolution [11]. In essence, monotonic evolution cap-
tures whether the value of a variable is increasing or decreasing along a given
execution path. For example, consider the loop nest in Fig. 1 where m is not a
compile time constant. The closed form expression of k is not affine. However,
knowing that the value of k at statement 4 is strictly increasing, one can prove
that statement 4 is free of output-dependences.

Nevertheless, there are cases where monotonic evolution is not sufficient for
accurate dependence testing. Consider the loop in Fig. 2. Knowing that the value
of k is strictly increasing is not enough. A dependence test needs to know that
the value of k increases by a minimum of 2 to determine statement 3 and 4 as
dependence-free. To obtain such additional information, this paper extends the
concept of monotonic evolution to distance interval, which captures the minimal
and maximal value changes of a variable along any given execution path. We
also extend the algorithms in [11] to compute distance intervals and to perform
dependence tests based on distance intervals. In addition, we present a method
to compute closed form expressions from distance intervals.

Experimental results show that when dealing with induction variables, depen-
dence tests based on distance intervals are both efficient and effective compared
to closed-form based dependence tests (implemented in Polaris). In particular,
our technique misses three loops that can be parallelized by Polaris, but finds
74 more parallel loops than can Polaris.

The rest of the paper is organized as follows. Section 2 gives an overview of
monotonic evolution. Section 3 defines distance interval. Section 4 and 5 describe
how to use distance intervals in dependence testing and closed form computation.
Section 6 proposes a technique to handle IVs defined by arbitrary assignments.
Section 7 presents the experimental results. Section 8 compares our technique
with others, and Section 9 concludes.

2 Overview of Monotonic Evolution

Monotonic evolution of a variable describes the direction in which the value
of the variable changes along a given execution sequence. Possible values of an
evolution are described by the lattice of evolution states as shown in Fig. 3. We
define two types of evolutions:

— The notation p 4V ¢ represents the join (L)) of the evolution of i over all
paths that starts from p and ends at ¢ excluding those that traverse any edge

in the set N. Intuitively, p 1Y ¢ captures how the value of i changes when
the program executes from an instance of p to an instance of q. When ¢ can
not be reached from p, p 4~ ¢ is L.

— The notation p =V 7 4 ¢ represents an evolution that must traverse an
intermediate node, i.e., the evolution of ¢ along all paths from p via r to ¢,
excluding those that traverse any edge in N.

Lattice elements: Ordering;:

T unknown evolution;

1A

monotonically increasing;

strictly monotonically increasing;

(AVARWAN

monotonically decreasing;

A—IA
vV —IV

/ ' \
strictly monotonically decreasing; \ T /
constant evolution; n

o V

no evolution.

Fig. 3. The lattice of evolution states

To compute the value of an evolution, each statement in the program is inter-
preted as a transfer function of evolution values. Given a variable i, a statement
is classified as: identity statement if it does not change the value of i, such as
j = n; forward induction if it always increases the value of i, such as 1 = i+1;
backward induction if it always decreases the value of i, such as i = 1-3; arbi-
trary assignment if it assigns any value to i, such as i = n. The corresponding
transfer functions are given in Table 1.

1« oD>>T
Identity L Qo D> T
Forward [L << < T TT
Backward| L T T>p> > T

Arbitrary | L T T TTTT

g
g

Table 1. Transfer functions of evolution values

3 Distance-extended Evolution

This section defines distance interval and its operations, and describes the algo-
rithm to compute distance interval.

3.1 Distance Interval

A distance interval captures the minimal and maximal value changes of a variable
along a given execution sequence. More precisely, for any a and b such that
—00 < a <b< 400, [a,b] describes any evolution where the value difference of
the variable at the starting and ending nodes of the evolution is no less than
a and no greater than b. When a = b, [a,b] is ezact. In this case, we may use
the shorter a for [a,a]. The lattice of distance intervals is formally defined in
Table 2. 1 describe unreachable evolutions. For example, consider the loop in
Figure 2, we have 5 4, 5 = [2,18].

u 1L a,b
T L a,b
le,d] | [¢,d] [min(a, ¢), max(b, d)]

Table 2. Distance-extended lattice

A distance interval can always be mapped to an evolution state according
to the signs of the interval’s bounds. For instance, [0, 0] corresponds to <; [a, b]
corresponds to <0 when a > 0, to &> when b < 0, and to T when a and b are of
opposite signs.

3.2 Distance Intervals of Expressions

Distance intervals can be computed for expressions, i.e., p 4Y ¢ where e is
an arithmetic expression. We define two operations, “x” and “+”, on distance
intervals in Table 3 and Table 4, respectively.

X a (> O) 0 a (< O) + T [a/7 b]
1 1 [0,0] 1
1L 1
le,d] | [ac,ad] [0,0] [ad,ac] ed |1 [a+eb+d
Table 3. The x operator Table 4. The + operator

The rules to compute evolution of expressions are as follows. When e is a
constant expression, p 4% ¢ = [0,0] if ¢ is reachable from p; otherwise, p -
q = L. When e is of the form ae; where a is a constant, p 4(]1\761 q=7p 4?1 q X a.
Lastly, when e is of the form e; + e, p 4{;{ L, =D 416\1 q+p 416\; q.

For example, suppose that e is 2i-3j+6,

P _siiea=p gx2+pY gx (=3)+10,0].

loop ¢1

loop 43

Fig. 4. Stride information

3.3 Stride Information

We define a special evolution, called stride, that traverses at most one iteration
of a loop. Consider a loop ¢ with a header h and a statement p enclosed in /.
We define three strides between p and h:

Up; n(p,h) denotes an evolution from p up to the first h reached excluding
edges in N. It is called an up-stride of p.

Down; n(h,p) denotes an evolution from h down to p without traversing h
twice, excluding edges in N. It is called a down-stride of p.

Stride; n(¢) denotes an evolution from h to the next h, excluding edges in N
and the exit edge of £. It is called a stride of loop ¢. In fact, Stride; n(¢) is
a special case of Down; n(h,p) and Up; x(p,h) when p = h.

Let us illustrate these definitions on the example shown in Fig. 4 where nodes
are named by statement labels.

— Stride; (¢3)= [1, 1] since it traverses exactly one iteration of the inner loop;
Stride; (¢1)= [10, 10] since it traverses statement 2 and the entire inner loop
exactly once (knowing ¢5 has 8 iterations);

Down; (3,5)= [1, 1] since it traverses the single path from statement 3 to the
first statement 5 reached;

— Up,;(5,1)= [0, 7] since statement 4 is traversed at most 7 times.

3.4 Computing Distance Interval

The non-iterative algorithm described in [11] can be extended to compute dis-
tance intervals of evolutions. Due to space constraints, we only briefly describe
the algorithm here. The full algorithm can be found in [12].

The core of the non-iterative algorithm is the basic algorithm, which is based
on a depth-first traversal of a non-cyclic control-flow graph. For each statement

traversed, it applies the transfer function as specified below. Given a variable
i, a statement is classified as: an identity statement if it does not change the
value of i, such as j = n; an induction with a step c if it always changes the
value of i by ¢, such as i = i+c, where ¢ could be a runtime constant of any
sign; an arbitrary assignment if it may assign any value to i, such as i = n. The
corresponding transfer functions for these statements are:

— ldentity(state) = state
— Induction,(state) = state + [c, c]
— Arbitrary(state) = [—o0, +00]

Then, the algorithm decomposes any evolution into segments, each of which
can be computed by the basic algorithm. In particular, to compute p 4 ¢, the
evolution is decomposed into an up-stride of p, a down-stride of ¢, and some
strides of the surrounding loops of p and ¢. Since evolutions are decomposed
into the same segments over and over again, we can reuse values of intermediate
segments to compute different evolutions. This leads to a very efficient algorithm
to compute multiple evolutions.

4 Dependence Test Using Distance Information

Distance intervals can be used for dependence testing. Such a dependence test
shares some similarities with the range test [2].

4.1 Dependence Test

Consider two array accesses, a(i) at p and a(i+d) at ¢, where d is a constant.!
The dependence test computes the value difference between i at p and i+d at q,
and use this information to decide whether the two accesses are independent. It
is obvious that, at any given run-time program point, the value of i will differ
from that of i+d by d. Therefore, the value difference between i at p and i+d at
g can be computed as the evolution of i from p to ¢ summed with [d, d].

Consider a loop /¢, two accesses, ale] at p and ale+d] at q. Let B and E
denote the sets of back-edges and exit edges of ¢, respectively.

1. There is no intra-loop dependence between p and ¢ for loop ¢ when
p 7 a+[d,d € {[a,b] | ab> 0}
A qg p+[—d,—d| € {[a,0] | ab>0}. (1)

2. There is no loop-carried dependence between p and q for loop ¢ with a header
h when

pAE h =7 q+[d,d] € {[a,b] | ab> 0}
AN q4E nHE p+[—d,—d) € {[a,b] | ab > 0}. (2)

do i = 1,100
k = k+2
t = a(k)
a(k) = a(k+1)
a(k+l) =t
end do

DO WN =

Fig. 5. Example of dependence test

Consider the loop in Fig. 5 that swaps every pair of consecutive elements of
array a. Since k is incremented by 2 per iteration, we have,

34,145+ (1,1 =22 +[1,1] =3,3]
5143+ [—1,-1]=[2,2] + [-1,—1] = [1, 1].

According to (2), this proves that there is no loop-carried dependence between
3 and 5.

4.2 Practical Computation

The dependence test computes two evolutions for any pair of accesses and for
each surrounding loop to be tested (e.g., from p to ¢, and from ¢ to p). Obviously,
computation will not be efficient without optimizing computations across differ-
ent, evolutions. We propose to cache and reuse intermediate evolutions. We can
compute and tabulate the results for each statement and loop to be tested. To
further optimize the algorithm, for each basic block, we compute local evolutions
that traverse an entire block, and store the results. During later computation,
the algorithm may “short-cut” the basic block by summing its cached local state
with the input state. The full algorithm is described in [12].

4.3 Complexity Analysis

Since dependence tests are local to individual loop nests, we consider an arbitrary
loop nest L and an induction variable i. Let e be the number of edges in L, and
m be the maximal nesting of L. Suppose that k statements in L are involved in
the dependence test. The dependence test computes p 4% h - g and p Y ¢,
for all possible p, ¢ and h, where N may only contain back-edges and exit edges.
In fact, when computing intermediate evolutions, we can drop N and explicitly
compute those evolutions for each loop. We showed that the dependence test
complexity is

O(ek +m?k?). (3)

Any flow-sensitive, statement-wise dependence test for k statements in a loop
nest of depth m must take at least mk? steps, our test is no exception. In our

L Accesses of the form a[i+di] and a[i+ds] can be handled as a [3]1 and alj+(d2—d1)].

scheme, dependency is tested individually for each loop of a nest (as reflected by
the occurrence of m in (3)). Therefore, compared to classical dependence tests
without induction variable recognition, our scheme requires more steps.? How-
ever, (3) estimates the number of operations (i.e., X, +, and L) involved in the
dependence test: the formula gives a fairly accurate account of the cost of the
test. On the other hand, for classical dependence tests, the cost of individual op-
erations is difficult to estimate. Depending on the mathematical tools employed,
some operations may be as expensive as solving a system of linear equations.

5 Closed Form Computation

Although our dependence test requires no closed form computation, closed form
expressions are still needed by subsequent loop transformations to break the
dependence inherent to inductions. Distance intervals can be used to compute
closed form expressions.

Given a variable v and a statement p, the closed form expression of v at p
explicitly computes the value of v at any instance of p. Suppose that p is enclosed
in a loop nest, £,,...,¢1, ¢y, where £y immediately encloses p. Assume that all
loop indices have an initial value of 1 and a step of 1. Let ix denote the loop
index of any loop f, and v denote the value of v before entering ¢;. The closed
form computation is conducted in the following steps:

— First, we compute the closed form expression of v at p for loop £y. If Stride, (¢p)
and Down, (£, p) are exact,? the value of v at p at iteration iy of loop £y can
be expressed as

v = vg + Stridey(¢p) X (ip — 1) + Downy (€, p). (4)

— Then, consider ¢; that immediately enclose £y. Applying (4) again, vy can
be computed as

Vo = U1 + Stridev(ﬁl) X (Zl — 1) +])OWHWO0 (h,l, ho)

where Op is the set of outgoing edges of hg. Basically, Downy, o, (h1,ho)
computes the evolution from hy down to the first hg. Replacing vg in (4) by
the above equation, the closed form expression of v for ¢; and ¢y is

v = vy + Stridey(¢1) x (i1 — 1) + Downy, 0, (h1, ho)
+ Stridey (¢o) x (io — 1) + Downy (ho,p). (5)

2 m times, when testing a large number of array accesses, i.e., when k is close to e.

3 This ensures that (4) indeed computes a singleton interval.

1 k=1

2 doi=1, 10

3 do j =1, 10
4 k = k+2
5 alk] = ---
6 end do

7 end do

Fig. 6. Closed form computation

— Finally, generalizing (4) and (5), the closed form expression of v at p for any
loop nest £, ..., 4y is

v = vy, + Stridey(¢1) x (i1 — 1) + Downy, o, (h1, ho)
+ Stridey(¢2) x (iz — 1) + Downy, o, (h2, h1)
4o 4 Stridey (£,) X (in — 1) + Downy.o, , (hn, hn_1)
+ Stridey(¢g) % (ip — 1) + Downy (ho,p) (6)

where Oy, is the set of outgoing edges of loop ¢ and provided that Stride, (¢y),
Downy, o, (hk, hr—1), and Downy(ho, p) are exact.

For example, consider the loop nest in Fig. 6. Let O denote the exit-edge of
loop 3. Applying (6), the closed form expression of k at 5 is

k =1+ Stridex(¢2) x (i — 1) + Downg,0(2, 3)
+ Strideg(¢3) x (j — 1) + Downg(3, 5).

Hence, k=1+20(i — 1) +2(j — 1) +2=20(i — 1)+ 2(j — 1) + 3.

6 Handling Arbitrary Assignments

The transfer function of arbitrary assignment given in Section 3.4 conservatively
maps any input state to [—oo, +00]. We would like to provide a more precise
transfer function for arbitrary statements.

Consider an assignment s of the form i = j. Suppose that ¢ < j holds at any
statement instance of s, then the value of ¢ always increases after an execution
of s. This means that the effect of s on ¢ is equivalent to that of an induction
statement (with a positive step). Therefore, we define the transfer function of s,
denoted as fs, according to the inequality between ¢ and j at s: if c <i—j <d
at s, then

fs(in) = in + [c, d]. (7)

In order to obtain [c,d], we need to estimate the bounds of i — j at s. Obvi-
ously, 7 and j have the same value immediately after s, hence after denoted as

do i = 1,100
k =n

do j = 1,10
alk] = -
k = k+1
end do
n=n+ 11
end do

© 00N O W N -

Fig. 7. Example of arbitrary assignment

st. Therefore, sT can be used as a reference point to compare the values of i
and j at s.

Let [a,b] (resp. [a/,b']) denote the evolution of ¢ (resp. j) from an instance
of sT to the instance of s from the very next iteration of £5. We assume that s
is executed at every iteration of £,;. This condition can be checked as whether
hs can reach itself without traversing incoming edges of s and exit edges of /.
Then, [a,b] and [a/,¥’] can be computed as follows:

[a,b] = Up; (sT, hs) + Down; (s, hs) [a’,b'] = Up,(s™, hy) + Downy (s, hs).

Knowing i = j at s, the difference between values of ¢ and j, at any instance of
s executed after an instance of s, is bounded by the “difference” between [a, b]
and [a,b']:

c <i—j<dwhere [c,d] = [a—b,b—d]. (8)

Since s is executed at every iteration of /4, any instance of s executed after the
first iteration of £, follows some instance of sT. When computing evolutions, (8)
holds at node s only after a back-edge has been traversed along the path.

We now apply the method to compute 5 -, 5 in Fig. 7, where statement 2 is
an arbitrary assignment. Corresponding distance intervals are computed as

[a,b] = Upy(3,1) + Downg(1,2) = [10, 10]
[a’,b'] = Up,(3,1) + Downy,(1,2) = [11, 11].

Since any path from statement 5 to 2 always traverses the back-edge of loop 1
first, 1 < k —n < 1 holds at each traversal of 2 along paths of 5 -, 5. Hence,
applying (7), the transfer function of statement 2 is fo(in) = in + [1,1].

7 Experimental Results

For our experimental studies, we used Polaris [3], a Fortran source-to-source
parallelizing compiler, as the basis for comparison. In Polaris, induction variables
are substituted by their closed form expressions before the dependence test is
performed. In the context of dependence testing for array accesses, we focus on

integer induction variables (IIVs) which are used in array subscripts, and we do
not deal with IIVs unrelated to any dependences, e.g., IIVs used in subscripts
for arrays that only appear in right-hand side.

In the experiment, we used Polaris to find candidate IIVs from the Perfect
Club benchmark suite. Applying our dependence test by hand (for dependences
involving ITVs) and using the dependence information reported by Polaris (for
other dependences), we detected parallel loops involving ITVs. Table 5 presents
the experimental results. The first three columns classify loops with IIVs into
three sets: loops containing IIVs (Total); loops where IIVs appear as subscripts
(Subscript); and loops where the analysis of IIVs is required for paralleliza-
tion (Targeted), that is, loops that are the target of our technique. The next
five columns give the number of loops with IIVs parallelized by different tech-
niques: by Polaris (Polaris), by our dependence analysis with either the original
(Monotonic) or the distance-extended (w/ Distance) lattice, combined with the
method to handle arbitrary assignments (w/ Assign), combined with a run-time
test for stride and loop bounds (w/ Test). Note that, in columns Monotonic
and w/Distance, a loop counted as parallel simply means that when disabling
IV substitution in Polaris and “plugging in” our analysis, Polaris reports no
loop-carried dependence for the loop except for those due to assignments to IVs
themselves. Such dependences can be handled either by finding closed form ex-
pressions and performing the substitution, or by the techniques described in the
next paragraph.

Loops with IIVs Parallel Loops with IIVs
Total[Subscript| Targeted|[Polaris[Monotonic]w/ Distance[w/ Assign[w/ Test
adm 17 17 5 3 2 3 3 4
bdna 63 62 60 22 34 34 34 34
dyfesm|| 15 11 8 7 8 8 8 8
flob52 15 15 15 12 12 12 12 12
mdg 29 29 24 14 12 13 13 16
mg3d 97 97 89 5 5 5 39 58
ocean 11 6 4 4 4 4 4 4
qcd 69 69 69 58 64 64 64 64
spec77|| 99 59 54 44 1 44 44 44
trfd 13 13 9 7 6 6 7 7

Table 5. Experiments with the Perfect Club benchmark suite

Let us comment on the results. Our dependence test matches or outperforms
Polaris on all loops with IIVs but one (in mdg). We discovered 74 new loops
whose only dependences came from operations on induction variables them-
selves. Among them, 56 (1 in adm, 1 in mdg, 53 in mg3d and 1 in qcd) do have

4 Three programs have been omitted: arc2d and track because they contain no loop
with IIVs, and spice because it could not be handled by Polaris.

closed form expression (but the dependence test in Polaris failed to handle these
closed form expressions). Twelve (11 in bdna and 1 in dyfesm) have no closed
form expressions because the loop bounds involve array references; but they can
be parallelized without much overhead, using a parallel reduction scheme. The
other six (1 in bdna and 5 in qcd) involve conditional induction variable up-
dates; one may resort to a more general doacross technique to parallelize such
loops: the loop body is split into a “head” sequential part for induction vari-
able computation and a “tail” part which can be run in parallel with the next
iteration.

Notice that unknown symbolic constants (for loop bounds and induction vari-
able strides) are sometimes a reason for unsuccessful parallelization by Polaris.
Using our technique, a run-time test is inserted to check for inequalities assumed
during monotonic evolution and dependence testing.

7.1 Additional Patterns that can be handled

This section describes the patterns that can be handled by our method, in ad-
dition to the four patterns already described in [11].

Pattern 5: monotonic small- and big-step. In this case, variable mrsij
is incremented by a “small” step (1) in every iteration of the inner loop, and is
re-assigned to the value of mrsijoO in every iteration of the outer loop. Variable
mrsijo itself is an induction variable incremented by a “big” step nrs by the
outer loop. As opposed to the stride and offset pattern, proving there is no
dependence requires comparing the accumulative effect of the “small” step of
the inner loop—which usually depends on the bounds of the inner loop and the
step—with the big step of the outer loop.

trfd olda do100 line 331
do mrs = 1,nrs

mrsij = mrsijo
do mi 1,morb

big steps

do mj = 1,mi N I I L O S

mrsij = mrsij+1 ~ FJA\< :
xrsij(mrsij) = xij(mj) small steps
end do
end do
mrsijO = mrsijO+nrs
end do

Polaris detects no dependences carried by any of the loops because the closed
form expression of mrsij yielded disjoint intervals [2]. This is illustrated on the
right-hand side figure: there are no dependences carried by the outer loop because
the dotted lines—the last value of mrsij—always precede the dashed ones—the
next value of mrsijo. Our technique may parallelize the two inner loops based
on the strict monotonicity of mrsij. Using the dedicated technique to handle

arbitrary assignments (mrsij = mrsijo) and the distance-extended lattice, the
outer loop may also be parallelized. We found 35 loops (1 in trfd and 34 in
mg3d) share this pattern.

7.2 Patterns that Could not be Handled

The following nests illustrate the two most common cases where our technique
could not successfully detect parallel loops.

Pattern a: complex small- and big-step The following nest is similar to pat-
tern 5, but induction variables appear in loop bounds instead of array accesses.
Neither Polaris nor our technique can parallelize the outer loop. Nevertheless,
it should not be difficult to extend the arbitrary assignment method to loop
counter assignments, and detect that array accesses span disjoint regions across
iterations of the outer loop.

— mdg nrmlkt do300 — line 494 —

do j =1,3

kmin = kmax+1
kmax kmax+natmo
do k = kmin,kmax
var(k) = var(k) * ---
end do
end do

Pattern b: interleaved big- and small-step Our distance-extended lattice
handles complex combinations of offsets and strides spanning multiple loops, as
long as offsets are explicit in every reference. In many benchmarks, a comparison
is required between the stride of an inner loop and an outer loop bound (the
opposite of the previous pattern).

— mdg correc do1000 — line 989 —
do i = 1,nt)
. big steps
3 i)
1)1 TSN\
do j = 1,nori CT 1] :| T T 11
var(jj) = var(jj) + ---]
33 = 3tme small steps
end do
end do

To parallelize the outer loop, one has to show that i—hence the initial value
of jj—is always greater than 0 and less than or equal to nt. This is illustrated
on the right-hand side figure: there are no dependences carried by the outer loop
because the dotted line—the greatest possible value of i—precedes the dashed
one—the stride of jj. On this example, our improvement to handle arbitrary
assignments is not very helpful: values of jj are interleaved across iterations of
the outer loop. We found 20 loops sharing this pattern in the perfect benchmarks
(1 in bdna and 19 in mg3d). Polaris cannot handle this pattern either.

8 Related Work

Most induction variable analyses focus on idiom recognition and closed form
computation. Using patterns proposed by Pottenger and Eigenmann [10], the
Polaris compiler recognizes polynomial sequences that are not limited to scalar
and integer induction variables. Abstract interpretation is used by Ammarguel-
lat and Harrison [1] to compute symbolic expressions. Two general classification
techniques have been designed. The first one [6] by Gerlek, Stoltz and Wolfe is
based on a SSA representation [5] optimized for efficient demand-driven traver-
sals. The second one [8] is designed by Haghighat and Polychronopoulos for the
Parafrase 2 compiler. It combines symbolic execution and recurrence interpo-
lation. Both techniques handle a broad scope of closed form expressions, such
as linear, arithmetic (polynomial), geometric (with exponential terms), periodic,
and wrap-around.

IV properties other than closed form expressions have also been studied.
Gupta and Spezialetti [7] extended the linear IV detection framework with arith-
metic and geometric sums as well as monotonic sequences, but for non-nested
loops only. Their technique is applied to efficient run-time array bounds checking.
Lin and Padua [9] studied monotonicity for values of index arrays in the context
of parallelizing irregular codes. This property is used later to detect dependences
between accesses to sparse matrices through index arrays. However, their tech-
nique does not target general induction variables. Gerlek, Stoltz and Wolfe [6]
also detect monotonic sequences as a special class of induction variables. But
details were not provided as how to use such information in dependence testing.

9 Conclusion and Future Work

We presented an extension of our previous work [11] on using monotonic evolu-
tion to test dependence for array subscripts that involve induction variables. It is
a natural step to extend monotonic evolution states with the minimal and max-
imal distance information. Distance interval enables precise dependence testing
in presence of interleaved variable assignments, symbolic constants, evolutions
between different variables, non-monotonic evolutions, and closed form computa-
tion. In the experiment carried out with the Perfect benchmarks, we showed that
our technique matches the precision of Polaris when closed forms are available,
and when there are no closed form expressions, we can still detect additional
parallel loops.

The immediate future work is to implement this technique in Polaris and
validate its use for fast dependence testing. Since arbitrary assignments link the
values of two variables, they may be used as reference points to relate (compare)
values of different variables. We would also like to apply monotonic evolution on
other forms of induction operations, such as pointer chasing in recursive data
structures and container traversals through iterators [4], either for pointer analy-
sis or for parallization. Monotonic evolution is well-suited for dynamic structures
since traversals of such structures are likely to be monotonic, and closed form
abstractions are impractical for such accesses.

References

1.

10.

11.

12.

Z. Ammarguellat and W.L. Harrison. Automatic recognition of induction & re-
currence relations by abstract interpretation. In ACM Symp. on Programming
Language Design and Implementation (PLDI’90), pages 283-295, Yorkton Heights,
NY, June 1990.

. W. Blume and R. Eigenmann. The range test: A dependence test for symbolic,

non-linear expressions. In Supercomputing’94, pages 528-537, Washington D.C.,
November 1994. IEEE Computer Society Press.

W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
W. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Parallel programming
with Polaris. IEEE Computer, 29(12):78-82, December 1996.

A. Cohen, P. Wu, and D. Padua. Pointer analysis for monotonic container traver-
sals. Technical Report CSRD 1586, University of Illinois at Urbana-Champaign,
January 2001.

R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. on Programming Languages and Systems, 13(4):451-490, October 1991.
M.P. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction variables: Detecting and
classifying sequences using a demand-driven ssa form. ACM Trans. on Program-
ming Languages and Systems, 17(1):85-122, January 1995.

R. Gupta and M. Spezialetti. Loop monotonic computations: An approach for
the efficient run-time detection of races. In ACM Symp. on Testing Analysis and
Verification, pages 98—-111, 1991.

M. Haghighat and C. Polychronopoulos. Symbolic analysis for parallelizing com-
pilers. ACM Trans. on Programming Languages and Systems, 18(4):477-518, July
1996.

Y. Lin and D. Padua. Compiler analysis of irregular memory accesses. In ACM
Symp. on Programming Language Design and Implementation (PLDI’00), Vancou-
ver, British Columbia, Canada, June 2000.

B. Pottenger and R. Eigenmann. Parallelization in the presence of generalized
induction and reduction variables. In ACM Int. Conf. on Supercomputing (1CS°95),
June 1995.

P. Wu, A. Cohen, D. Padua, and J. Hoeflinger. Monotonic evolution: An alternative
to induction variable substitution for dependence analysis. In ACM Int. Conf. on
Supercomputing, Sorrento, Italy, June 2001.

Peng Wu. Analyses of pointers, induction variables, and container objects for de-
pendence testing. Technical Report UTUCDCS-R-2001-2209, University of Illinois
at Urbana-Champaign, May 2001. Ph.D Thesis.

