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Instancewise Array Dependence Test for Recursive Programs

Starting from a generalization of induction variables, we present a dependence test framework for recursive programs. For a restricted class of programs, a statically computable function maps every run-time instance of a program statement to the data-structure elements it accesses. Statement instances and data structure layouts are described through formal language tools. This framework is applied to the automatic detection of data and control parallelism. We extend the concept of instancewise data dependences to recursive programs and we further investigate a dependence test for recursive programs operating on arrays. This test is interpreted as a flow problem in a directed graph with weighted edges; and the problem is shown to be NP-complete. We provide an exponential but efficient algorithm based on integer linear programming and explore simple examples.

Introduction

Our work aims at the compile-time computation of array access locations along any program execution, possibly recursive. We will derive from this computation a method devoted to precise dependence test and aggressive parallelization of recursive programs.

This paper focuses on the case of arrays, but our method and implementation extend to all "monoid-addressable" data structures, e.g., lists, trees, combined arrays and trees, etc. Its basis is the theory of regular languages and finite state transducers. Static properties are evaluated at the level of each run-time statement instance, and expressed by the means of automata and transducers.

Research in the field of automatic parallelization of recursive programs is still at its early stages. Compared to our previous work [START_REF] Feautrier | A parallelization framework for recursive tree programs[END_REF][START_REF] Cohen | Instance-wise reaching definition analysis for recursive programs using context-free transductions[END_REF][START_REF] Cohen | Program Analysis and Transformation: from the Polytope Model to Formal Languages[END_REF], a much more efficient technique is presented, implemented and experimented on several realistic examples. From the latter technique, we present the first instancewise dependence test for a class of recursive programs operating on multi-dimensional arrays. Most related works address the analysis of recursive programs with pointers, but [START_REF] Rugina | Automatic parallelization of divide and conquer algorithms[END_REF][START_REF] Gupta | Automatic parallelization of recursive procedures[END_REF] also deal with pointer arithmetic (and thus, arrays). They rely on more classical data-flow frameworks which blur the distinction between the multiple instances of a statement. Therefore, our instancewise technique yields much less false dependences, at the cost of a more constrained program model.

The Control Domain Model

Our basic principle is that the code operating on array locations is purely functional: variables appearing in array indices do not have any side-effects, i.e., they are fully characterized by the sequence of variable definition statements followed along an execution. Thus, instead of studying the trace of all statements along an execution of the program, we may limit the grain of the analysis to a sub-trace of the "meaningful statements". This model turns out to be more tractable than static analysis frameworks focusing on full execution traces.

As a general rule, static analysis brings only conservative results concerning control flow and variable values. Thus, we will not take conditional tests and loop bounds into account, and consider that both then and else branches can be taken. However, thanks to the instancewise analysis framework, we do not confuse the run-time properties of two exclusive branches. In other words, we avoid the pitfall of classical data-flow analyses which do not preserve the context of static properties.

To implement this framework, we have built up a special language named MOGUL, for MOnoid GUided Language. According to our objective, the MOGUL syntax concentrates on variables that carry the values of array indices, named induction variables (generalized from nested loops), ignoring all other variables. Thus, the principal constraint will concern operations over these induction variables. * and ta[q..der], both being sorted, * into tb with r = current index of tb *) let rec merge_ab p q r = if p < q && q <= der then begin let elp = !(List.nth !ta p) and elq = !(List.nth !ta q) in if elp < elq then begin List.nth !tb r := elp; merge_ab (p+1) q (r+1) end else begin

List.nth !tb r := elq; merge_ab p (q+1) (r+1) end end else begin if p < q then copya r p (q-1) else copya r q der end;; let rec merge_ba p q r = ...;; let rec sort_ab p q r = if p < r then begin if q <= (p+r)/2 (* dichotomy *) then sort_ab p (q+1) r else begin sort_ba p p (q-1); sort_ba q q r; merge_ab p q p end end and sort_ba p q r = ...;; copya 0 0 der; sort_ab 0 0 der;; Figure 2 shows the Pascaline example, a program to evaluate the binomial coefficients (a line of Pascal's triangle). It exhibits both a loop statement and a recursive call.
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Interprocedural Control Flow Graph

We represent the execution of recursive programs with control flow graphs enriched with a stack. Its role is to track the succession of procedure calls and returns. 
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Control Words

The basic principle is as following: a partial or complete execution trace is structured as a nest of "blocks", each terminal or compound statement being such a block. Executing any statement (even a terminal one) will be interpreted as calling a function with dynamic stack allocation followed by deallocation when completed. In the special case of loops, each iteration is nested in the previous one and all are closed back at the loop completion.

Following this principle, we will consider the extended stack which carries the sequence of all labels representative of those statements that have been "opened" since the beginning of execution and not "closed" yet. The word stored in the extended stack is called control word. Combining this extended stack with the interprocedural control flow graph yields a pushdown automaton accepting the trace language. The stack language of a pushdown automaton is a rational language [START_REF]Handbook of Formal Languages[END_REF], hence the control words language is rational.
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Figure 5. Control Automaton of To & fro

The control automaton is derived from the control flow graph: in the latter, a sequence of successive statements takes form as successive edges, while in the control automaton each of these statements is linked by an edge from the common enclosing statement, see Figure 5. All states are final. Since return nodes are useful only for execution traces but out of interest for dependence analysis, we will simply ignore them. Note that control automaton makes no distinction between the sequence (;) and the conditional.

Instances

Among all possible executions of the program (according to input data and test results), it is easy to see that a given control word may be the abstraction of many trace prefixes, possibly an infinite number. As an example, considera trace prefix containing the trace of a conditional statement completed during the instance it represents, the control word has "forgotten" which branch has been executed. In this context, an instance is the equivalence class of all partial executions (trace prefixes) that generate the same control word.

Nevertheless, if we limit our instance domain to a particular execution of the program, it's easy to prove that no more that one trace prefix can be associated with a given control word. In that sense, a control word is representative of a unique instance during an execution.

Induction Variables and Binding Functions

Traditionally, addresses in a mono-dimensional array can be expressed via an integer index, and in a multidimensional one via a vector of integer indices. We limit ourselves to arrays indexed through affine expressions of some specific variables, from now onwards referred as induction variables.

Definition and Office

For each induction variable, a binding function maps each instance, i.e., each control word, to each value of this induction variable. Of course, the result makes sense only if the induction variable is syntactically alive at this instance. In To & fro, induction variables are the formal parameters of all functions. In Pascaline, the loop index is also an induction variable. As mentioned earlier, MOGUL syntax only allows definition of induction variables at the beginning of a block.

Since the control word loses the trail of any operation executed during a completed statement, the exigency of exactness in references computation dictates that a statement execution has no side effects upon induction variables defined outside of that statement. The environment is thus characterized by the extended stack, and induction variables are managed in single-assignment, quite similarly to a pure functional language.

Another constraint concerns the type of operations over the induction variables. Indeed, a modification of one induction variable has to be modeled as a transition in a transducer. • Given two induction variables i and j (possibly identical), we may define i with the value of j plus an increment:

Operations Over the Induction Variables

i 2 = j 1 + k.
Of course, depending on the statement, several induction variables may be defined simultaneously according to these rules. For our both running examples, it's immediate that the required exigencies are satisfied.

Binding Transducer

The representation of binding functions is called the product transducer. The latter is built as follows: except for the initial state, we duplicate the control automaton so that each induction variable is assigned its own copy of each control automaton state. Each state is a "meeting point" for the values of a given induction variable, for any control word at this program point. In addition, each statement label is paired with its induction variable definitions, in order to map control words to the value of every induction variable. Indeed, each transition is labeled with a pair of a statement label and a constant, we call such pairs bilabels, see Figure 6. If the induction variable q inherits its value from p at the entrance of statement s, as q = p + k, then the product transducerhas an edge from the node dedicated to p before s to the one dedicated to q after s.

The case of constant assignment x = k is specific: we consider an additional induction variable named z whose value is always 0. When x is defined to k at the opening of statement s, the node dedicated to induction variable x after s is the arrival state of an edge coming from the node dedicated to z just before execution of s, with the bilabel (s|k).

We may suppress from the tranducer any subgraph referring to an induction variable that is not alive at the corresponding program points, or -in the case of z -not useful for computation. Remaining nodes are final.

Figure 6 presents the product transducer for Pascaline, much simplerthan To & fro's one. Notice the loop iteration (g) is described by a loop edge. Moreover, the case of the initialization of induction variable I at loop entry G is interesting: it is captured by a "transversal" edge from a state associated with the additional induction variable z to a state associated with I. 
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Figure 6. Product Transducer of Pascaline

Building the product transducer is linear in the number of statements and also linear in the number of induction variables. Surprisingly, the previously available algorithm was exponential in the worst case [START_REF] Cohen | Program Analysis and Transformation: from the Polytope Model to Formal Languages[END_REF]: it relied on Gaussian elimination on the non-commutative semi-ring of regular expressions.

Instancewise Dependence Test

Let us now apply the instancewise information captured by the binding transducer to dependence test and parallelization. In this part, the analysis must be applied separately to each array, but we will omit the array name to simplify notations.

Exploitation of the Binding Information

We focus on two forms of automatic parallelization:

• scheduling of instructions and procedure calls within a program block;

• discovery of procedure calls that may safely be made asynchronous, enabling parallel execution of the callee with the following code in the caller.

Recursive programming blurs the distinction between data and control parallelism, since any data-parallel loop may be rewritten as a procedure with asynchronous recursive calls -with a low sequential overhead. These two forms of parallelization are based on a restricted type of block-related dependence information, the synthetic dependence graph [START_REF] Feautrier | A parallelization framework for recursive tree programs[END_REF]: considering an instruction s preceding an instruction s ′ in the same program block,1 there is a synthetic dependence from s to s ′ if and only if two instances spawned by s and s ′ access the same memory location. If s and s ′ are not synthetically dependent, they may be safely reordered or executed asynchronously within the enclosing block.2 Formally, the synthetic dependence relation, denoted by ∆ is, where Σ * is the control words free monoid:

s∆s ′ ⇐⇒ ∃u, v, v ′ ∈ Σ * : B(usv) = B(us ′ v ′ ). (1)
The set of instances spawned by statement s will be called the cone from summit s. The partial order between instances s and s ′ defined in (1) is the cone-to-cone order ≪ s,s ′ . An example will be presented in Section 5. The dependence transduction δ s,s ′ = κ ∩ ≪ s,s ′ extracts from κ cone-to-cone ordered couples of control words, i.e., it describes the instancewise dependence relation between control words according to the binding function B and the cone-to-cone order ≪ s,s ′ . Dependence transductions and synthetic dependences are linked through the following result:

The Dual Dependence Test Transducer

δ s,s ′ = ∅ ⇐⇒ s∆s ′ . ( 2 
) τ * s,s ′ Word Address B τ s,s ′ B ≪ s,s ′ Word Control Control Word

Figure 7. Dual Dependence Test Transducer

To decide emptiness of δ s,s ′ is equivalent to test whether the dependence test transduction τ s,s ′ = κ• ≪ s,s ′ is disjoint from the identity transduction =. Like κ, τ s,s ′ is not a rational transduction. Therefore, this way of describing dependences does not lead to a computable method. Let us define the dual dependence test transduction τ * s,s ′ = B• ≪ s,s ′ •B -1 ; τ * s,s ′ is rational since the intermediate language during both compositions is the control words free monoid Σ * . Figure 7 shows that the former δ s,s ′ emptiness problem of boils down to the disjointness of τ * s,s ′ and the identity transduction =.

Building the dual dependence test transducer involves two compositions with transducers of the same order of magnitude in states and edges number, i.e., in the total numberof statements. Its complexity is thus cubic in the number of statements. This sometimes leads to huge intermediate transducers with more than 10000 states and edges. Fortunately, these transducers are very redundant and a minimization procedure (including determinization) succeeds in achieving a simplification by a factor of 100 or more, leading to less than 10 states and edges in many cases. Improving the composition algorithm in order to limit the size of intermediate structures is a very promising topic, but the small size of the result is already sufficient to apply a somewhat more complex dependence test, as we will see in the next section.

Algorithm for Existence Test

Considering a d-dimensional array, we have just shown that dependence between two statements s and s ′ is equivalent to the existence of a d-dimensional vector v such that vτ * s,s ′ v (without taking loop bounds and conditionals into account).

From a transducer implementing τ * s,s ′ , let us build a directed graph G s,s ′ whose vertices and edges are the states and the transitions of the transducer, respectively, labeling each edge with the difference between the transition's output and input vectors. E.g., a transition labeled -1|2 yields an edge labeled 3. Initial and final states in the transducer are called initial and final vertices in G s,s ′ .

Dependence between s and s ′ is now equivalent to the following decision problem: "is there a zero-weight path between the initial and final vertices in G s,s ′ ?" Decidability. Let us examine first the case of arrays of dimension 1. From G s,s ′ , we may build a push-down automaton with empty alphabet and one stack symbol (one-counter automaton) where 0 in the counter is realized by the empty stack. Testing whether the language recognized by a pushdown automaton is empty is a well-known decidable problem.

Concerning multi-dimensional arrays, note that computations over dimensions are independent from each other.

So, its suffices to test emptiness of the intersection of each dimension languages.

A Flow Algorithm. This zero-weight path problemthough quite natural and similar to the flow problemcould not be found in the literature. It has been proved NPcomplete, even in the acyclic case, through a simple reduction from the bipartition problem. Nevertheless, this problem is known to admit a rather efficient pseudo-polynomial solution, i.e., there is a polynomial algorithm when the integers involved are small. This is the case in practical graphs G s,s ′ , since the labels are of the same orderas the induction variable strides in the source program. We are thus encouraged in the search of an exact solution to the dependence problem.

Our proposed solution is not pseudo-polynomial yet, but seems very applicable to practical graphs. It relies on a two-step encoding into integerlinearprogramming. The example in Figure 8 illustrates the formal presentation. Each edge e in G s,s ′ = (V, E) is associated with a variable k e . We assume, without loss of generality, that G s,s ′ has only one initial (resp. final) vertex with no incoming (resp. outgoing) edges (this condition is easily achieved with two additional vertices and zero-labeled edges).

First of all, suppose that G s,s ′ is acyclic. Calling O the set of outgoing edges of the initial vertex and I the set of incoming edges of the final vertex, add constraints e∈O k e = 1 and 

e∈I k e = 1. (3) 
By construction, there is a dependence between s and s ′ if and only if the system of affine equalities S s,s ′ = (3, 4, 5) has a solution. We have just converted our flow problem into another, well known, NP-complete problem. Fortunately, system [START_REF] Cohen | Program Analysis and Transformation: from the Polytope Model to Formal Languages[END_REF][START_REF] Cohen | Instance-wise reaching definition analysis for recursive programs using context-free transductions[END_REF] is easy to solve using Gaussian elimination, since every minor of the constraint matrix is either singular or unimodular. Thus, the full system S s,s ′ can efficiently be addressed using integerlinearprogramming techniques: traditional pivoting of the simplex method [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF] applies to the unimodular part of the matrix, possibly with additional Gomory cuts [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF] to handle the remaining constraints associated with (5). Now consider the case of a cyclic graph G s,s ′ . The path constraint is not anymore enforced by [START_REF] Cohen | Program Analysis and Transformation: from the Polytope Model to Formal Languages[END_REF][START_REF] Cohen | Instance-wise reaching definition analysis for recursive programs using context-free transductions[END_REF]: there may exist an isolated circuit disconnected from the main path between the initial and final vertices. Indeed, a circuit may only exist in a path if it is reachable from the initial vertex. In other words, performing a topological sort of G s,s ′ , a backward edge targeting vertex v may be taken only if a forward edge targeting v is also taken. If we denote F v and B v the sets of forward and backward edges of v, respectively, this fact leads to a disjunction of affine constraints as follows:

e∈Bv

k e = 0 ∨ e∈Fv k e ≥ 1.
In the worst case, each vertex v (targeted with backward edges) generates two additional constraints and, leading to an exponential number of systems. Feasibility of at least one of these systems is sufficient to show that s and s ′ are dependent. But an arbitrary association of such constraints yields no solution in general, because circuits are often sequenced on a single path or nested together in G s,s ′ ; e.g., a loop nest always leads to a linear number of systems.

Implementation and further study of the algorithm complexity are left for future work, but current results show that practical solutions to our dependence test problem do exist. S 1 has no solution but S 2 has an infinite number of solutions, the shortest (in terms of the associated path) being 

k 9 = 0, k 1 = k 2 = k 4 = k 5 = k 6 = k 7 = k 8 = 1 and k 3 = 3. -2 k5 2 k3 k6 0 k2 -2 k4 0 0 k9 k1 -1 -1 k7 0 k8 G s,s ′ S1 =                        k1 = 1 k8 + k9 = 1 k1 + k6 = k2 + k7 k2 = k4 k4 = k5 k5 = k6 + k9 k7 = k8 k3 = 0 -k1 -2k2 + 2k3 -2k5 -k7 = 0 S2 =                        k1 = 1 k8 + k9 = 1 k1 + k6 = k2 + k7 k2 = k4 k4 = k5 k5 = k6 + k9 k7 = k8 k2 ≥ 1 -k1 -2k2 + 2k3 -2k5 -k7 = 0

Implementation and Experiments

We realized in OCaml a complete implementation of the procedure that takes a MOGUL program source in input and returns the dual dependence test transducer according to the choice of data structure and cone summits.

In order to easily pass from any automaton or transducer to anotherone of eithertype, we have implemented a library of generic tools, parameterized by the types of state labels and transition labels. Graphs of automata and transducers are designed through the dot software [START_REF] Koutsofios | Drawing graph with dot[END_REF]. Thanks to several steps of minimization, trimming and ad-hoc reduction, the dual dependence test transducergraph appeared very simple for the programs we tested, and answer to the dependence test might be found directly while examining it.

Experiments with the To & fro Program. Function

Sort ab is recalled in Figure 10.

Applying the dependence test algorithm on the dual dependence test transducers τ * C,E and τ * D,E yields two synthetic dependences, as expected intuitively. Figure 9 is the result of our implementation for τ * C,E . Since all states, including the initial one, are final, dependence test answer is obviously "yes". Figure 11 shows the "corrected" synthetic dependence graph of function Sort ab. Using the spawn/sync asynchronous function call from the Cilk parallelization tool [START_REF] Frigo | The implementation of the cilk-5 multithreaded language[END_REF], one may automatically deduce the parallel program in Figure 12.

Beyond the To & fro program. Figure 13 shows some facts about the recursive programs we implemented in MOGUL. Since our last publication in the field [START_REF] Cohen | Program Analysis and Transformation: from the Polytope Model to Formal Languages[END_REF], we discovered many recursive algorithms suitable for implementation in MOGUL and instancewise dependence analysis. Therefore, it seems that the program model encompasses many implementations of practical algorithms despite its severe constraints.

Conclusion and Perspectives

We introduced by examples a language dedicated to a class of recursive programs. This enabled us to extract from them the instancewise mapping between run-time instances and array elements. This analysis is exploited for an instancewise dependence test that can handle multidimensional arrays. This problem was previously consid- However, much work is underway to make this technique practical. First of all, we are aware that many useful algorithms are not compatible with the induction variable constraints. In addition, recall that conditional expressions and loop bounds have not been taken into account, leading to several examples with false dependences. Generalization and/or graceful degradations of the framework should thus be developed. We are currently investigating both ap-proaches.

  let der = ... (* arrays'length -1 *) let ta = ref ... let tb = ref ...;; (* copy ta from x to r into tb at y *) let rec copya y x r = if x <= r then begin List.nth !tb y := !(List.nth !ta x); copya (y+1) (x+1) r end;; let rec copyb y x r = ...;; (* merge the sub-arrays ta[p..q-1]
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 7 Figure 7 supports the following presentation. The conflict transduction κ = B -1 • B maps each instance to each of the instances which potentially access the same references. Because the intermediate monoid is Z n , κ is not a rational transduction. Instead, we stick to transduction compositions where the intermediate monoid is free: the Elgot and Mezei theorem [6, 1] shows that such a composition yields a rational transduction, and provides a quadratic algorithm to build the resulting transducer.The dependence transduction δ s,s ′ = κ ∩ ≪ s,s ′ extracts from κ cone-to-cone ordered couples of control words, i.e., it describes the instancewise dependence relation between control words according to the binding function B and the cone-to-cone order ≪ s,s ′ . Dependence transductions and synthetic dependences are linked through the following result:

Then, calling O v and I v , respectively, the sets of outgoing and incoming edges of any non-initial and non-final vertex v, add constraint e∈Ov k e = e∈Iv k e . ( 4 )

 4 The two previous constraints are analogous to the Kirchhoff law in electrical engineering. It is easy to show that any solution (k e ) e∈E satisfying these constraints describes a path between the initial and the final vertices: each edge e has k e occurrences in this path (0 or 1 because the graph is acyclic). Finally, calling (w i e ) 1≤i≤d the d-dimensional integer vector labeling edge e, add d constraints to enforce the zero-weight property.∀i, 1 ≤ i ≤ d : e∈E w i e k e = 0.
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 9 Figure 9. Test Transducer for τ * C,E .However, considering the dual dependence test transducer τ * C,D , the algorithm should not be able to find a zero-
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 12 Figure 12. Parallel version of Sort ab

By definition, s and s ′ cannot label exclusive branches of a conditional.

2 A block closing implicitly corresponds to a synchronization, waiting for completion of every statement in the block.
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