
HAL Id: hal-01257309
https://hal.science/hal-01257309

Submitted on 20 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Periodic Process Networks: Prototyping and
Verifying Stream-Processing Systems

Albert Cohen, Daniela Genius, Abdesselem Kortebi, Zbigniew Chamski, Marc
Duranton, Paul Feautrier

To cite this version:
Albert Cohen, Daniela Genius, Abdesselem Kortebi, Zbigniew Chamski, Marc Duranton, et al.. Multi-
Periodic Process Networks: Prototyping and Verifying Stream-Processing Systems. Euro-Par 2002,
Parallel Processing, 8th International Euro-Par Conference , Aug 2002, Paderborn, Germany. �hal-
01257309�

https://hal.science/hal-01257309
https://hal.archives-ouvertes.fr

Multi-Periodic Process Networks: Prototyping

and Verifying Stream-Processing Systems

Albert Cohen,

1

Daniela Genius,

12

Abdesselem Kortebi,

2

Zbigniew Chamski,

2

Marc Duranton

2

and Paul Feautrier

1

1

INRIA Rocquencourt, A3 Project

2

Philips Research

Abstract. This paper aims at modeling video stream applications with

structured data and multiple clocks. Multi-Periodic Process Networks

(MPPN) are real-time process networks with an adaptable degree of

synchronous behavior and a hierarchical structure. MPPN help to de-

scribe stream-processing applications and deduce resource requirements

such as parallel functional units, throughput and bu�er sizes.

1 Context and Goals

The need arises for hardware units to handle new kinds of video applications,

combining multiple streams, graphics and MPEG movies, leading to increased

system complexity. When beginning the design of a video system, the engineer

is primarily interested in quickly determining the hardware requirements to run

an application under speci�c real-time constraints.

Multi-Periodic Process Networks (MPPN) model heterogeneous video-stream

applications and help resource allocation. They describe an application's struc-

ture and temporal behavior, not precise functionality of processes, and they may

interact with a high-level language from which scheduling and resource alloca-

tion are determined. However, MPPN are not intended to model reactive systems

with unpredictable input events [2] or dynamic process creation. On the opposite,

our model provides precise information regarding the steady state of a determin-

istic application mapped to a parallel architecture. We believe MPPN are well

suited to help the mapping of a video �lter or 3D graphics pipeline to explicitly

parallel micro-architectures, e.g. clustered VLIW embedded processors.

2 Related Work

Three theoretical models have in
uenced MPPN: Petri nets, data-
ow graphs

and Kahn Process Networks (KPN). Petri nets are inherently asynchronous and

handle time constraints [3, 13, 8]. MPPN may be simulated by timed Petri nets

but this does not bring precise schedule information. The sub-class of discrete

event systems [1, 4] enables scheduling and performance analysis but does not

model token assembling/splitting. Data-
ow graphs are a well-established means

to describe asynchronous processing: various properties can be veri�ed, such as

bounded memory [11, 5]. Both models capture repetitive actions through cyclic

paths whose production rate compel performance, whereas stream-processing

applications bene�t from alternative descriptions such as lazy streams. Indeed,

KPN [9] are closer to our approach: they provide (unbounded) FIFO bu�ers

with blocking reads and non-blocking writes while enforcing deterministic con-

trol. But real-time is not considered and processes have no observable semantics.

Synchronous approaches [6] are based on clock calculi and enable synchronous

code generation, but static steady-state properties are not available. In our de-

terministic stream-processing context, properties such as degree of parallelism,

bu�er size and bandwidth are out of reach of these popular models. Other ap-

proaches are complementary to MPPN. Alpha [12] is a high-level language for

semi-automatic scheduling and mapping of numerical applications to VHDL.

Within the Ptolemy project [5], Compaan targets automatic KPN generation

from MatLab loop nests [10]; it is also a powerful simulation tool. KPN model-

frame

stripe

vertical �ltering working sethorizontal �ltering working set

H-�lter reorder V-�lter SD outputHD input

clock

frame

Fig. 1. Example: downscaler

p

3

p

4

p

1

12

p

8

1

p

7

2

1

22 2

1 1

1

1

1

2

p

5

p

6

p

2

frame clock 25Hz

SD output

HD input

H-�lter

V-�lter

3:472 kHz

41:667 kHz

2:5MHz

10MHz

Fig. 2. Simple model of the downscaler

ing, though frequently used in co-design, is insu�cient for streams of structured

data. As an introductory example consider downscaling of a video image is de-

composed into a sequence of horizontal and vertical �ltering. The former operates

on pixels and the latter operates on lines | see Figure 1 for a simpli�ed KPN

model. A certain number of pixels/lines is used to determine the new, smaller

number of pixels/lines. We assume a horizontal downscaling of 8:3 and a vertical

downscaling of 9:4 (High De�nition to Single De�nition). Figure 1 describes the

\data reordering" occurring within stripes, between the horizontal and the verti-

cal �lters. First of all, the hierarchy captures non-FIFO communication without

resorting to an explicit reorder process. More importantly, each passage through

a hierarchy boundary corresponds to an explicit synchronization, where larger

messages are considered, consisting of a �xed number of smaller messages. This

hierarchical synchronization of events is called multi-periodic: it will be charac-

terized through multiple, hierarchically layered, periodic schemes.

3 Network Structure

AMulti-Periodic Process Network (MPPN) is a 5-tuple (P;v;C; in;out), where

P is a set of processes, v is a hierarchical ordering on P (its Hasse diagram is

a forest), C is a set of channels, process p

i

2 P is associated with input ports

in in(p

i

) and output ports in out(p

i

). p

j

i

denotes port j of process p

i

. Ordering

v describes the hierarchy among processes: p

i

is a sub-process enclosed by p

k

if and only if p

i

@ p

k

. Moreover, a process p

i

is immediately enclosed by p

k

if

and only if p

i

@ p

k

and there is no other process enclosing p

i

and enclosed by

p

k

. Processes which do not enclose other processes are called atomic; conversely,

compound processes enclose of one or more sub-processes.

A channel connects process ports: p

j

i

p

l

k

represents a channel whose source is

port p

j

i

and whose sink is port p

l

k

. Any port must belong to exactly one channel.

Channels are de�ned inductively:

{ if p

i

and p

k

are immediately enclosed by the same process or at the upper level,

j 2 out(p

i

), l 2 in(p

k

), then p

j

i

p

l

k

is a
at atomic channel ;

{ if p

i

is immediately enclosed by p

k

, j 2 in(p

i

), l 2 in(p

k

) (resp. out(p

i

), out(p

k

)),

then p

l

k

p

j

i

is a downward atomic channel (resp. p

j

i

p

l

k

is an upward atomic channel);

{ if p

j

i

p

l

k

2 C and p

l

k

p

l

0

k

0

2 C, then p

j

i

p

l

0

k

0

is also a channel (not an atomic one); p

j

i

p

l

k

and p

l

k

p

n

m

are called sub-channels of p

j

i

p

n

m

.

C

flat

, C

down

and C

up

are the sets of
at, downward and upward atomic

channels, respectively. The MPPN for the downscaler in Figure 2 illustrates

these de�nitions. It is built from three compound processes, p

2

, p

5

, p

7

, and �ve

atomic ones. Digits accross process boundaries are port numbers: p

2

5

p

1

6

and p

2

2

p

1

3

are
at channels, p

1

5

p

1

6

is a downward channel, p

2

6

p

2

2

is an upward channel, etc.

A path � over the network is a list p

j

1

i

1

p

j

2

i

2

� � �p

j

n

i

n

such that: p

j

m

i

m

p

j

m+1

i

m+1

is either

an atomic channel or a pair of input/output ports of the same process. E.g., any

channel is a path, and p

1

2

p

1

5

p

1

7

p

2

7

p

2

5

p

1

6

p

1

8

p

2

8

p

2

6

p

2

2

is a path in Figure 2. A port or

process is reachable from another port or process if there exists a path from the

latter to the former. Eventually, any output port of a compound process p

i

must

be reachable from an input port of p

i

. For the sake of clarity, we only consider

acyclic networks with periodic input streams (see Section 7 for extensions).

4 Network Semantics

We now enrich the network structure with data-
ow activation and message

semantics to model the execution of a stream-processing application.

During the course of execution, processes exchange messages and activate

in response to receiving such messages. For each process p

i

(resp. port p

j

i

), the

activation count is de�ned as the number of activations of p

i

(resp. the number of

messages hitting port p

j

i

) since the last activation of the enclosing process | or

since the beginning of the execution if p

i

is at the highest level of the hierarchy.

Activation and message dates are de�ned likewise: date 0 corresponds to the

last activation of the enclosing process | or the beginning of the execution of

an outermost process | and all activation/message dates of sub-processes and

ports are relative to this activation.

The model is designed such that local event dates only depend on the local

event count, i.e., previous activations of the enclosing process have no \mem-

ory" e�ect. This locality property is one of the keys to compositionality | see

Section 4.3. It also enables the following de�nition: an execution of a MPPN is

a pair of non-decreasing functions (act;msg), such that act : P�N ! R maps

processes and activation counts to activation dates, msg : fp

j

i

j p

i

2 P ^ j 2

in(p

i

) [out(p

i

)g � N ! R maps process ports and message counts to message

dates; act(p

i

; n) is the date of activation n of process p

i

, msg(p

j

i

; n) is the date

of message n hitting port p

j

i

.

4.1 Propagation in atomic channels

When a big message is sent through a
at channel and decomposed into smaller

ones, the �rst small message is received right after the big one is sent (pending

some communication latency). Conversely, building a big message out of smaller

ones takes additional time: many small messages must be sent before a big one

is received. In both cases, n messages of size Q

l

k

hitting port l of p

k

through

p

j

i

p

l

k

correspond to dnQ

l

k

=Q

j

i

e messages sent by p

i

.

In addition, we assume a constant communication latency c

j;l

i;k

for an elemen-

tary message sent through an atomic channel p

j

i

p

l

k

. Recalling that msg(p

l

k

; n) is

the date of the (n+ 1)-th message hitting port l of process p

k

,

8p

j

i

p

l

k

2 C

flat

: msg(p

l

k

; n) = msg

�

p

j

i

; d(n+ 1)Q

l

k

=Q

j

i

e � 1

�

+ c

j;l

i;k

: (1)

Considering an upward channel, the propagation equation sums the activation

date of the enclosing process and the local (relative) date of the last small mes-

sage assembled to build an output message at port p

l

k

:

8p

j

i

p

l

k

2 C

up

: msg(p

l

k

; n) = act(p

k

; n) +msg

�

p

j

i

; dQ

l

k

=Q

j

i

e � 1

�

: (2)

Considering a downward channel, hierarchical composition enforces that no mes-

sage enters a compound process before it activates. More precisely, when a mes-

sage reaches an input port of a compound process p

i

, this message is not prop-

agated further on the channel (and possibly decomposed) before p

i

activates on

this very message. Activation of p

i

coincides with the reception of a message at

port p

l

k

, since Q

l

k

� Q

j

i

(decomposition into smaller messages). Therefore,

8p

j

i

p

l

k

2 C

down

: msg(p

l

k

; n) = 0: (3)

4.2 Activation model

We consider a data-
ow scheme: process activation starts as soon as there is at

least one message on each input port. Let Q

j

i

be the size of messages sent or

received on port j of p

i

. A process p

i

enters activation n as soon as the following

data-
ow condition is met: every input port j 2 in(p

i

) has been hit by message n

of size Q

j

i

(except for special clocked processes, see Sections 4.4). The data-
ow

activation scheme is formalized as follows:

act(p

i

; n) = max

j2in(p

i

)

msg(p

j

i

; n): (4)

This de�nition allows multiple overlapping activations of a process.

Considering an atomic process p

i

, we call `

j

i

the latency of p

i

for sending

a message through output port j. It is de�ned as the elapsed time between

an activation of p

i

and the corresponding output of a message through port j,

supposed constant for all executions of the process:

msg(p

j

i

; n) = act(p

i

; n) + `

j

i

: (5)

This constant latency will be extended to compound processes in Section 4.3.

In the following, details and proofs that had to be left out can be found in

[7]. While any size change of messages is possible when traversing a process or

channel, the same is not true when traversing a path. As a consequence of the

previous equations, in order to ensure compositionality, message sizes must obey

a strict scaling rule when traversing hierarchy boundaries. Let us consider a

compound process p

i

, an input port j 2 in(p

i

) and an output port l 2 out(p

i

).

If these ports are connected through a path � of channels and sub-processes of

p

i

, one single message hitting p

j

i

may traverse several assembling/splitting stages

through �, but it must yield one single message hitting p

l

i

. This is intrinsic to

the hierarchical model; the following path constraints enforce the scaling rule:

1

Y

p

j

i

p

l

k

2�

(Q

j

i

=Q

l

k

) = 1 and 8�

0

pre�x of � :

Y

p

j

i

p

l

k

2�

0

(Q

j

i

=Q

l

k

) � 1: (6)

Activation of a source (input-less) process p

i

is not constrained by any data-
ow

scheme. We assume a periodic behavior instead: considering two real numbers

act(p

i

; 0) | the reference date | and per(p

i

) | the period,

act(p

i

; n) = act(p

i

; 0) + nper(p

i

): (7)

4.3 Latencies of compound processes

Consider an output port j of a compound process p

i

. We can prove that every

activation of p

i

sends one message through p

j

i

after a constant latency. This

result lies in the data-
ow equations (message propagation and activation rules

are time invariant) and in the scale factor constraint (6) which ensures that

any single activation of p

i

sends exactly one message through p

j

i

. We may thus

extend (5) to compound processes: msg(p

j

i

; n)� act(p

i

; n) is a constant, `

j

i

can

be computed for n = 0 based on information at the lower level:

8p

i

2 P; j 2 out(p

i

) : `

j

i

= msg(p

j

i

; 0)� act(p

i

; 0): (8)

Thus, MPPN exhibit compositional semantics. Latencies of compound processes

do not depend on the surrounding network: they are computed once and for all.

1

This equation applies when messages are multiples of one another.

4.4 Clocked processes

We provide an extended kind of process to synchronize streams over a �xed clock

period: clocked processes. These processes can be either atomic or compound,

and their activation rule is generalized from ordinary processes. Considering a

clocked process p

i

, an internal clock starts at the reference date act(p

i

; 0), and

subsequent activations may only occur one at a time when all input messages

are present and when an internal clock tick occurs. To put it simple, a clocked

process has a double role of (local) sampling and delay. A clocked process p

i

is

characterized through a clock frequency f

i

such that f

i

� 1=per(p

i

); equality

enforces periodicity (e.g., to enable stream resynchronization for video output).

When enclosed in compound processes, MPPN clocks behave di�erently from

hardware clocks (whose semantics is exclusive): two independent activations of

a compound process may trigger overlapping streams of events on clocked sub-

processes. This is required to preserve compositionality. In practice, the designer

may want the enclosing process to be clocked itself so that executions of the

clocked sub-process are sequential, e.g., in dividing the frequency of the clocked

sub-process by the hierarchical scale factor.

5 High Level Properties

From the abovementioned MPPN semantics, one may deduce resource require-

ments of the application. In this paper, we focus on conservative estimates for the

number of functional units, bandwidth and bu�ers. We derive global (absolute)

properties from the product of local evaluations.

5.1 Asymptotic Periodic Execution

We have proven that all processes follow a steady-state scheme which extends

and relaxes the periodic constraint (7) on source processes; starting from (7),

this follows inductively from (1), (4) and (5). For each process p

i

, there exist an

average period per(p

i

) and a burstiness adv(p

i

) such that

8n � 0 : (n� adv(p

i

))per(p

i

) � act(p

i

; n)� act(p

i

; 0) � nper(p

i

) (9)

8n � 0 : (n� adv(p

j

i

))per(p

i

) � msg(p

j

i

; n)�msg(p

j

i

; 0) � nper(p

i

): (10)

The burstiness is the maximal number of advance activations of p

i

, i.e., activa-

tions ahead of the periodic execution scheme. This parameter encompasses both

deterministic bursts of early messages and jittering streams with earliest/latest

bounds (and, possibly, periodic resynchronization). Even under the worst-case

conditions, better evaluations of act(p

i

; n) can be hoped for (possibly exact

ones): deterministic event bursts can be characterized e�ectively within the re-

laxed periodic scheme.

Considering an output port j of a process p

i

, messages hit j after a constant

delay, hence output message burstiness is equal to activation burstiness:

8j 2 out(p

i

) : adv(p

j

i

) = adv(p

i

): (11)

This equation stands for both upward channels (in compound processes) and

atomic processes.

Sending one message and adv(p

j

i

) advance messages at port p

j

i

corresponds

to sending Q

j

i

(1+adv(p

j

i

)) bytes of data. These data are received as one message

plus adv(p

l

k

) advance messages at port p

l

k

, i.e., Q

l

k

(1+adv(p

l

k

)) bytes. For
at

channels, the result is the following:

8p

j

i

p

l

k

2 C

flat

: Q

j

i

(1 + adv(p

j

i

)) = Q

l

k

(1 + adv(p

l

k

)); (12)

for downward channels, a single activation of the enclosing process is considered:

8p

j

i

p

l

k

2 C

down

: Q

j

i

= Q

l

k

(1 + adv(p

l

k

)): (13)

Notice that (12) and (13) may require burstinesses to be non-integer. In addi-

tion, communication may be implemented through bounded bu�ers as long as

asymptotic data throughput is the same at both ends of a channel:

8p

j

i

p

l

k

2 C : Q

j

i

=per(p

i

) = Q

l

k

=per(p

k

): (14)

Activation burstiness can be deduced from the data-
ow scheme, replacing

act(p

i

; n) and msg(p

j

i

; n) by their lower bounds in (4). The result is that pro-

cesses tend to \smooth" message bursts and initiation delays:

adv(p

i

) = min

j2in(p

i

)

n

adv(p

j

i

) +

act(p

i

; 0)�msg(p

j

i

; 0)

per(p

i

)

o

: (15)

This is a two-phase computation: on a given stream, sum up the burstiness

and the number of messages that precede activation 0, then minimize these

adjusted burstinesses. If the process is clocked, the former result is multiplied

by 1� 1=(f

i

per(p

i

)); one expectedly get adv(p

i

) = 0 when per(p

i

) = 1=f

i

.

5.2 Global properties

We call `

i

the latency for p

i

to complete an execution, i.e., the maximum of `

j

i

at

output ports j of p

i

: `

i

= max

j2out(p

i

)

`

j

i

. Let overlap(p

i

; d) denote the maximum

number of executions of p

i

during a given period of time d, and triggered by a

single activation of the enclosing process (if p

i

is a sub-process):

overlap(p

i

; d) = min

�

df

i

de;

�

d=per(p

i

) + adv(p

i

)

��

:

We proved that the (absolute) maximal number of parallel executions of a process

p

i

is bounded by the product of the local maximal number of activations of p

i

and all its enclosing processes during the same duration `

i

:

maxpll(p

i

) =

Y

p

i

vp

k

overlap(p

k

; `

i

):

Depending on the architecture and the resource allocation strategy, ports

associated with physical input/output may be identi�ed. On this subset, it is

legitimate to ask for an estimate of the average and maximal bandwidths. Such

estimates can be built from the periods, burstinesses and overlapping factors,

see [7] for details. Our current model assumes that actual loads/stores are dis-

tributed evenly over the whole access period `

j

i

. This hypothesis is optimistic,

but �ner evaluations can be crafted following the same reasoning. Port band-

width is of critical interest when implementing process communications through

shared-memory bu�ers, whereas channel bandwidth provides some insight about

network contention when focusing on distributed architectures.

We describe a method to bound bu�er size for any atomic channel, not

considering architecture-speci�c bu�er requirements. The minimal size of a bu�er

for channel p

j

i

p

l

k

is the maximum amount of temporary data that must be stored

during message propagation through this channel; it is denoted by maxbuf(p

j

i

p

l

k

).

Such a bu�er must hold all the messages sent to the channel by p

i

and not yet

received by p

k

, i.e., the di�erence between data sent and received. An upper

bound of this di�erence is evaluated from the liveness of a message and the

product of overlapping factors.

6 Network Analysis

The analysis of a multi-periodic process network consists in solving the above

equations. Let us sketch an algorithm for MPPN analysis and veri�cation.

Input. A multi-periodic process network, Q

j

i

for each port, c

j;l

i;k

for each atomic
at

channel, `

j

i

for each atomic process, reference date act(p

i

; 0) for each source process

(e.g., 0), period per(p

i

) for one process per weakly-connected component of the

network, burstiness adv(p

i

) for each source process. Optional values for other

parameters, e.g., burstinesses and periods at sink processes.

Output. Values for all parameters or contradiction.

Resolution. The algorithm is decomposed into four phases.

1. Perform a topological sort of the network. Check the scaling rule of all com-

pound processes, using (6).

2. Compute per(p

i

) traversing the network incrementally, starting from processes

with known periods using (14) and checking for consistency.

3. Traverse the hierarchical structure bottom-up, applying the following steps:

{ choose a compound process p

i

whose sub-processes have known latencies;

{ compute (relative) reference dates for sub-processes, using (1), (4) and (5);

{ deduce latency `

j

i

for every output port j, using (8).

4. Compute adv(p

i

) and adv(p

j

i

) through a top-down traversal, following the

topological ordering at each hierarchical level, using (11), (12) and (15).

From the output of this algorithm, one may deduce the degree of parallelism,

bandwidths and bu�er sizes for all processes, ports and channels. We may now

show the results on the introductory example.

Input. We consider a pixel unit for all message sizes, Q

1

1

= Q

1

2

= 1920 � 1080, Q

2

2

=

Q

1

3

= Q

2

3

= Q

1

4

= 720� 480, Q

1

7

= 8, Q

1

5

= 1920, Q

2

7

= 3, Q

2

5

= 720, Q

1

8

= 9, Q

1

6

=

720� 9, Q

2

8

= 4, Q

2

6

= 720� 4. Some latencies, activation dates, burstinesses, and

periods are already given: act(p

1

; 0) = 0, adv(p

1

) = 0, per(p

4

) = 40ms (25Hz),

adv(p

4

) = 0, `

1

1

= 0 (source process), `

2

3

= 1ms, `

2

7

= 200 ns, `

2

8

= 1�s, c

1;1

1;2

=

c

2;1

2;3

= c

2;1

3;4

= 1�s (communication), c

2;1

5;6

= 100 ns (local bu�er). Clocks must

be such that f

i

� 1=per(p

i

): we choose f

7

= 10MHz and f

8

= 2:5MHz, and we

deduce clocks for p

5

and p

6

from the hierarchical scale factors: f

5

= f

7

�(3=720) =

41:67 kHz, f

6

= f

8

� (4=(4� 720)) = 3:47 kHz.

Output. Compound process latencies: `

2

5

= 24:1 �s, `

2

6

= 288:6 �s and `

2

2

= 34:752ms;

periods: per(p

5

) = 37:04 �s, per(p

6

) = 333:33 �s, per(p

7

) = 154:3 ns, per(p

8

) =

462:96 ns. Burstinesses are large, adv(p

7

) = 154:9, adv(p

8

) = 621:2, adv(p

5

) =

699:2 and adv(p

6

) = 102:8, but this only reports a high variability around the

average period. The clock's e�ect on resource usage is more signi�cant: the par-

allelism degree is maxpll(p

7

) = 2 and maxpll(p

8

) = 3. This demonstrates how

MPPN achieve a precise description of the burst rate within an average peri-

odic scheme. Finally, we get the bandwidth and bu�er results: maxbw(p

1

7

) =

80Mpixel=s, maxbw(p

2

7

) = 30Mpixel=s, maxbw(p

1

8

) = 22:5Mpixel=s, maxbw(p

2

8

) =

10Mpixel=s and maxbuf(p

2

5

p

1

6

) = 15:12 kpixel, which expectedly corresponds to a

single stripe bu�er between the two �lters plus 116:7% overhead, making conser-

vative assumptions on message liveness.

7 Extensions, Conclusion and Future Work

Applicability of the previous model is vastly improved when considering three

simple extensions. First of all, we provide two special kinds of atomic processes

for multiplexing and demultiplexing streams. For example, such processes re�ne

the modeling of a picture-in-picture application, where a rectangle of a larger

frame is replaced by a downscaled frame from another video stream. Activation

of a splitter process sends one message alternatively through each of its output

ports, whereas activation of a selector process receives one message alternatively

from each of its input ports. We proved that a periodic alternation of process

ports preserves the periodic nature of message and activations events.

Moreover, it is quite natural to relax the periodic constraint on input streams,

and only require an average periodicity. This is easily achieved in adding a bursti-

ness parameter to source processes. We proved that conservative reference dates

can be deduced from the \latest" execution scheme associated with the \latest"

valid schedule of source processes (a periodic one).

Eventually, we consider cyclic networks whose semantics di�ers from iteration

modeling in Petri nets: in stream-processing frameworks, cycles model feedback

or data reuse. The latency for a message to traverse a given circuit must be less

than or equal to the average period of the initiating process. In other words, a

cyclic path is legal as long as it has no in
uence on the global throughput; it can

be statically checked through a path constraint (analogue to the scaling rule) and

an additional bootstrap constraint. Dynamic noise reduction is a typical example:

a noise threshold is updated to provide dynamic control over the �ltering stage.

Multi-periodic process networks are an expressive model and a powerful tool

for statically manipulating real-time properties, concurrency, and resource re-

quirements of regular stream-processing applications. Primarily in
uenced by

synchronous extensions to Kahn process networks, they exploit the application's

regularity and hierarchical structure to extend the range of possible analyses and

transformations. Six major properties can be expressed:

abstraction: nested processes allow for di�erent levels of speci�cation, both for

messages (hierarchical nature of data structures) and activation events;

composition: the same property set describes all processes (latency, period...);

nested processes are analyzed only once and reused through MPPN libraries;

synchronization: nesting of processes and hierarchical data-
ow activation

provides an elegant and e�cient tool for modeling synchronization;

jitter: event dates | whether messages or process activations | are bounded

within \earliest" and \latest" deterministic functions;

bursts: deterministic bursts of events can be captured explicitly within periodic

event schemes, using hierarchical layers of periodic characterizations;

sequencing: communication uses First-In First-Out (FIFO) channels, but im-

plicit reordering is allowed when assembling/splitting messages.

A prototype of the veri�er was implemented in Java; it uses XML represen-

tations of MPPN for easy integration into application design environments.

Acknowledgments: We received many contributions from the further members of the

SANDRA team, Christine Eisenbeis, Laurent Pasquier, Valerie Rivierre-Vier, Francois

Thomasset and Qin Zhao. We thank them for their support and in-depth reviews.

References

1. F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and

Linearity. Wiley, 1992.

2. G. Berry, P. Couronn�e, and G. Gonthier. The synchronous approach to reactive

and real-time systems. Proc. IEEE, 79(9):1270{1282, Sept. 1991.

3. B. Berthomieu and M. Diaz. Modelling and Veri�cation of Time-Dependent Sys-

tems Using Time Petri Nets. IEEE Trans. on Software Eng., 17, Mar. 1991.

4. J.-Y. L. Boudec and P. Thiran. Network Calculus. Springer LNCS 2050, Jan. 2002.

5. J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for

simulating and prototyping heterogeneous systems. J. Comp. Simulation, 4, 1992.

6. P. Caspi and M. Pouzet. Synchronous Kahn Networks. In ACM SIGPLAN Int.

Conference on Functional Programming (ICFP), Philadelphia, May 1996. ACM.

7. A. Cohen and D. Genius. Multi-periodic process networks: Technical report.

http://www-rocq.inria.fr/

~

acohen/publications/mppn, 2002.

8. G. Cohen, S. Gaubert, and J.-P. Quadrat. Algebraic system analysis of timed petri

nets. Idempotency, Cambridge University Press, 1997.

9. G. Kahn. The Semantics of a Simple Language for Parallel Programming. In IFIP

74 Congress, Amsterdam, 1974. North-Holland.

10. B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaan: Deriving process networks

from matlab for embedded signal processing architectures. In Proc. 8th workshop

CODES, pages 13{17, NY, May 3{5 2000. ACM.

11. E. A. Lee and J. C. Bier. Architectures for statically scheduled data
ow. J. Parallel

and Distributed Computing, 10(4):333{348, Dec. 1990.

12. H. Leverge, C. Mauras, and P. Quinton. The Alpha language and its use for the

design of systolic arrays. J. of VLSI Signal Processing, 3:173{182, 1991.

13. P. S�enac and M. Diaz. Time Streams Petri Nets, A Model for Timed Multimedia

Informations. In 16th Int. Conf. Appl. and Theory of Petri Nets, Turin, June 1995.

