N

N

DiST: A Simple, Reliable and Scalable Method to
Significantly Reduce Processor Architecture Simulation
Time
Sylvain Girbal, Gilles Mouchard, Albert Cohen, Olivier Temam

» To cite this version:

Sylvain Girbal, Gilles Mouchard, Albert Cohen, Olivier Temam. DiST: A Simple, Reliable and Scalable
Method to Significantly Reduce Processor Architecture Simulation Time. International Conference on
Measurement and Modeling of Computer Systems, ACM SIGMETRICS, 2003, San Diego, California,
United States. hal-01257307

HAL Id: hal-01257307
https://hal.science/hal-01257307v1
Submitted on 20 Jan 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01257307v1
https://hal.archives-ouvertes.fr

DiST: A Simple, Reliable and Scalable Method to
Significantly Reduce Processor Architecture Simulation
Time

Gilles Mouchard
LRI, Paris South
University and CEA
France

Sylvain Girbal
LRI, Paris South
University and CEA
France

ABSTRACT

While architecture simulation is often treated as a methamiois-
sue, it is at the core of most processor architecture reSeeocks,
and simulation speed is often the bottleneck of the typidal-t
and-error research process. To speedup simulation dunisge-
search process and get trends faster, researchers usdillgerthe
trace size. More sophisticated techniques like trace samulr
distributed simulation are scarcely used because theyarsid:
ered unreliable and complex due to their impact on accurady a
the associated warm-up issues.

In this article, we present DiST, a practical distributechgia-
tion scheme where, unlike in other simulation techniquastitade
accuracy for speed, the user is relieved from most accussnes
thanks to an automatic and dynamic mechanism for adjustiag t
warm-up interval size. Moreover, the mechanism is desiged
as to always privilege accuracy over speedup. The speedlgssc
with the amount of available computing resources, bringingv-

erage 7.35 speedup on 10 machines with an average IPC error o

1.81% and a maximum IPC error of 5.06%.

Besides proposing a solution to the warm-up issues in diget
simulation, we experimentally show that our technique igii-
cantly more accurate than trace size reduction or trace lgagrfpr
identical speedups. We also show that not only the erroryedwie:
mains small for IPC and other metrics, but that a researcrere-
liably base research decisions on DiST simulation res#itsally,
we explain how the DiST tool is designed to be easily pluggabl
into existing architecture simulators with very few modifions.

Categories and Subject Descriptors

C.1.1 [Processor Architecturd: Single Data Stream Architectures—
RISC/CISC, VLIW architecture€.4 [Performance of Systemp
Measurement techniques

General Terms
Design,Measurement,Performance

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

SIGMETRICS’03June 10-14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006$5.00.

Albert Cohen
INRIA Rocquencourt
France

Olivier Temam
LRI, Paris South
University
France

Keywords

Distributed simulation, Processor architecture

1. INTRODUCTION

Within architecture research works and articles, simatatand
methodology in general) is often treated as a minor issug dan
voting a research article to this topic is rather atypicabweéver,
in the last editions of four major conferences in computehaec-
ture (MICRO, ISCA, ASPLOS and HPCA), cycle-precise simula-
tors are used in 72 out of 103 articles, i.e., 70% of artickasula-
tionis a critical tool at the core of our research works. All proaess
architects have experienced in their research studie st they
are able to simulate in a restricted period of time often hetees
the extent, precision and quality of their research workl even in
some cases, the number of solutions and ideas that they ahnr ev
ate.
¢ Therefore, simulation and the ability to speed up simutatice
not just methodology issues, they directly affect the reepart
of architecture studies, and thus deserve more attention.

In many cases, exploring a new idea is a trial-and-errorgssc
one implements a variation of an idea, tests it, updatesitne -
tor, tests it again, and so on. In practice, whenever a vanatf
an idea looks interesting, processor architects want téircotheir
observations by simulating and validating it on a large nerrdf
benchmarks, e.g., part or all of the Spec benchmarks, fongera
of architectural parameters. In that case, having lots ofpaing
resources is useful because simulations can be run in glaoatr
a large number of machines. However, between these comezge
steps, the research process often consists in analyzingisvhap-
pening in a few or even a single benchmark, leading to a faség
sequence of modify-run simulation cycles. Because thisqiahe
research process can be the most time-consuming, reseaerie
often willing to temporarily trade some accuracy for spepah-
viding research decisions are not significantly alteredhgylbss
of accuracy. As a result, researchers often cut down on saes
to get trends faster, and later on, run longer traces on memets

marks and more parameters when the research process seems to

converge again. However, because of increasingly largestaic-
tures such as large L2 caches, trace size reduction can leetoom
unreliable and thus an unsatisfactory alternative, as tee how
in this study.

Because of the increasing processor complexity, processsor
lation is now also used for program tuning [4, 18, 23] wherausi
lation time is even more critical. Simulators provide a vdefailed
understanding of program behavior on complex processhita:
tures, but in that case, the optimization process is usiatirely

sequential: a single program is tuned on a single architectu

Finally, as processor complexity and application sizednse,
simulation time increases as well. Forinstance, simulgiBpec95
benchmark running on a 5-stage pipeline MIPS R2000 processo
requires 7 hours in average on a Pentium 4 1.6GHz, while sitmul
ing a Spec2000 benchmark running on a 4-way out-of-ordegrsup
scalar processor (using the SimAlpha simulator [7]) reepi856
hours in average on the same machine.

The most frustrating aspect of processor simulators isttiit
complexity and sequential nature does not lend well to fedizd-
tion. As a result, whenever running one or a few simulatitmas;-
ing lots of computing resources does not enable to cut domn-si
lation time.

Several studies have demonstrated that sampling methaods ca
bring significant speedups without loosing much accurady 17,

16]. However, they do not propose a simple and comprehensive
method to control the associated accuracy issues; indeedgctu-
racy decreases relatively quickly with the speedup sinegthnci-

ple is again to reduce the trace size in order to decreasdatiomn
time. Conte et al. [5] has analyzed in details the effect ekte
ting processor state in sampling techniques, but the metiasd

tion accuracy that can impair research decisions. We exygeri
tally show that, for none of the SpecInt2000 and SpecFp20@0,
IPC error is greater than 5.29% when we applied our technique
to SimAlpha [7], a validated Compaq Alpha EV6 processor ver-
sion of the SimpleScalar [3] simulator which is widely used i
the processor architecture community. DiST achieves aragee
speedup of 7.35 with 10 machines. Moreover, we experimigntal
show that typical research architecture decisions — ttagivel per-
formance comparison of two simulated hardware configunatie-
were never affected by the slight loss of accuracy, provitiecb-
served metric variation is not smaller than the error. Fbsltis-
tics, we havealwaysobserved that either the relative error is small
or the number of events is negligible. Finally, the DIST tbak
been specifically designed for easy plugging into existinguia-
tors with minimal modifications: in order to plug the toolanbim-
pleScalar and SimAlpha, we only had to modify 10 source lines
each simulator.

Section 2 introduces the principles of the distributed dation
technique, Section 3 describes the DiST implementatiocti@ed
outlines the experimental methodology, Section 5 presgasdups
and analyzes accuracy issues, and Section 6 outlines Htatiifa-

not gained a wide acceptance in the community because of whatulation enables new applications like program optimizatio

is often seen as an excessively complex overhead for a method
ology issue. Several studies [20, 21, 11, 2, 10, 8] have m@gpo
identifying representative program regions for simulatibut in
practice, an exhaustive search of architecture reseatithearin
the major conferences shows that few research groups ieéfct
use such techniques yet, again because of their complééy,
restricted scope or the lack of widely distributed toolsill Sthe
Basic Block Vectorf21] approach is promising because it is com-
pletely hardware-independent; however, while it is quiteurate
for global metrics such as IPC, it is less accurate for largenory
components like L2 caches because it is based on relativedyl s
trace sizes, and more important the mechanism is not dekigne
adjust the trace size to the memory components size; firtaly,
technique is data-set sensitive, and the analysis musbérsbn-
ducted for each program/data set pair.

Nguyen et al. [15] proposed another approach for speeding up
simulation: to split the whole trace inty separate chunks that
are distributed oveN machines. As a result of splitting, simu-
lation accuracy decreases because the processor statgliistlgn
reset at the beginning of each chunk as with sampling tedesiq
Consequently, each chunk needs to perform a simulation wgrm
to refresh the processor state (especially the memorytetes),
but the minimum warm-up interval size varies strongly witicle
chunk, benchmark and simulator combination. To compute the
warm-up interval size, Nguyen et al. [15] propose a heuristiich
requires to know in advance the L1 miss ratio of each program.
Haskins et al. [9] propose a more sophisticated probaisilisth-
nigue to determine the warm-up interval size, but they agaied
to run cache simulations first for each benchmark, and tloenpu-
tations are excessively time-consuming for set-assoeia@ches.
Thus, in most cases, these heuristics are impractical.

In this article, we present the Distributed Simulation T@ilST),

a practical distributed simulation technique that autdcadly ad-
justs the warm-up interval size to satisfy user-definedremesh-
olds, relieving the user from most of the accuracy issues.aAs
consequence, DIST can strongly reduce simulation timeeatdist
of slightly reducing simulation accuracy while still remaig very
easy to use. The technique focuses on limiting the assdcate
curacy issues, and it is designed to always privilege acguraer
speedup. While a researcher is always willing to speeduplaim
tions, one is not ready to accept anpredictableloss of simula-

2. PRINCIPLES

Sequential | 1|2 [3]4]5]6[7]8]09[10[11]12[13]14]15]
chunk1|1]2[3]4]5]6]7] |[|subchunk
Overlap Subchunk
Chunk 2 ///////46‘7‘8‘9‘10‘11‘ % verlap Subchun|
Warm-Up Subchunk
Chunk 3 ///////////////////HW s Emulation
Simulation Time

Figure 1: Chunks and subchunks schedule.

With DiST, simulation speedups derive from splitting thesit
lation process into a set & chunks and distributing them over the
same number of machines. Implementing simulation spdjtéind
distribution is rather straightforward, except for the a@xy issue.

Cycle-level simulation models are not 100% accurate: they a
most all include some approximations, e.g., imprecise rifgsm
of the memory system, missing or too many internal data paths
pact of the operating system not considered, etc. Thereferaall
additional source of inaccuracy may be acceptable. To leectisd
in practice, it must fulfill two constraints: the user mustéaonfi-
dence that the additional error is small, and moreover, gtrhave
as little impact as possible on her/his research decisibhs.goal
of our technique is to meet these accuracy constraints witli m
mal user overhead. And we experimentally show in the next sec
tion that both of these conditions are satisfied with DiSTe Tain
challenge is to automatically control the level of accuraog to
privilege accuracy over speedup by trading speedup forracgu
whenever necessary.

The principles of distributed simulation are the followings-
sume one wants to run a simulation dfinstructions with 3 ma-
chines: then, each machine will simulé}’einstructions. The first
% instructions are simulated on the first machine, the sec—zénd

instructions on the second machine and so on, see Figurech Ea
machine runs the program from the beginning but starts sitimg
only at the first instruction of the specified chunk, thus,heama-
chine mustemulate(functional simulation only) the program until
it has reached this point. So, the first machine performs ne em
ulation, the second machine emulates the f@@smstructions and
the second machine emulates the fﬁ%ﬁ instructions. Consider-
ing the speed gap between emulation and simulation, a tygica
tributed simulation schedule will look like Figure 1. Hovesyat
the end of emulation, before simulation starts, all prooessruc-
tures are empty (caches, branch prediction tables...) esdirst
simulated instructions are likely to exhibit unusual bebess (ex-
cessive cache misses, branch wrong predictions. . .) thathflaw
statistics. For that purpose, the processor state is yswalimed-
up/refreshed by simulating a certain number of instructiasith-
out recording the corresponding metrics; in other words)usa-
tion starts before the chunk first instruction is reachedcaBse
this warm-up interval can have a strong impact on both acgura
and simulation time, the biggest difficulty is to find an agprate
warm-up interval size.

Dynamic warm-up mechanism. In DiST, instead of running
a fixed number of warm-up instructiormfore chunk m, we let
chunkm — 1 perform additional instructionafter it has completed
all its instructions. Therefore the last instructions ofiok m — 1
are the same as the first instructions of chumkDuring thatover-
lap period, we constantly compare the simulation results ohkhu
m — 1 and chunkm until they converge. When they become al-
most identical, we can reasonably assume that the procstder
in chunkm has been properly warmed-up and chunk- 1 stops.
More precisely, to perform these comparisons, we split eacimk
into a set of subchunks of fixed size (typically a few million i
structions, see Section 4). For instance, in Figure 1, ch2nand
3 respectively need 2 and 1 warm-up subchunks; symmeiricall

tribution to an existing simulator, combining the distribd statis-
tics of each chunk without modifying the statistics proaeduof
an existing simulator, specifying the local accuracy caists. At
the end of the section, we also we provide a brief descripifdhe
software environment.

Using existing simulators.Simulator development is a painstak-
ing and time-consuming task because of a long modeling, giebu
ging and validation process. Consequently, DiST is desigte
as to require minimal simulator modifications. To plug DiSitoi
a simulator, we only need to force the simulator to dump stati
tics at periodic intervals instead of at the end of the siithaiia To
plug DiST into SimAlpha [7], we only had to modify 10 source
lines, seehttp://www.microlib.org/DiST for more details. Simi-
larly, DiST was plugged into SimpleScalar [3] and a PowerPC G
Simulator based on SystemC [22].

A simulator is DiST-compatible if it provides a mechanisn fo
fast-forwarding in the simulation: either an emulator orteeck-
pointing mechanism. Though we used emulation for fast-foding
in this study, checkpointing is even more reliable and effitbe-
cause it guarantees that all distributed threads will noséesi-
tive to operating system effects, and besides, it savestination
phase.

Combining distributed statistics. During simulation, DiST col-
lects each subchunk statistics from the simulator; upanitetion
all collected local statistics must be combined to obtamdtatis-
tics of the full run. Depending on statistics, the task canriveal
or require some overhead. For instance, cumulative Statibke
the number of misses need only be summed up to get the full run
statistics. But ratios must be recomputed, i.e., if chunkutngs
the ratio 41 and chunk 2 dumps;2, the ratio for the full run is
2143, not 51 + 42. For that purpose, the tool implements a
simple scripting language to define statistics. We only m&sthat,
upon completion, a simulator dumps a text file which contailhs

chunks 1 and 2 perform 2 and 1 overlap subchunks. During the statistics, and that statistics are listed one per line.Fsgare 2 for

overlap period, the chunks andm — 1 dump the simulation statis-
tics of all the subchunks, and an offline process gathers aitee d
and compares the statistics of the subchunks corresponalitige
same instructions. The user can specify, through a simpietisg
language described in Section 3, which statistics are usethé
comparison and what is the convergence threshold. Typidall
many of the simulations of this study, the convergence isthan
the IPC metric with a 98% convergence threshold, i.e., ti& P
the subchunks from chunks andm — 1 cannot differ by more
than 2%. Whenever a subchunk meets this criterion, the wgrm-
stops. Then, all the statistics of “inaccurate” warm-upculnks

of chunkm, i.e., the subchunks simulated before the convergence

occurred, are discarded and replaced in chunlty the statistics of
overhead (overlap) subchunks of chunk- 1. Note that, assuming
all chunks run at a similar speed, the overhead subchunles fav
impact on the distributed simulation time, because thedaghk
has no such overhead subchunks, see Figure 1. Finally, @moth
asset of the technique is that simulation accuracy is intiyligriv-
iledged over simulation speedup: in the worst case wheraiakch
m — 1 never converges with chunk or any later chunk, chunk
m — 1 will run sequentially for the remainder of the simulation.

Overall, the main asset of dynamic warm-up over previouticsta
warm-up techniques is not speed but accuracy: using dynaario-
up, it is possible to distribute simulation and ensure ageable
level of accuracy with minimal user input.

3. IMPLEMENTATION

Using distributed simulation raises several implemeatais-
sues: fine-tuning the dynamic warm-up mechanism, applyisg d

the data L1 cache statistics in the SimAlpha output (unmediifi

DL1.hits 1471654945

25916780 # total number of misses

total number of (all) hits
DL1.misses
total number of accesses

DL1.accesses 1497571725.0000

DL1.miss_rate 0.0173 # miss rate (i.e., misses/ref)

Figure 2: An example of simulator output (SimAlpha).

In the tool,DL1.hits , for instance, is directly used as a vari-
able name to characterize the statistic, so the only additicon-
straint on the statistics file is to have unique names for etatis-
tic. The statistics file lists variables which are eitheldaled by
a comment (in which case they are cumulated), or#ydnd any
mathematical expression followed by a comment.

DL1.hits : "total number of (all) hits"
DL1.misses : "total number of misses"
DL1.accesses = DL1.hits + DL1.misses : "total number of accesses"

DL1.miss_rate = DL1.misses / DL1.accesses : "miss rate (i.e., misses/ref)

Figure 3: An example script for combining statistics.

For instance, the fourth line in Figure 3 specifies that the
DL1.miss _rate full run statistic is equal to the ratio of the full
runDL1.misses statistic over the full ruL1.accesses statis-

tic, which is itself defined in the above line as the sum of twib f
run statistics.

Therefore to get full run statistics, the user needs onlythet
output file and write the appropriate expressions for somthef
statistics. At run-time, the tool will parse the simulatocél out-
puts and match them with these expressions. Consequéiglgot
necessary to modify the statistics procedures and the tfikpof
a simulator to plug DiST, except if several statistics hdaesame
name.

Implementing local constraints. We use the same scripting lan-
guage and statistic parsing mechanism to implement locakracy
constraints. For instance, if we want to impose a 1% localsay
constraint on Data L1 cache miss rate, we will insert the bhe
Figure 4 into the local constraints file.

abs(~DL1.miss_rate — DL1.miss_rate) / DL1.miss_rate < 0.01

Figure 4: An example of local accuracy constraint.

~DL1.miss _rate denotes the statistic of the new chunk, e.g.,
chunk,,, which is compared with the statistic of the terminating
chunk, i.e.,chunk,_;. The comparison is repeated on each sub-
chunk until the condition is fulfilled, as explained in Sect2. The
different constraints are listed in the local constraints ee Fig-
ure 4, and the tool performs a logical AND on all these corstsa

Host list Master
Constraints Thread On the local
Statistics / < host
Client Client
Thread Thread
socket socket
Configuratioi Configuratioi
HStatistlcs Statistics
I — | I — |
socket socket
Client Client
On remo
stderr hosts
Simulator Simulator

Figure 5: The DiST architecture.

DiST. DiST itself uses a client/server architecture, see Figure 5

Note that distributing several chunks of the same benchmark
trace over different machines raises file sharing issuesy (tirite
in the same benchmark output files) which are resolved throug
copying by the server.

Also, note that since each client only sends one messagelper s
chunk, the network traffic is very low and does not induce any
contention, even with a large number of machines (severa)te
For instance, with SimpleScalar, 16-million instructicubchunks
for a 4-billion trace only induce a few hundred 100-byte nages.
Consequently, DiST is compatible with slow networks.

DiST versus workload management systemsMany environ-
ments, like Condor [13], propose to exploit multiple comipgtre-
sources by distributing jobs across several machines.rstance,
Condor schedules, pauses, and migrates queued jobs toizgptim
CPU utilization. However, Condor is not designed to manatgri
process communications, especially for the cooperatits fuf a
client/server application like DiST. Still, we might augmeDiST
with Condor, and use the Condor library to distribute ourcsipe
jobs more efficiently across the available computing recsesir

SUBCHUNK SIZE
16 000 000

: 164._gzip
FAST FORWARD
4 000 000 000

INSTRUCTIONS
4 000 000 000

abs ((~sim_IPC - sim_IPC)}) sim_IPC) <= 0.020000)

:Egabs((ﬂ-DLl.miss_rate - DL1l.miss_rate)})) / DLl.miss_rate) <= 0.050000)
{{{abs{{~L2_miss_rate - L2.miss_rate}}} / L2.miss _rate) <=_0.100000})
oS T DONE WARM _SIZE PROGRESS 0h20m23s
SERITEONN 4% 0 25 [334.6 kifs 0h27ml9s
siml7:1 60% o 25 1337.1 kifs 0h27m49s
siml: 0 56% o 25 [332.8 ki/s 0h28md7s
siml8:1 52% o 25 (334.9 ki/s 0h29m24s
siml9:0 43% [25 [334.5 ki/s 0h30m10s
siml9:1 44% [25 [335.2 kifs 0h30md9s
£im20:0 40% [25 [322.6 kifs 0h32m20s
£im20:1 36% [25 [333.3 kifs 0h32m25s
sim21:0 32% [25 [332.5 kifs 0h33m15s
sim21:1 28% [25 [332.3 kifs 0h34m03s
TOTAL 46% o 250 IGESNHIYS 0h34m03s

TLEGEND

Fast forwarding Remaining simulation

AZ Simulation started Simulated

Simulation finished Simulation Warm-up

B2 validated simulation
BZ simulation done

AZ Removed chunk

Figure 6: DIST graphical user interface.

GUI. Finally, DiST comes with a simple text-based graphical
user interface, see Figure 6, which is helpful for monitgraimu-
lation progression, the amount of warm-up for each chunktand
estimate the total simulation time.

4. EXPERIMENTAL FRAMEWORK

Simulation environment. In the next section, we use SimAlpha
and the Spec2000 benchmarks to evaluate distributed diomla

We assume the simulator object code and the benchmarks dataMe chose SimAlpha [7] over SimpleScalar [3] because the sim-

reside on all the machines (hosts). When a simulator isestart
through DiST, it spawns one client to each target host (onmikch
per client) using a remote shell service. Each client cotsnte
the server which determines the chunk size, assigns chueks d
pending on the number of available processors and the moces
speed. The server is multithreaded: one master thread pleis o
thread per client; the client gets its client configuratiquom start-
up and sends back statistics to the server after each sukjctingn
server determines when a client should stop by comparinguée

lap and warm-up subchunks of two consecutive clients; fintie
master thread also combines statistics when all chunks ¢@we
pleted.

ulated architecture is closer to that of a true processayufiei 7
describes SimAlpha baseline configuration), and becaeseatio

of emulator speed over simulator speed is higher than Siagalar

so that the speedup threshold is higher as well, see Sectivfe5
used 4-billion instructions traces for each benchmarkpkig the

first 4 billions. We performed the main experiments (speeaiugp
accuracy) on 22 Spec2000 benchmarks (4 could not be run on our
machines). We ran our experiments on several different mach
sets: we had access to 10 Pentium Il 733 Mhz machines with
128MB, 10 Pentium Il 500 MHz machines with 256MB, and we
had restricted access to 40 Athlon XP1800 with 1GB. Becatise o
these access restrictions, we could run several, but noduailex-

Parameter | Value Chunk Id
Processor core

Fetch width up to 4 instructions per cycle || subchunk
Issue width up to 4 integer ops per cycle Chunk 0 | | | | : | |
plus 2 floating ops per cycle P s S D Overlap

Functional units 4 ALUs + 2 FPUs chunk 1| [N [‘ ‘ | Subchunk
Commit width up to 11 instructions per cycle , P B SR

Branch Prediction cni2| IR T [] B ‘é"uabf;;ﬁi
Predictor 21264 predictor (hybrid) o : Y
BTB 512 entry/4-way associative crunks| I [[]
Return Addr Stack | 32 entries

Simulation Time

Memory HierarChy Total distributed simulation time
L1 Data Cache 32 KB/2-way associative/LRU 1 : l

i .. . Impact of -
L1 Instruction Cache 32 KB/2-way associative/LFU Without overhead overhead

L2 Cache 2 MB/direct mapped/LRU
ITLB 128 entries/fully associative Figure 9: Impact of subchunk size on total distributed simuk-
DTLB 128 entries/fully associative tion time.

Figure 7: Baseline configuration

220y === = e ommsomeeeeeeeeeieioeoo-. ;1200 o

20% TS -mmo-mmm-mmm—ooooo|i cOMSSTAIGSTON — 1100'%

SpecINT2000] SpecFP2000 18% o g i ;22"«
175.vpr 172.mgrid N =
186.crafty | 178.galgel O U /0 o -
197.parser 179.art §10%‘:) S A 600 E
252.eon 187.facerc R R s £
255.vortex 188.ammp S b e K
300.twolf 200.sixtrack P T o 722E g
. L — 100 g

Figure 8: Reference set 0% : : : : 0

4 8 16 32 64 128
Subchunk size (in millions of instructions)

periments on the 40 Athlon. For each figure, we indicate orclvhi Figure 10: Impact of subchunk size on speedup and accuracy:
set of machines the experiments were run. Note that 10 of2he 2 14'pyj1 500.

Spec2000 benchmarks induce excessive swapping durindasimu
tion on the Pentium Il 733 Mhz with 128MB due to limited mem-

ory resources, so that the execution time, and thus the speed 20% —pmmmmemm oo
. . [[190% IPC local constraint
could not be accurately estimated. Consequently, we haiusede 18% —}| I 98% IPC local consiraint
[l 99% IPC local constraint

afull setcorresponding to all 22 benchmarks, angference sevf
12 benchmarks that could run on all machine sets, see Figfoe 8
tunately, the reference set is a balanced mix of Specint apdF$
codes). Because of these machine constraints, and subsiggue
for the sake of the comparisons, some experiments are only pr
vided for the reference set.

DiST parameters. The main parameterization issues of DiST 3
are finding the appropriate subchunk size and defining theecon T b

gence threshold. Intuitively, the larger the subchunk,ntoee rel- " 7r-r-
0%

evant and accurate the comparison between warm-up andapverl
IPC L1 miss rate L2 miss rate Warmup

16% [~ " TTTTTTTTTTTTTTTTo o oooooooooooooooooooooooooooooooooo

14% —f =

12% —f ==

10% —f === -mm s me s

(P8 o besaccaseostoscomaases ceecmoseem

Absolute error
Warm-up subchunks

subchunks. Therefore, the larger the subchunk, the snihbeer-
ror. But with a too large subchunk, the warm-up period and thu
the simulation time of a machine: can increase up to the point
that it affects the overall distributed simulation timee $&égure 9.
Therefore, we need to find a subchunk size value which resatize
reasonable tradeoff between accuracy and speedup. Figuuegt
gests that 16-million instructions subchunks achieve kmtherror
and low warm-up overhead.

We experimentally found that in many cases only constrginin
the IPC metric error was sufficient to achieve reasonablaracy
for most processor components and metrics. Imposing am erro
constraint on another metric is only necessary when thegsarp
of simulation is to study a specific component. Experimefds a
showed that a 98% local accuracy constraint on IPC proved-a re

Figure 11: Choosing a convergence threshold based on IPC.

sonable value for all benchmarks: for instance, at 90% &, las-
curacy significantly decreases and the dynamic warm-up aech
nism is not exploited, while beyond 99%, the warm-up ovetdhea
increases significantly so that speedup decreases, sae Eibu

[|10 hosts
[20 hosts
1L R e e S S S e e e S e S S S S s =

gzip wupwise swim

mgrid applu vpr gce mesa galgel art

crafty facerec ammp lucas fma3d parser sixtrack

eon gap vortex bzip2 twolf AVERAGE MAX

Figure 12: Speedup with 10, 20 and 40 machine$ull set, Athlon XP 1800+

Q> N
N NS
& $

¢ & ©
SRS

Figure 13: Speedup with 10 and 20 machinesgference set, 10
P111 500 and 10 P11 500 + 10 Pl 733.

Definitions. In the paragraph below, we define several metrics.

Global erroron a metric is defined by the following formula:
metricqist — MelriCseq

MEetriCseq
wheremetricseq IS the metric provided by the sequential simula-
tion on a single processor, amdetricq;s: is the combined metric
computed by DiST after all chunks have executed.
Sequential timés the sequential simulation time on a single pro-
Cessor.
Distributed timeis the time interval between the beginning of the
first chunk and the end of the last running chunk, see Figure 9.
Speedups the ratio of Sequential time over Distributed time.

5. SPEEDUP AND ACCURACY

Speedup. Distributed simulation can achieve very significant
speedups. Figure 12 shows that DiST achieves an averagdugpee
of 7.35 using 10 processors, 11.15 using 20 processors agé 14
with 40 processors, for a 98% local accuracy constraint @fti
a 4-billion simulated trace.

With a larger (16-billion) trace, DiST better benefits frofasge
number of machines, and with 40 processors the averagegpeed
increases to 19.5 with a maximum speedup of 39.071f%9.art
spec-code, see Figure 14. As an example, the average sidjuent
simulation time for a 16-billion trace on an Athlon is 20 heand
it decreases to 1 hour using 40 machines.

N <
s &

@
& &
&

Figure 14: Speedup with 40 machinestestricted set, 16 hillion
instructions, fastforward of 4 billions, 40 Athlon XP 1800+

size remains constant, thus the speedup does not increaseyi
because there are proportionnally more warm-up subchurdgaadh
chunk (from 6% with 10, 12% with 20 machines to 22% with 40
machines for 4-billion traces).

With 10 Pentium Il 500 MHz, the speedup is 7.82 with an av-
erage sequential simulation time of 15 hours, see Figure I13.
increases to 14.35 using a heterogeneous set of 10 PentiG60Il
MHz (256MB) plus 10 Pentium Il 733 MHz (128MB), where the
reference performance is given by a Pentium 111 500 MHz (286M

Threshold speedup. Besides the trace size limitation, the ra-
tio of the speed of the emulator over the speed of the simulato
is a speedup upper-bound. Let us consider a simple case where
emulation and simulation speed remain constant during tiaev
simulation. v, denotes the simulator speed (number of instruc-
tions per second)y. denotes the emulator speefljs the num-
ber of instructions per chunks, an¥l is the number of chunks
(i.e., the number of processors}s = I/vs is the time needed
to simulate one chunk, and = I/v. is the time needed to em-
ulate one chunk. Thes., = N - t, is the sequential time, and
Taist = (N — 1) - te + ts is the distributed time (time to emulate
N — 1 chunks and simulate the last chunk). The speedup is then

Tseq N -t
equal tonist R Note that whenV — oo,
the speedup converges towatdgt. = ve/vs, i.€., the ratio of the
emulator speed over the simulator speed.

We noted this speed ratio varies with each simulator-eraulat

The average speedup is not the same for all benchmarks lgecauspair on both the Athlon and the Pentium IIl, and for each bench
of the variable size of the warm-up phase. As the number of ma- mark. On the Athlon, the average ratios are 31 for SimAlpRep2

chines increases, the warm-up overhead increases whileatte

L0 R B — 6,00%
M IPC error N
90 ol Il | limiss et e o I e e e e e e R 1 e e Tl e L - 5.50%
5 [l L2 miss rate error — 5,00%
0 o B T T e e e e o e e e e T e Ty | P I S I S
5 m L2 miss frequency — 4.50%
e e A B R R R R R
[} — 4,00%
[}
L T e T - 3,50%
©
L e e o (A R — 3,00%
@
e O e e = = - 2,50%
[+
§ oL Y AU U S W S [2,00%
— 1,50%
20% —f - N e e Nl -
— 1,00%
L 20 N S T | 55 W [- 0,50%
0% — — 0,00%
gzip wupwise swim mgrid applu vpr gce mesa galgel art crafty facerec ammp lucas fma3d parser sixtrack eon gap vortex bzip2 twolf
Figure 15: DiST accuracy;full set, 40 Athlon
100% —-- qgro--c-=--oco-ooo--- - - B Bl B ----mr-— 6,0%
M IPC error
90% —f - W |E L1 missrateemor |-~ = -~ 55%
[L2 miss rate error L 50%
_ 80% — -~ | (] Branch prediction error|- - - === == === === --== oo i oo oo -
o m L2 miss frequency — 4,5%
5 70% —t-- e e e - .
a>) — 4,0%
5 60% —r -~ T T T 35%
R e ---- - 3,0%
[}
=] - 2.5%
2 40% — e S
17}
— 2,0%
£ 30% — . i A
— 1,5%
20% —t --- -
— 1.0%
10% — - " 0,5%
0% — = — 0,0%
gzip wupwise swim mgrid applu vpr gce mesa galgel art crafty facerec ammp lucas fma3d parser sixtrack eon gap vortex bzip2 twolf
Figure 16: Small (100 millions) trace accuracyjull set, 1 Athlon.
L R [- 6.0%
Il 'PC error o
L e g | I T L L [P e e e e e e e e e e e i f T e] T e e - 8.5%
[l L2 miss rate error 50%
80% —{ [Branch prediction error |~ === === = === === == == === === oo s m ool ||
§ m L2 miss frequency — 4,5%
E 70% —f====mm=mmmmmmm e ool
[} — 4,0%
[
B e e AR T A - 3.5%
©
® 50% —f--mmmm e B — 3.0%
[0}
5 40% —f oo oo R —25%
Q — 9/
§ 30% - T e W\ M W 2,0%
— 1.5%
20% - {M-A AN AN BN SN W
; = 1.0%
0% T 181 "N 1B NN T — 0,5%
0% - 00%

wupwise swim mgrid applu art crafty

gzip

facerec ammp fma3d parser vortex bzip2 twolf

Figure 17: Trace sampling accuracy;full set, 1 Athlon.

SimpleScalar and 185 for a PowerPC G3 simulator base8ysn
temC And on the Pentium Ill, they are respectively 48, 36 and 239.
The speed ratio also varies widely accross benchmarks,feam
32 to 94 for SimAlpha on the Pentium Ill. Still, we did not have
enough machines and use long enough traces to reach theippeed
threshold of any of these simulators. Assuming a large nurobe
machines, the best way to take advantage of distributedafion
and DiST is to develop fast emulators [12, 19]. It is also fi@ses
to get rid of the emulation phase altogether and use chectpgj
such as the EIO checkpointing implemented in SimpleSc&lar [
In that case, DiST performance is only bounded by the number o
available computing resources.

Accuracy. Even though distributed simulation can provide very

significant speedups, researchers will effectively usalig & they
have reasonable confidence in the results accuracy. Foptinat
pose, we have applied distributed simulation on all the 3p@é@
benchmarks (see Section 4), and we found that not only the ave
age distributed simulation IPC error is fairly small at 260but
that it alsoalwaysremains smaller than 5.17%, using a local ac-
curacy constraint on IPC at 98%, see Figure 15. Besides HeC, t
error on other important metrics like branch prediction, iniss
rate and L2 miss rate also remains smaller than 10% in mosscas
Small error or negligible number of events. We have always
observed that either the relative error is small or the nundfe
events is negligible. Consider Figure 15 where the bargrapp-
resent the absolute value of the relative error (which capdsitive

or negative) and the line represents the L2 miss frequeheyieft
vertical axis corresponds to bargraphs and the right \@régis
corresponds to the line. The L2 miss frequency is defined as th
ratio of the number of L2 misses over the trace size. In theehr
cases where the error is not negligible, i.e., the L2 dataeaaiss
rate ofeon(266%),crafty andtwolf, the absolute number of events
measured by each metric is in fact negligible — 1985 missesin
— so that a tiny variation of the number of events is enougim1o i
duce a large variation of the relative error. Such a tiny nendf
events has a negligible impact on performance, and therdéfar
variation is unlikely to bias research decisions.

Dynamic warm-up is necessary, especially because of large
memory structures. Even though DiST achieves almost the same
level of accuracy for all benchmarks, i.e., 2.60% error o€ iR
average, the dynamic warm-up mechanism often proves useful
cause the warm-up size varies significantly with each beackm

[T110 hosts
[20 hosts
1 40 hosts

Avg nb of warm-up subchunks per chunk

Figure 18: Average warm-up size per chunk;reference set,

see Figure 18 where we have measured the average warm-up siz&thlon.

(number of warm-up subchunks per chunk). The dynamic warm-
up mechanism proves even more useful when we vary the L2 size.
Consider Figure 19: clearly, large memory structures hagestrong-
est impact on the warm-up size, i.e., increasing the L2 sizeirt-
crease the warm-up size, but the effect varies strongly foom
program to another. While we effectively observed that tine@ant
of warm-up increases with L2 size on 8 of the 12 benchmarks,
for 2 benchmarks the warm-up size is unchanged, and for 2 othe
benchmarksyortexandsixtrackthe warm-up size varies unexpect-
edly. Therefore, the dynamic warm-up mechanism is necg$sar
both achieving the required accuracy and preserving thedsgeby
avoiding excessive warm-up overhead. Naturally, when thenw
up interval increases with the L2 size, the speedup sligtidy
creases, i.e., DiST implicitly privileges accuracy oveesgup.

Confidence in research decisions.To further increase confi-
dence in DiST, we have made several experiments to show that
research decisions are unlikely to be influenced by the dosslof
accuracy. For that purpose, we have selected three procasse
ponents often targeted by researchers (branch preditt®boache,
register bank), and for each component, we vary a singlenpeter.
For each component and each parameter value, we focus dit the
rectionof the performance variation, i.e., positive or negativéhw
respect to the default configuration parameter, andithglitudeof
this performance variation. A research decision is notcadfe by
distributed simulation if the variatiodirectionis the same as for se-
quential simulation, and to a lesser extent, if the varragimplitude
is similar as well. We have observed that both the variatioecd
tion and amplitude are almost always the same for sequeartil
distributed simulation. Implicitly, these experimentggast that
a research decision based on distributed simulation, &hggsing
the optimal parameter value for a processor component,uialiys
the same as the decision based on sequential simulation.

For our experiments, we vary the size of the L2 cache, the EV6
branch predictor tables size, and the number of physicasterg
in SimAlpha [7]. Figures 20, 22 and 24 show the performance va
ation for each parameter value with respect to the defautimpe-
ter value, using sequential and distributed simulatiorgufés 21
and 23 show the variation of the corresponding processopoem
nent metric when applicable: respectively L2 miss rate aadi¢h
prediction rate.

The variation direction is almost always the same, and thiava
tion amplitude is usually similar, except when the absotutmber
of events is negligible as for the L2 miss rateeion Only when the
performance difference is of the order of the error (a fewcpat),
the comparison becomes less precise. Consider the braedltpr
tion experiment in Figure 22 and benchmarks, gcc crafty and

36 —|[]512KB L2 cache
+| [1MB L2 cache
+| [2MB L2 cache
+ | 4MB L2 cache
| 8MB L2 cache

Number of warm-up subchunks

mgrid vpr galgel art

crafty facerec ammp parser sixtrack eon vortex twolf

Figure 19: Influence of large memory structures on speedup
and accuracy;reference set, 10 PIII 500

parser. the IPC variation amplitudes are very small and the varia-
tion direction differs. However, the variation directionchampli-
tude of the componenmhetric— branch prediction rate — are al-
most the same as for sequential simulationdibbenchmarks, see
Figure 23, so that a research decision based on this mettiltike
correct. Generally speaking, the scale of the performaadation
serves as a safeguard for exploiting distributed simufatésults:
when it becomes of the order of one percent, i.e., below thie&y
distributed simulation error, the researcher knows theltesnay
not be trusted.

DiST versus trace size reduction or trace sampling.

Trace size reductionAs mentioned before, trace size reduction
is a simple means often used for speeding up simulation. ffe co
pare the accuracy of the trace size reduction technique i,
we decreased the trace size so that the simulation time satie
as DiST, i.e., 100 million traces for all benchmarks. Thea,mea-
sured the average error for each 100-million chunk withie 4k
billion trace used for DiST; because the error can eitherdsétipe
or negative depending on the chunk, we measured the avelbage a
solute value of the relative error over all 100-million clksn see
Figure 16. We can see that the error variation is far bigganth
with DiST, between 3.28%\olf) and 120.48%dc¢) for IPC, and
between 5.74%a(t) and 1766% fftna3d for L2 miss rate; note
that in many cases, when the error is large the number of gvent
is not negligible, e.g., number of L2 misses. Consequently, it may
be difficult to trust research results and decisions baseslioh (or
smaller) trace sizes (note that 100-million traces are nobmmon
in research articles).

100% —qrmm=m===== oo m - gt m T
909, —H 1M Sequential
80% LI [[J1M Distributed
70% | [l 4M Sequential
60°/D M 4M Distributed

o

50%
40%
30%
20%
10%
0%
-10% —-----
-20% —
-30% —
-40% —f
el T T T T T T T T T 1

IPC relative to default 2MB L2

Figure 20: Varying L2 size (IPC); reference set, 10 PIII 500

3,00% —

2,50% —|[J]2KB Distributed |~
2.00% — [l 8KB Sequential
Il 8KB Distributed

1,50%
1,00%
0,50%
0,00%
-0,50%
-1,00%
-1,50%
-2,00%
-2,50%
S \ \ \ \ \ \ \ \ \

IPC relative to default 4KB branch tables

Figure 22: Varying branch prediction tables size (IPC);refer-
ence set, 10 Pl 500

A recent study [21] proposes a novel approach to trace size re
duction by carefully picking the starting points. The teicjue is
efficient and accurate (3% IPC error on 100-million tracem€o
pared to full runs) except for large memory components liize L

caches (more than 20% on L2 miss rate) because it is based on

small and fixed-size traces. Augmenting this technique Bi%iT
dynamic warm-up mechanism to automatically determine the a
propriate trace size has the potential to achieve both effigi and
accuracy over a large share of the design space.

Trace samplingTrace sampling was also mentioned as another
and more sophisticated technique for reducing the traee[$4].
Instead of picking a trace &f consecutive references, the trace is
split into a number of randomly located intervals within agler
trace. Because the resulting simulated instructions span &
larger share of the program execution, the trace is usuahemep-
resentative. On the other hand, the program must be emuated
tween each simulated interval which slows down simulatiom-¢
pared to straight trace size reduction. We have appliec tsam-
pling by splitting the trace into 40 intervals, reducing theerval
size so that the speedup is the same as DiST. The distancedretw
two intervals is randomly choosen. Even though trace samgpli
proves more accurate than straight trace size reductiQuré&il7
shows that it is significantly less accurate than DiST.

Finally, note that, whenever speeding up simulation id vits
possible to combine trace size reduction techniqureDiST.

Confidence in research decisiorr instance, when varying the
branch prediction table size, trace size reduction anétsampling
perform significantly worse than DiST. These techniquesdiel-

1 P

100%
50%
0% —
-50% —
-100% —
SV \ \ I \ \ T \ \ \ I T

[] 1M Sequential

o —b - .
« #50% 1= 1 Distributed

; 400% — [l 4M Sequential T
2 350% —t| I 4M Distributed |- - - - -~ | [h- - =
2 300%

$

< 250%

2 200%

S

2 150%

2

I3

8

£

9

Figure 21:
P11 500.

3,00% —pmmmmm e e o
[]2KB Sequential

2,50% | 2KB Distributed | =~~~ T 77T TTTToooooosooomoosssooossooooooooooooos
2,00% —{BI8KB Sequential |- - .

1M 8KB Distributed
1,B0% —f e - o e e e e

1,00%
0,50%
0,00%
-0,50%
-1,00%
-1,50%
2,00% - - - o s oo s m e m oo o
2,500 e ol
it T T T T T T T T T

ive

Branch prediction rate relat
to default 4KB branch tables

Figure 23: Varying branch prediction tables size (branch pie-
diction rate); reference set, 10 Pl 500

K B ST ooy IR b L L L e LR R L L R
[]60 Registers Sequential | —
259 || 160 Registers Distributed |

[82 Registers Sequential
sov, | (W82 Registers Disriuteg |

15% —f-------omommooooaoos

10% —7

5% —

0% —f

-5% —

IPC relative to default 41 registers file

-10% \ \ \ \ \ \ \ \ \

Figure 24: Varying the number of physical registers (IPC);ref-
erence set, 10 PIIl 500

most no amplitude variation, compare Figure 23 with Figutés
and 25.

A simple mechanism for occasional validations during the
research process. All experiments show that DiST results are
trustworthy and that overall, it is a significantly more tier-
thy technique for speeding up simulation than trace redndgch-
niques. Nevertheless, when a researcher uses DiST for iaypart
larly long sequence of analysis steps without extensivielagbn
on traditional simulation and/or many benchmarks, theveags

3,00%

[]2KB Sequential

7 e B e e e S T
[]2KB Sequential

2,50% — | 2k8 Sampling 2,50% —T|[2KB Small Trace [~~~ "7 7777777 TToooTooooooooooooosoooooooooooooos
o 2,00% —I |H8KB Sequential 2.00% —||BI8KB Sequential | _______________________ .
20 M 8KB Sampling o [8KB Small Trace
B @ 150% —f - T oooeoooooooooooooooooooooooooos T D 150% [T oooooooooooooooooooooooooo
o2 o8
o5 1oo% o5 100%
8 ® 0,50% T 5 050%
c O c o
S m 0,00% Sm 000%
ox ox
8 %—0,50% g2 050%

a3

_g-% -1,00% 2% -1,00%
2 ©-1,50% 25 150%
g o fe
e T @ 2,00%

B -2,50%

= \ \ \ \ \ \ \ o \ \ \ \ \ \ \ \ \

gzip vpr gce crafty parser eon vortex bzip2 gzip vpr gcc crafty parser eon gap vortex bzip2 twolf
Figure 25: Trace Sampling: Varying branch prediction tables Figure 26: Trace Size Reduction: Varying branch prediction

size (branch prediction rate); 1 PIll 500.

15%
13%
1% —
9% —
7% —|
5% —
3% —
1% —

tables size (branch prediction rate);1 Pl 500.

‘D Chunk 2 [JChunk 3 [JChunk 4 [Chunk 5 [Chunk 6 [l Chunk 7 [llChunk 8 [l Chunk 9 [l Chunk 10 ‘

-1% —
-3%
-5% —

. o ad .

7%

Cumulated relative error on IPC for each chunk

Figure 27: Evolution of global versus local error (IPC); full set, 10 Pl 500.

I I I I I I I I I I I I
‘D Chunk 2 [[]Chunk 3 []Chunk 4 [Chunk 5 [l Chunk 6 [lllChunk 7 [l Chunk 8 [llChunk9 [i] Chunk 10 ‘

S &Sy

Figure 28: Evolution of global versus local error (L1 miss rée); full set, 10 Pl 500.

exists a tiny risk that several days of analysis are basedtmend pleted, and when the full trace completes, she/he can chedkue
wrongfully derived from erroneous simulation results, dew us- DiST error. This validation is optional: when starting a ngwu-
ing small traces. For the sake of efficiency, DiST is fittedhwit lation, the user can decide to kill the validation thread Has not
a simple backup mechanism: the first chunk is always run until yet completed, in order to have all machines available foreaing
completion, i.e., until the end of the full trace. The resbar the maximum speedup.

starts making research decisions/analyses as soon as B$SDim-

Accuracy versus speedup: error increases with the number
of machines, but slowly. Because accuracy is enforced only lo-
cally, the error can increase with the number of machinesisCier
chunkm. Since the convergence threshold is necessarily smaller

tions tasks because they are dauntingly slow. Dependindg@n t
number of available simulation machines and the speed eatio-
lator/simulator, DiST can bring a simulation slowdown ofeel
thousands back to a more acceptable few hundreds or even less

than 100% (or convergence would almost never occur), eaeh ne And a few additional modifications can make DiST even more ap-

chunk can slightly degrade accuracy, i.e., convergencehieeed
without a perfect match between the statisticsf 1 andm. Over

time, these errors may cumulate, and the highethe higher the
loss of accuracy. Therefore, while the “local” error rensafixed,

bounded by the local accuracy constraint, the “global” emay

diverge. In practice, even though we effectively obsenat,tfor

some codes, the “global” IPC error increases with the chunk-n
ber, see Figure 27, the progression is generally very slowreM
over, for other metrics such as the L1 miss rate, the “globaltr

remains almost always constant, see Figure 28.

Accuracy can be based on other metrics than IPCNote that
accuracy needs not target IPC alone: if the purpose of stinnk
is to analyze a specific processor component, local accuacy
straints can target the relevant statistics. We can eitigace the
IPC constraint by a constraint on another statistic, or ade\wa
constraint on another statistic.

For instance, let us assume we want to focus on L2 miss rates.
We have run experiments with a relaxed IPC constraint (dess
than 10% instead of 2%) and we find that the average error on L2
miss rates is equal to 3.24%; then, we add a local accuracy con
straint on the L2 miss rate (error less than 2%), and run atfein
experiments: the average global error on L2 miss rate dsesea

propriate to the trial-and-error process of optimizing agyam. We
briefly discuss one such modification in this section.

Most often, program optimization will focus on a given code
section where optimizations are repeatedly applied anddet/su-
ally, after an initial simulation, the programmer appliexcél) code
transformations and then has to run again a full simulatbianoni-
tor the impact of the transformations. A few modification®i&T
enableselective (re)simulationf a small superset of theodified
trace interval see Figure 29; then, upon entering this interval, the
processor state is almost the same as in the original sioabaith-
out effectively simulating prior instructions. Let us nowestribe
the technique in more details.

The modified interval must be inferred from the exact occur-
rences of the bounding instructions in the original and rfiedi
traces. These instructions are simply tagged by usertetselirec-
tives in the assembly code. A fully automatic alternativesists in
relying on a binary matching tool to automatically locate thod-
ified code segments. For instance, BMAT [24] is used to sprzllo
changes in object code in the debugging process of a lardeapp
tion.

Then, we need to spot the chunk whose warm-up period imme-
diately precedes — and does not intersect with — the modified

to 2.17%, and even the average IPC error gets close to what weinterval. During the original simulation, we store the sifethis

achieved with a strict 2% error constraint on IPC. Still, whbe
local constraints are too numerous or excessively tiglety tither
have a redundant effect or decrease the speedup. For iasteinen
adding the local 2% L2 miss ratio constraint to the 10% IPG con
straint, the L2 error is improved but the average total nundfe
warm-up subchunks increases from 13 to 48.

6. FASTSIMULATION ENABLES NEW AP-
PLICATIONS

full simulation

, begin : end
-subchunk : b T -‘ Original
L | P | Trace
I—O—O—O—O—O—l—O—O—Hﬂ—O—I—O—H—O—O—I—>
" incremental simulation | — Emulation

I Simulation
1 Warm-up
Overhead

Modified Trace

/@

. |, modified interval
LI

N begin

Figure 29: Iterative local program analysis and optimizations
using DiST warm-ups.

Compilers are increasingly unable to cope with quickly grow
ing architecture complexity, resulting in a rapidly incséay gap
between peak and sustained performance. Currently progmm
timizations either rely on time profiling tools or hardwareunter
based tools such as DCPI [1] and ProfileMe [6]. However, sataul
ing program execution on the target processor architegiurades
a wealth of information that can considerably help undetahy
performance degradations occur, how the different prazessm-
ponents interact and how the program behavior can be imgrove
Still, processor simulators are rarely used in program rojat-

warm-up period. To resimulate the interval, we can simplykte
until the beginning of this chunk, and then start simulatasgin
DiST. In order to determine when statistics become valid, di*
namically determined warm-up size is replaced with the néed
size. When simulation starts, the processor state is gxhetisame
as with DiST, without simulating prior chunks. The lower paf
Figure 29 represents an incremental simulation run afteogrpm
transformation. Note that it is even possible to analyzeithe
pact of the program transformation on the rest of the proglogm
carrying on the simulation, assuming the transformatioasdoot
affect the program trace beyond tledpoint. This lightweight in-
cremental approach is a step towards the pervasive use wfaec
simulators in optimization frameworks and methodologies.

7. CONCLUSIONS AND FUTURE WORK

Because simulation speed is not just a methodology issue but
can have a strong impact on design space exploration, we pre-
sented DiST, a distributed simulation technique that caedpp
processor simulation while preserving a high accuracy. udacy
is always privileged over speedup thanks to a dynamic wasm-u
mechanism that automatically adjusts the warm-up size ofi ea
distributed chunk to satisfy user-defined local accuragystraints.
DiST is much more accurate than the traditional trace sideae
tion technique used by many researchers to speed up sonse part
of the research process; and it is significantly more aceutzn
more sophisticated techniques like trace sampling. Magave
have experimentally shown that the technique is reliabt: that
research decisions based on distributed simulation aralyswot
affected by the slight loss of accuracy; besides, DiST cowits
a backup mechanism for delayed validations. Speedup céda sca
with the number of available computing resources and iseciiy
bounded by the trace size and the ratio emulator/simulgteed.
Finally, the tool was designed so that it can be easily pldgge
existing simulators with minimal modifications. We demaated
a distributed version of SimAlpha and SimpleScalar whighparb-

licly available with DiST atttp://www.microlib.org/DiST.

[10]

DiST speeds up simulation and the speedup is bounded by the

ratio of the emulator speed over the simulator speed. Udieglc
pointing, this speedup upper-bound disappears and thefzal/tor
is not disrupted by differing system calls, so that augnmenDiST
with EIO-checkpointing, for instance, has the potentiaingbrov-
ing both speedup and accuracy.

Fast simulation enables new applications such as detaited p

gram behavior analysis on complex processor architectased
on the warm-up principles of DiST, we can quickly and repeigte
analyze/modify a given code section without rerunning bsfuhu-
lation. In the future, we intend to investigate further iroypements
of this application, particularly by fastening or even resmg the
emulation phase that precedes the target code section ctsiu-
pointing.

More generally, DiST is part of a broader methodology effort
conducted by our research group to address several sionulagthod-

ology issues: fast and reliable simulator design using rewdtruc-
tures, speeding up simulations, improving simulator aacyirand
using simulators as dynamic analysis tools for programnoiga-
tion purposes.

8. ACKNOWLEDGEMENTS

We would like to thank the other members of the Computer Ar-

chitecture Group at LRI, especially Nathalie Drach and Séghia
for many helpful suggestions.

9. REFERENCES

[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger,

S. Leung, D. Sites, M. Vandevoorde, C. Waldspurger, and
W. Weihl. Continuous profiling: Where have all the cycles
gone, July 1997.

[2] P. Bose and T. M. Conte. Performance analysis and its
impact on designEEE Computerpages 41-49, May 1998.

[3] D. Burger and T. Austin. The simplescalar tool set, venmsi
2.0. Technical Report CS-TR-97-1342, Department of
Computer Sciences, University of Wisconsin, June 1997.

[4] S. Chatterjee and S. Sen. Cache-efficient matrix
transposition. IrSixth International Symposium on
High-Performance Computer Architectumages 195-205,
Toulouse, France, 2000.

[5] T. Conte, M. Hirsch, and K. Menezes. Reducing state loss f

effective trace sampling of superscalar processors. In
International Conference on Computer Desigages
468-477, 1996.

[6] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Z. Chrysos. ProfileMe : Hardware support for
instruction-level profiling on out-of-order processorns. |
International Symposium on Microarchitectugages
292-302, Research Triangle Park, North Carolina, 1997.

[7] R. Desikan, D. Burger, and S. W. Keckler. Measuring
experimental error in microprocessor simulationTime 28th
Annual Intl. Symposium on Computer Architectyrages
266-277, June 2001.

[8] L. Eeckhout, K. DeBousschere, and H. Neefs. Performance

analysis through synthetic trace generationnin Symp. on
Performance Analysis of Systems and Softplarge,
Belgium, April 2000.

[9] J. Haskins and K. Skadron. Minimal subset evaluation:
Rapid warm-up for simulated hardware statePhoc. of the
2001 International Conference on Computer Desiguastin,
Texas, September 2001.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

V. S. lyengar and L. H. Trevillyan. Evaluation and geatén
of reduced traces for benchmarks. Technical Report
RC20610, IBM T. J. Watson, Oct 1996.

A. KleinOsowski, J. Flynn, N. Meares, and D. Lilja.
Adapting the SPEC 2000 benchmark suite for
simulation-based computer architecture research. In
Proceedings of the Third IEEE Annual Workshop on
Workload Characterization, International Conference on
Computer Design (ICCD)pages 73—-82, September 2000.
T. Lafage, A. Seznec, E. Rohou, and F. Bodin. Code clpnin
tracing: A “pay per trace” approach. EuroPar’99 Parallel
ProcessingToulouse, France, August 1999.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a
hunter of idle workstations. IRroc. of the 8th Intl. Conf. on
Distributed Computing Systensages 104-111, San Jose,
Calif., June 1988.

M. Martonosi, A. Gupta, and T. Anderson. Effectiveness
trace sampling for performance debugging tools. In
Proceedings of the 1993 ACM SIGMETRICS conference on
Measurement and modeling of computer sysieages
248-259. ACM Press, 1993.

A. Nguyen, M. Michael, A. Nanda, K. Ekanadham, and

P. Bose. Accuracy and speed-up of parallel trace-driven
architectural simulation. IRroc. Int’l Parallel Processing
Symp., IEEE Computer Soc. Pregmges 39-44, Geneva,
Switzerland, April 1997.

D. B. Noonburg and J. P. Shen. A framework for statidtica
modeling of superscalar processor performanc@rbc.
Thrird In. Symp. On High Perf. Computer Architectu&an
Antonio, Texas, February 1997.

S. Nussbaum and J. Smith. Modeling superscalar process
via statistical simulation. IfPACT '01, International
Conference on Parallel Architectures and Compilation
TechniquesBarcelona, September 2001.

D. Parello, O. Temam, and J.-M. Verdun. On increasing
architecture awareness in program optimizations to bridge
the gap between peak and sustained processor performance -
matrix-multiply revisited. InNSupercomputing 2002
Baltimore, November 2002.

V. Rajesh and R. Moona. Processor modeling for hardware
software codesign. Imternational Conference on VLSI
Design Goa, India, January 1999.

T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simigiat
points in applications. linternational Conference on
Parallel Architecture and Compilation Techniques
Barcelona, Spain, September 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavio
In Proc. of Tenth International Conference on Architectural
Support for Programming Languages and Operating
SystemsSan Jose, Calif., October 2002.

Synopsys. SystemC. http://www.systemc.org, 2000220

X. Vera, M. Hogskola, and J. Xue. Let’s study
whole-program cache behaviour analyticallyAroceedings
of the Eighth International Symposium on High-Performance
Computer Architecture (HPCA'02Boston, Massachusettes,
February 2002.

Z.Wang, K. Pierce, and S. McFarling. BMAT — a binary
matching tool for stale profile propagatiojournal of
Instruction-Level Parallelism2(1-6), 2000.

