N

N

Application Domain-Driven System Design for Pervasive
Video Processing
Zbigniew Chamski, Marc Duranton, Albert Cohen, Christine Eisenbeis, Paul

Feautrier, Daniela Genius

» To cite this version:

Zbigniew Chamski, Marc Duranton, Albert Cohen, Christine Fisenbeis, Paul Feautrier, et al.. Appli-
cation Domain-Driven System Design for Pervasive Video Processing. Twan Basten and Marc Geilen
and Harmke de Groot. Ambient Intelligence: Impact on Embedded-System Design, Kluwer Academic
Press, pp.251-270, 2003. hal-01257306

HAL Id: hal-01257306
https://hal.science/hal-01257306
Submitted on 20 Jan 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01257306
https://hal.archives-ouvertes.fr

Application Domain-Driven System Design
for Pervasive Video Processing

Zbigniew Chamski, Marc Duranton
Philips Research, Eindhoven, The Netherlands

{ zbigniew.chamski,marc.duranton} @philips.com

Albert Cohen, Christine Eisenbeis, Paul Feautrier
INRIA, Rocquencourt, France

{ albert.cohen,christine.eisenbeis,paul.feautrier} @Qinria.fr

Daniela Genius

Université Paris 6, Paris, France

daniela.genius@lip6.fr

Abstract

Keywords:

Pervasive video processing in future Ambient Intelligence environments sets new
challenges in embedded system design. In particular, very high performance re-
quirements have to be combined with the constraints of deeply embedded sys-
tems, frequently changing operating modes, and low-cost, high-volume produc-
tion. By leveraging upon the key properties of the application domain, we devised
a computation model, a hardware template, and a programming approach which
provide a natural mapping from application requirements to a complete system so-
lution. Our approach enables the direct exploitation of concurrency and regularity
in achieving the combined challenge of adaptability, performance, and efficiency.

SANDRA, video processing, timed process networks, hierarchical architecture,
piecewise static control.

1. Introduction

Vision plays a dominant role in human perception, placing pervasive visual-
ization and video processing at the heart of the Ambient Intelligence concept.
The underlying properties of adaptability, anticipation, and ubiquity make the
video processing sub-systems operate in a changing environment, and require
run-time flexibility. While video processing is essentially regular, user interac-
tions and communications with other devices introduce variability in operation
modes, system loads, and quality-of-service requirements.

In media streaming applications of un-encoded data (before encoding/after
decoding), most events can be predicted and anticipated. Whenever the ex-
ecution latency of individual tasks can also be predicted (or imposed), asyn-
chronous (interrupt-triggered) control can be entirely eliminated, leading to a
fully predictable, real-time system. This in turn enables a tighter dimensioning
of the system, reducing the difference between average and peak performance,
and thus, directly increasing its efficiency.

At the same time, upcoming display technologies and ever improving com-
pression standards enable a dramatic increase in content and display resolu-
tions. The corresponding performance requirements are beyond the reach of
general-purpose processor architectures, implying the use of domain-specific,
multi-processing solutions and an increased system complexity. Yet to become
commercially viable, these solutions must additionally satisfy the criteria of
silicon efficiency (area and device utilization, power dissipation), affordable
system design effort, and low manufacturing costs.

In the SANDRA (Stream Architecture eNgine Dedicated to Real-time Ap-
plications) project, we tackled this challenge using a global approach driven
by the key characteristics of the application domains (video pre and post-
processing): massive amounts of parallelism, piecewise regular processing of
structured data, predictability of events, multiple processing rates, and explicit
temporal requirements in applications. These characteristics were used to iden-
tify a suitable computation model, which in turn determined many aspects of
system hardware and software. Ultimately, this led to the definition of a system
template and a programming flow in which the requirements of the applications
are driving the entire design process. The requirements of embedded systems
are also taken into account: the SANDRA system is designed to be silicon effi-
cient, satifying hard real-time constraints and having the lowest possible power
consumption and memory bandwidth.

The scalability of the architecture is also important to cope with various ap-
plications and instances of embedded systems: a base SANDRA sub-system
can be easily extended with new blocks using an intra- or inter-chip network,
while still using the same model and representation of applications: it is seen
as a single entity, with higher performances. The “connected” nature of Ambi-

3

ent Intelligence systems enables to think of even more sophisticated systems:
for example a SANDRA system inside a camera could use the resources of an-
other SANDRA system in the TV set for increasing its computational power
during, e.g., video segmentation or depth reconstruction (if a right communi-
cation channel is available).

To address the complexity of programming such inherently concurrent sys-
tems, we propose to move away from sequential application descriptions to-
wards timed process networks [5], which are much more suitable to our target
application domain. Process networks directly capture the concurrency avail-
able in the applications, and temporal annotations attached to processes (or
groups thereof) provide a natural way of representing the timing requirements
of the applications. It also helps in distributing tasks onto separate instances of
the system, allowing networking at the SoC level and at the multi-chip/multi-
device level. The introduction of the quantitative time representation, impor-
tant for real-time guarantees, also helps in characterizing the communication
links (bandwidth, latency, buffer requirements). The resulting system can pro-
cess data “on-time” and not necessarily as fast as possible, allowing to deter-
mine the slowest possible clock required for performing each function, and
thus reducing the global power consumption.

The hierarchical organization of the SANDRA architecture reflects the struc-
ture of both applications and data they manipulate. From the programmer’s
point of view, applications are seen as computations on different levels of data
structures. From the system design point of view, the hierarchy of control and
communications exploits temporal and spatial locality to enforce storage and
bandwidth requirements. It also helps addressing the issue of on-chip signal
propagation delays.

Another challenge of the project was to support the hard real-time require-
ments of “live” stream processing in combination with the dynamic reconfig-
uration inherent to most Ambient Intelligence applications. We propose to
address this issue through piecewise static control: the scheduling and map-
ping of computations and communications in SANDRA is made statically for a
range of “scenarios” defined by the different levels of maximum load guaran-
tees and throughput/latency requirements. Within each scenario, the schedules
and resource allocations guarantee the respect of performance and resource
requirements while ensuring the best possible efficiency.

This paper is further organized as follows: section 2 introduces the applica-
tion domain and the representation of applications used in SANDRA. Section 3
presents the overall structure of the SANDRA compilation chain. Key issues in
code generation are presented in Section 4. Section 5 describes the key system
architecture concepts of SANDRA.

4

2. Representation of Applications

When designing a domain-oriented system suitable for a range of applica-
tions, the characterization of the application domain is a key success factor: it
makes possible to exploit application properties in an efficient way.

The target domain of SANDRA is real-time media stream processing. We
provide a tentative solution to the system design issues in presence of:

massive amounts of parallelism;

piecewise regular processing of structured data;
predictability of events;

multiple processing rates;

explicit temporal requirements in applications.

The application model must capture the concurrency and real-time attributes
of the applications and of the SANDRA hardware. In addition, the applications
operate on structured data whose size has to be taken into account in the model.
When combining a machine description of the target system with the infor-
mation of an application’s degree of concurrency, data size, clock rates and
hierarchy, it is possible to determine the peak and average bandwidth values,
end-to-end and partial latencies, intermediate buffer sizes, utilization rates of
target system elements, etc.

2.1 Multi-Periodic Process Networks

To enable fast retrieval of time and resource properties at every stage of
the design process, we developed a process-based application model called
Multi-Periodic Process Networks (MPPN; a detailed presentation and discus-
sion of the model can be found in [5]). The MPPN model is inspired by Kahn
process networks [10], Petri nets variants such as event graphs [2], and by
Control/Data-Flow Graphs (CDFG, [15]). It also shares some motivations with
the CoMPAAN project [11] within the PTOLEMY environment [4].

The MPPN provides four distinctive concepts: (1) explicit synchronizations
between processes, (2) bounded-size communication channels, (3) a quantita-
tive notation for delays, latencies and periods of processes, and (4) a hierarchi-
cal composition mechanism for building aggregate processes from elementary
ones. In particular, the two latter features of MPPN are fundamental when
distributing applications onto networks of SANDRA instances. The hierarchi-
cal composition helps in partitioning, and the quantitative modeling of delays
and latencies allows the MPPN network analysis tools to check if the com-
munication channels are suited to the proposed partitioning. Figure 1 shows a
simple MPPN for a two-dimensional polyphase filter, applied to the downscal-
ing of video frames from a high definition (1920 x 1080) to a low definition

5

(720 x 480) screen; the filtering process is decomposed into a horizontal stage
(sub-process P5) and a vertical stage (sub-process Pg).

Ps Pg

)) frame clock
H-filter V-filter
HD input I : 30Hz SD output
11 1‘ 2 ‘2 1‘ 2 ‘2 2 2 1
@ | @ | @ "

P2

Figure 1. MPPN representation for a downscaler

The HARRY verifier tool that we have built checks the coherency of the in-
put data and timing constraints and computes the required buffer sizes, process
latencies, bandwidth and resource usage. It uses an XML representation of a
MPPN (cf. Figure 2). This representation is designed such that an MPPN can
easily be abstracted from a SALLY program (see 3.1). At present, it handles
cyclic networks and clocked processes but not the splitter/selector extensions.

We tested MPPN models for five typical applications: downscaler with a
polyphase filter, horizontal split-screen display (splitter and selector), picture-
in-picture (full example with deep hierarchy), advanced anti-aliasing filter (pi-
pelined execution and complex acyclic graph), and noise correction (cyclic
graph). Using HARRY, we solved the network’s equations to check for sound-
ness and compute the missing parameters. Finally, we deduced resource re-
quirements (memory sizes, bandwidths, functional unit counts).

The MPPN model was designed to leverage upon the key properties of the
domain of pixel-stream processing (predictable behavior, regular processing,
extended stream semantics with a steady state, timing and bandwidth con-
straints, few data dependent control loops). Its main limitations are the fixed to-
ken size and the restricted splitter/selector semantics. Token sizes are bounded
to allow the design of predictable systems, possibly leading to a worst case
design (this is also the case with ASIC design.) The splitter/selector model
can hardly be extended without losing static schedulability, but applications
that have non-deterministic (or data dependent) splits and selects also have an
upper bound in their activation frequency, allowing for an approximate MPPN
model. Extensions of the model are possible, at the expense of a big com-
plexity increase. We therefore preferred to use simplifications and perhaps less
optimal solutions to model the few applications that escape from the common
characteristics of the domain.

3. Compilation Chain

The compilation process consists in mapping the timed process network rep-
resentation of the application to the hierarchy of control, memory, and process-

6

<! DOCTYPE MPPN SYSTEM " MPPN. dt d" >
<MPPN>

<l-- The first process --> I e e
<Process id="1" [y Text:

Type="Nor mal " > © [Element: Name
<Name>HDI nput </ Name> [y Text

@ [Element. InPort

[Text:

@ 3 Element. OutPort

<Qut Port Channel | D="1"
Start="true"

End="f al se" [Text
Q="2073600" > [Element: Bandwicitn
<Bandw dt h/ > [Text
<Message/ > o [Element: Message
<Access a="1"/> [Text
<Lat ency I="0"/> © [Element: AccessLatencyRan
<Bur sti ness/> [Text:
</ Qut Port > @& = Element: LatencyRange
[Text:
<I--) Process paraneters --> @ [Element: BurstinessRange
<Peri od/ > [Teat
<Burstiness N="1"/> [Text:
<Lat ency/ > [} comment: Pracess parameters
<Pi pel i nedExecuti on/ > [y Text
<Activation/> [Elerment: Period
</ Process> i
1

<l-- ... -->

Figure 2. Sample XML representation and parse tree

21 | HARRY
Verifier

PILO-LORA
Scheduler
and Resource
Allocator

Figure 3. Hierarchical control and
storage

SYSTEMC
Simulator
e

Figure 4. SANDRA compilation chain

ing units which form a SANDRA instance. Both the mapping of an application
to the SANDRA architecture and the validation of the resource constraints for
this application rely on a model of system. The model provides quantitative
target system models at multiple levels of refinement and precision. By com-
bining this information with the timed process network representation of the

7

requirements of the application, it is possible to carry out performance estima-
tions in a systematic way, even at early design stages of either applications or
the target system.

The purpose of the compilation chain of SANDRA is threefold:

= providing timed simulation models to be used in design-space explo-
ration and debugging of functional and temporal behavior of SANDRA
applications;

= generating code and parameters for general-purpose and dedicated units,
for each controller, at each layer of the architecture; this must be fully
automatic because the execution model is too complex to be handled at
the application level,

= optimizing the code such that the time constraints are satisfied while
minimizing memory, computation and communication resources; tedi-
ous optimizations and transformations are automatic, but the engineer
can still drive the design space exploration using an abstract process-
network model of the application.

In the high-level synthesis community, Control/Data-Flow Graphs (CDFG)
have been a successful representation for data-intensive applications with tim-
ing and resource constraints [15]. Indeed, CDFGs can be simulated for design-
space exploration, they serve as a basis for optimizing transformations, and
of course, they enable code or circuit generation. Well-known research tools
such as HYPER [15] or PTOLEMY [4] (with alternative data-flow graph mod-
els) have been developed in this area.

Several compiler techniques developed for resource-constrained scheduling
of loop nests can reconstruct the control and data structures completely through
algebraic loop-nest transformations [9, 16]. These techniques can distinguish
between each iteration of a loop or each value of a stream/array, enabling much
more aggressive transformations.

However, the better efficiency of such techniques comes at a price: some
of the versatility of CDFGs and other flow-graph approaches is lost, like the
ability to handle arbitrary control flow or the natural integration of timing and
resource constraints. But since our applications do not rely on arbitrary control
flow, and despite the lower versatility and the higher computational complexity,
we believe that only aggressive techniques can efficiently harness the resources
of the highly parallel architecture.

The structure of the SANDRA compilation chain is sketched in Figure 4,
where numbers link transformation phases and code representations to the rel-
evant sections. Compilation starts with an application description specified
in the high-level language SALLY (section 3.1) and checks real-time properties
with the HARRY verifier (section 2.1). During the design space exploration, the
YAKA multidimensional affine scheduler (section 4.1) and the PILO-LORA

8

software-pipelining tool (section 4.2) produce one or several schedules and re-
source allocations of the concurrent program; the programmer may drive the
exploration in suggesting a coarse-grain mapping of (some) processes to SAN-
DRA controllers. The code rewriting phase (section 4.1) regenerates SALLY
code from the abstract schedule, allowing for iterative refinement of the sched-
ule. Finally, cycle-accurate simulation code and SANDRA assembler code are
generated from the fully scheduled SALLY program. All communications be-
tween software modules are done via XML files, while the tools use their own
internal formats.

To accommodate the flexibility of the hardware template, software tools
supports parameterization by a machine description file that contains the in-
formation necessary for the code generation stage. It also seamlessly interacts
with HARRY’s evaluation of communication latencies, parallelism, buffer and
bandwidth requirements, and the results may be fed back into machine descrip-
tions of higher-level operations. Eventually, the machine description file feeds
YAKA and PiLo-LoRA for resource allocation information, enables the auto-
matic generation of simulation models, and provides a reference for regression
testing of the actual hardware. This pervasive use of the machine description
is a major governing principle in the SANDRA architecture and compilation
chain.

3.1 The SaLLY Language

In order to capture both functional and non-functional requirements of ap-
plications at the program level, we designed a small, domain-oriented language
called SALLY. Rather than extending a sequential language such as C, C++,
or Java, we propose to use a clean set of concepts tailored to the characteris-
tics of the application domain, and we provide constructs which are familiar to
domain specialists. This in turn makes it possible to formalize application re-
quirements, while still allowing the compiler to perform domain-specific anal-
yses, verifications, and optimizations.

SALLY is a declarative language. At the core of SALLY is the synergy be-
tween structured data types (arrays and records), iterators, and processes.

Variables in SALLY are streams of array or scalar values, indexed by iterator
values. Each variable has an associated index domain (possibly unbounded),
which identifies all index values for which this variable is defined [13]. SALLY
variables correspond directly to channels in MPPN.

Iterators are a uniform concept for expressing loops (either parallel or se-
quential) and event-based processing. Three types of iterators are available:
indices correspond to unordered, potentially concurrent iterations; counters
correspond to ordered, i.e., serial iterations; clocks are counters with quanti-
tative time distribution, they are used to capture the real-time requirements of

9

the application. Processes are sets of equations or networks of other processes
that are evaluated in response to a change of value of a special input, called the
trigger, mapped to an iterator defined outside the process.

The basic statements of SALLY are equations and process activations. State-
ments may be explicitly associated with an iterator. An equation defines the
value of a variable as the result of evaluating an expression in the current con-
text of iterator values. A process definition consists of an interface definition
and a body : the body lists the local variables of the process followed by its
equations and subprocesses, whereas the interface definition provides type sig-
natures and names for the input/output ports, along with per-invocation param-
eters of the process. A process activation instantiates the process, binds the
ports and parameters of the process with actual variables, and maps the trigger
of the process to an actual iterator.

SALLY programs can express parallelism in three ways:

= by triggering multiple statements/processes on the same iterator (there is
no explicit sequential ordering; instead, the dependencies are extracted
and checked at compile time);
through unordered iterators (for all i do...);
through array-wide operators.

The first method provides a natural expression of control parallelism, while
the last one is specifically directed at data parallelism. The unordered iterators

provide a means of trading control parallelism for data parallelism.
Example: Figure 5 shows a short excerpt froma SALLY implementation of a two-dimensio-
nal polyphase fi Iter.

extern clock frameStart 30Hz
cl ock output_line_clk 660 @FraneStart (* visible + Vsync *)
cl ock visible_line_clk output_line_clk[100 .. 579]

node Vstage(param float VFL_coefs[64][6], paramint VFL_off[64][6],
input pixel frane_after_HFL[1080][720])

decl s
(* after Vfilter: 480x720 pixels *)
pi xel frame_after_VFL[480][720]

code
(* frane-level V filter invocation *)
frame_after_HFL -> VFL_stage(VFL_coefs, VFL_off) -> frame_after_VFL
every frameStart

(* output ctrl at line level *)

frame_after _VFL[visible_line_clk - 100] -> QUTPUT -> VO D
every visible_line_clk

Figure 5. SALLY application example: filtering and output

The fi rst three lines defi ne iterators (clocks) used by the mai n process. franeStart
runs at 30Hz and is provided by the environment; out put I i ne_cl k is a clock running

10

at 660 times faster than FrameSt art and is reset to zero at every tick of FrameSt art ;
vi si bl e_li ne_cl k is a sub-sampling of out put I i ne_cl k and is only active when
out put _I i ne_cl k valueis between 100 and 579 inclusive.

The process Vst age takes one input value (f r ane_af t er _HFL array) per activation,
using VFL _coef s and VFL_of f set as per-activation parameters.

When triggered, process Vst age will activate process VFL_st age at every tick of clock
FrameSt ar t, and will activate QUTPUT for every tick of vi si bl el i ne_cl k. Each ac-
tivation of VFL_st age consumes the current value of f r ane_af t er _HFL, produces a new
value of f r ame_af t er _VFL and uses the current value of VFL _coef s and VFL _of f as per-
invocation parameters. Each activation of OUTPUT selects an appropriate line from the latest
valueof f r ame_af t er _VFL, and acts as a sink node (output to VO D). [

SALLY programs form a concrete representation of MPPN, with the addi-
tion of complete information on process internals. This information is critical
to the precise evaluation of MPPN parameters such as process and channel
latencies, based on a machine description of the underlying SANDRA architec-
ture. In this way, SALLY program analysis and transformation can leverage on
all techniques developed for MPPN.

The actual computation of bandwidth, buffer, latency and resource usage
properties is done by the HARRY verifier. The MPPN abstraction of a SALLY
source code enables fast estimation of these properties, which is critical to
the design-space exploration of application and the target system. HARRY
output is also used to find the necessary sequential and timing constraints to be
included in the SALLY program, and to identify over-constrained applications
not amenable to parallelization. It gives also a quick go/no-go answer in case of
distributed application onto an network of resources: the available bandwidth
and latency of the communication channels are checked against the current
application partitioning.

4. Scheduling and Code Generation

The scheduling phase benefits of the domain-specific semantics of SALLY:
array and iterator structures are constrained such that memory dependences
(i.e., causality constraints) can easily be captured at the level of each itera-
tion using classical array dependence analysis techniques [8]. Dependences
are described by systems of affine constraints enforcing sufficient conditions
to make a schedule valid. In addition, SALLY processes explicitly communi-
cate through FIFO channels following the semantics of MPPNs. Extending
array dependence analysis to communicating processes requires to match ev-
ery send with its corresponding receive, i.e., to count the number of sends
and receives; this may lead to polynomial expressions when communications
are nested within multiple loops. To get back to a classical array dependence
analysis problem, we convert each send/receive statement into a store/load ref-
erence into a cyclic buffer. This corresponds to a candidate implementation

11

for the channel, assuming that the buffer is bounded and that the bounds are
known at compile-time, which is easily checked on the MPPN model.

The resulting affine constraints can be handled by Feautrier’s scheduling
algorithm for “static-control” loop nests [9] (a class that includes most stream-
ing algorithms), proven optimal in terms of asymptotic parallelism extraction
[17]. This method uses an efficient constraint solver based on Parametric Inte-
ger Programming, PIP [7]. In theory, the result should be a multidimensional
affine schedule for the whole program, telling when each iteration, operation or
communication should occur. In practice, PIP may not scale to large systems
generated from real-world streaming applications (its complexity is exponen-
tial in the worst case). Instead, we can benefit of the hierarchical decompo-
sition of the SALLY program to cut down the scheduling problem to tractable
pieces. This approach has already been studied and implemented in the context
of the Alpha language [6].

4.1 The YAKA scheduler

The YAKA scheduler is the first step in the construction of the target pro-
gram. It is invoked as soon as a first sketch of the architecture (number and
type of the operators, size of the memory) is available. This information may
be given, e.g., by a preliminary analysis using MPPN or be generated by the
designer. It has two input interfaces. First, a C-like programming language
(sYAPI) with process, channel, port and send/receive extensions; its ease of
use makes it suitable as a development tool. The second interface is an in-
termediate representation in XML format (a convenient way of representing
syntax trees) and do not impose any semantics on the designer. There is a
DTD for this representation, which is primarily intended as documentation. In
a future version, it is intended that the SALLY parser will generate an instance
of such XML representation.

Eventually, the present version generates C code through standard polyhe-
dra scanning techniques [1, 14, 3]. But the hierarchical control structure of
SANDRA will require more work to generate low-level code (code compaction,
code partitioning for different controlers, explicit generation of communication
patterns, memory management).

In its standard version, YAKA does not address operation latency, real-time
constraints, allocation of computations to the SANDRA controllers and low-
level operators, and memory/register allocation. Theoretically, these additional
constraints and tasks do fit into the YAKA model thanks to linear encodings,
see e.g. [16]. Latencies and real-time deadlines are captured through additional
affine constraints, and YAKA automatically converts resource constraints into
artificial dependences (based on a cyclic allocation of resources to competing
operations).

12

Trade-off between timing and register usage

T T
wio resource constraints -
with resource constraints -----

node HFL_el en{param float coef[64][6],

o b H | in pi xel iline[1920],
v i out pi xel ol ine[720])
2 4 { ...
E”O’ \ 7 (* polyphase FIR filter *)
= '3,. oline[t] =
150 - x 1 SUMi[0..5],
tnpline[src_idx(t,720,1920)+i-3]
200 - kS 1 * coef [HFL_Phase[t]]1[i])}
g,

Clock cycles per iteration

Figure 6. Software pipelining of one HFL step

Most of the practical work around YAKA has to do with a better integration
in the SANDRA compilation chain, both at the input and output sides. On
the theoretical side, the problem of taking into account resource constraints
(e.g., a limited number of adder-multipliers) has only partial solutions. In the
present version, this is mainly obtained by adjusting the size of circular buffer
(since the degree of parallelism cannot be higher that the amount of writable
memory). This is unsatisfactory, as it needs manual arbitration between phases
of the application. Another point is that the present scheduler is not modular,
and the subroutines in the source have to be inlined.

4.2 Software Pipelining and Hierarchy

We are working on two possible solutions to improve the scheduling quality.
Both of them are based on PILO-LORA, an existing software pipelining tool
developed at INRIA that performs loop instruction scheduling (P1L0O) as well
as loop cyclic register allocation (LORA). Unlike usual modulo scheduling al-
gorithms, Pi1Lo implements the non iterative-DESP [18] software pipelining
algorithm: it handles fine-grain resource constraints, including register types,
non-uniform instruction formats and arbitrary reservation tables. PiLO pro-
vides heuristics for the control of register pressure. For instance PILO-LORA
can software-pipeline an elementary step of HFL (Horizontal Filter) and give
the Pareto curve drawn in figure 6 for trading-off register pressure against tim-
ing in a dimensioning phase of the lowest level of the SANDRA architecture. In
this example, the analysis assumed a design with 4 multipliers, 4 adders, and
3 memory ports (2 for loads and 1 for store instructions), with latencies of 20
cycles for loads and stores, and 10 cycles for multipliers and adders.

We are also considering other approaches for exploiting PILO-LORA. The
first approach consists in regarding PILO-LORA as an alternative to YAKA’s
affine scheduling. Based on array dependences and reservation tables for every

13

subtask involved in a process, the DESP algorithm can be applied to the inner-
most loops of the process. Then, application to the whole program requires a
recursive application of PILO-LORA along the process hierarchy, much like
hierarchical software pipelining techniques [12]. In practice, it requires an
additional effort by the programmer since PILO is not able to automatically
assign processes to SANDRA levels; hence a prior coarse-grain mapping has to
be provided along with the SALLY source code.

Another approach — currently in progress — consists in combining the
YAKA scheduler with a software pipeline “microscheduling” phase, integrating
resource allocation and fine-grain rescheduling. E.g., YAKA is appropriate for
detecting (possibly unlimited) parallelism in loop nests and PILo-LORA is
much better at allocating resources and scheduling the innermost loops in the
code generated by YAKA. Artificial scheduling constraints may be added to
YAKA in order to make the innermost loop code scheduling more efficient.

4.3 Simulation of Sally programs using SystemC

In parallel with the development of the compilation chain for native tar-
get programs, we developed a tool generating SYSTEMC simulation models
directly from SALLY programs. The generation of SYSTEMC models lever-
ages on the direct correspondence between core elements of SystemC and the
SALLY process model, including time-related features (clocks, delays) and
concurrency. Latency requirements information from the application source
code is used to define run-time consistency checks related to deadline respect
etc.

The SystemC models are generated by combining two sources of infor-
mation: a SALLY program (used as a specification of application require-
ments, both functional and temporal), and a target system description con-
taining the functional and temporal capabilities of elementary processes used
in that SALLY program.

The granularity of the generated SYSTEMC model directly corresponds to
the granularity of the processes described in the SALLY program. When the
SALLY program is refined to use actual operations of the target system, the
resulting SYSTEMC model will be equivalent to a compiled instruction set
simulator of the target for the application specified by the SALLY program.

This approach to simulation model generation provides several advantages:

m direct representation of time (clocks, latencies) and concurrency repre-
sented in SALLY programs;

m elimination of verbosity in SystemC programming, particularly in class
declarations; the SALLY process interface declarations are on average
ten times smaller than the corresponding SystemC declarations;

14

= automatic generation of behavior cross-checking and reporting/profiling
code, e.g., detection of missed deadlines, monitoring of process activity;
the latter complements the analysis capabilities of HARRY, providing a
dynamic feedback on the utilization rate of processes, on process net-
work latencies, and on traffic shapes of inter-process communications.

= automatic generation of activity traces using SystemC trace generation
facilities; a side-by-side analysis of the evolution of process states sim-
plifies the analysis of synchronization errors and greatly simplifies ap-
plication debugging.

5. SANDRA System Architecture

To achieve the required degree of flexibility, all elements of the system
should be configurable: functional units, their interconnection, control mech-
anisms, and memory subsystem. The frequency of reconfiguration of the dif-
ferent system elements depends on the nature of the tasks being performed,
and can vary from several Hertz (mode changes, transitions between video
frames) to several tens of MegaHertz (sub-pixel filtering). Centralizing the re-
configuration decisions would lead to a severe control bottleneck in the system.
Instead, we propose to distribute the control and organize the system using a
hierarchical approach, driven by and adapted to the characteristics of the target
application domain.

The presence of explicit timing/frequency requirements in targeted applica-
tions led to another fundamental decision: instead of executing the tasks as
fast as possible (driven by the intrinsic speed of hardware modules), the tasks
are triggered right-on-time, synchronized with specific events. This mecha-
nism addresses a major shortcoming of conventional interrupt-triggered archi-
tectures, which maximize average performance, and tolerate latency on “low-
probability” events, expected to arrive fully asynchronously with the operation
of the processor.

In our approach, the coordination of tasks operating at the same rate is per-
formed by a single controller, which delegates the control of individual tasks
to the next level of the hierarchy. This mechanism is again used to control
sub-tasks inside each of the top-level tasks, and can be recursively repeated
for as many levels as required. Conversely, tasks with independent clock do-
mains may be executed by different controllers without unnecessary synchro-
nizations. Finer-grain (thus, higher-frequency) tasks have stricter latency and
bandwidth requirements: they require fast access to data and a high storage
bandwidth. Conversely, coarse-grain tasks can tolerate longer latencies than
the rest of the system. This fact is reflected in the memory and communica-
tion structure of SANDRA. The lowest levels of the system hierarchy use small,
fast memories fully interconnected with relatively simple operators (FIR filters,

15

etc.). Higher levels of the hierarchy offer a lower number of larger memories,
and communicate through a higher-latency network. In this way, both the lo-
cality of data references and the natural synchronization of tasks at each level
can be fully exploited within a unified system organization.

5.1 Functional Structures

The SANDRA hardware (see figure 3) consists of four distinct, superposed
architecture layers corresponding to the different functions of the program-
mable system:

1 A hierarchical control layer managing resource activity and enforcing
data dependences and real-time constraints on the three other functional
structures of the SANDRA hardware.

2 A clustered execution layer gathering the functional units that operate
on the contents of the data streams. A the lower level, each functional
unit has a structure of a dedicated VLIW (Very Long Instruction Word),
allowing the various operative units such as ALU, multipliers, etc to
work simultaneously.

3 A heterogeneous communication layer tuned to the activity of each level:
low latency, high bandwidth and high connectivity for the lower lev-
els (pixel processing), higher latency and throughput achieved through
larger data blocks for the higher levels (line, image processing). Because
of the multiplicity of compute cores, the increased need for communi-
cation bandwidth, and the ever increasing wire cost inside systems-on-
a-chip (SoC), the higher level internal communications will be imple-
mented by networks instead of classical busses.

4 A parameter layer to customize the dedicated functional units of the
execution layer, providing parameters for the operations on the main
(pixel) computation flow. It is composed of very small RISC processors.

The execution and parameter layers are tightly coupled, but they perform
radically different operations and process different kinds of data. A typical
example of parameter unit is address generation: in most stream-processing
algorithms, irregularities can be moved towards generating addresses, the re-
mainder of the computation (e.g., pixel processing) following a regular flow. In
the application domain considered, most of (pixel) compute kernels are similar
in various algorithms; it is the way they are organized and how their param-
eters are computed that differ and gives the differenciating factor. Therefore,
the parameter layer is the most flexible.

The architecture also distinguishes what is related to stream-processing com-
putations from what is needed to run the SANDRA system: the execution code
is split in two parts. The application code describes the computation on the
data flow, and the control code schedules the application code over the hier-

16

archical architecture. The application code is independent of the architecture
instance and targets the communication, execution and parameter structures.
The control code adapts the execution to a given SANDRA instance and to the
dynamic part of applications.

5.2 Control Structure

The control structure of SANDRA is also composed of hierarchical layers.
It illustrates the current trend in system design: systems are built by inte-
grating components (often called IPs) (software or hardware) that are linked
together by a common interface for communication and control. From the
software point of view, this represents an evolution towards component-based
software engineering. The hierarchical control system allows to distribute the
control units near the functional units, hence to have a scalable and modular de-
sign. For example, if the higher-level controller implements a two-dimensional
polyphase filter, it may decompose this task into separate horizontal and verti-
cal filters, and delegate these subtasks to lower-level controllers. The top level
does not need to know how the lower-level controllers perform the tasks, as
long as they satisfy the specified time constraints. The lower level controllers
can also decompose the mono-dimensional filters into blocks of vector oper-
ations, then into scalar products and additions, and so on. Each level of the
computation is assigned to a controller, but several logical controllers can be
folded into one physical controller. This scheme allows to have a ”logical”
single control flow, but in fact not centralized and supporting some asynchrony
(sub-level controllers can be independent, and they can feedback to the con-
troller just above when they have finished their task).

The controller structure is the same for each level of the hierarchy, and is
a stack-based virtual machine. Since multiple reentrant control codes should
be executed on one physical controller, no explicit register allocation is done.
Variables (used only for the control part of the application) are not explicitly
allocated but remain on the stack. If a new task starts, it could start on top of
the previous task stack as long as it eventually restores the right stack position.
Using a stack-based virtual machine also eases portability across implementa-
tions of the SANDRA architecture and favors code compactness (factorization).
As opposed to traditional stack based languages (Java, Forth, Postscript, OPL,
etc.), we propose a threaded code structure where each instruction explicitly
targets the next instruction to be executed; together with stacks, this improves
factorization and eases reentrance and late binding. At each level (except for
the lowest level), an instruction is composed of two main fields:

m the first one is dedicated to the control flow itself and its threading
mechanism: instead of a “program counter”, the next instruction is indi-

17

cated explicitly within the current instruction, in a similar manner as the
linked-task structure of a real-time OS;

= the second field manages the lower level controllers; it is composed of
several slots, one for each sub-controller; thus, there is no real distinction
between a slot that triggers a (lower level) controller action (in this case,
it is equivalent to a subroutine call) and a slot that controls a functional
unit.

This structure allows to map a code onto various instances of SANDRA, with no
recompilation and a minimum load during the instantiation of the code (bind-
ing). It gives some code expansion, but it is believed to be compensated by the
code factorization present in our domain-specific applications.

5.3 Dynamic Reconfiguration and Application
Switching

Let us now show how our static modeling, compilation and optimization
framework can cope with the dynamic features of Ambient Intelligence me-
dia applications. Stream-oriented applications can be modified on request of
the user (for example, having or moving a Picture In Picture), or due to the
environment (new people entering a room, appearing in the vision field of a
camera, etc.). However, these changes are slow compared to processing speed
(user interactions are at the split second level, while video applications require
changes at the frame rate, i.e., several milliseconds.)

The following paragraphs describe how dynamic reconfiguration and appli-
cation switching can be mapped to the SANDRA system, while keeping the
most important features of statically compiled code, such as guaranteed per-
formances, predictability and high silicon efficiency.

In the considered application domain, there are always boundaries and lim-
its that are given, either explicitly or implicitly: for example, giving a time
limit for the execution time (e.g. a frame interval) and given the hardware re-
sources, an implicit limit on the complexity of the application can be derived.
We have developed the MPPN to help determining these constraints. If an ap-
plication cannot fit within the hardware or time constraints, then it has to be
modified (simplified). This led to the idea of “piecewise static control”: an
application is split into sub-applications, each of them specifies a sub-case for
a certain range of parameters. Each sub-application can therefore be statically
compiled with good efficiency. Dynamic behavior within a sub-application is
handled by classical methods, such as worst case dimensioning and predicated
instructions. Each sub-application has known characteristics, performances,
and has a better efficiency because it covers only a sub-set of the variability of
the original application. The activation of the relevant sub-application is done
by one controller after the analysis of the input parameters.

18

Task or sub-task allocation in the system is done preferably in space rather
than in time (using parallelism rather than a faster clock). Although the con-
troller can implement time-sharing of functional units, the context saving needs
to be explicitly expressed in the application, and it might be costly due to
the large amount of data stored in the various pixel pipelines. This is why in
SANDRA we prefer to use a space-sharing” mode: tasks are activated or de-
activated at the level of the sub-controller directly in charge of the resources
allocated to these tasks. In the SANDRA controller system, a task (or a sub-
task) is represented by the sub-tree with the root node being the controller that
directly or indirectly (by the controllers that depend on it) "covers” all the re-
sources available for the task. Switching from one task to another one means
simply deactivating one complete sub-branch of the tree and activating a new
one. This is done in a very simple manner by changing the link field in the
corresponding instruction of the root node.

The application domain enforces quality-of-service constraints including
time requirements, and we are aiming at efficient and guaranteed usage of the
architecture, not at the best effort processing (it is useless to go faster than
required) Thus, the concept of hierarchical hardware and control provides a
simple mechanism for tasks activation: if two sets of controllers, organized in
a sub-tree, can control the same kind of compute elements, storage units and
communication means, sub-tasks can execute indifferently on any controller.
Hence, a simple compile-time scheduling and allocation is possible. The near-
est controller that supervises the two tasks (i.e., the closest parent in control
hierarchy) can adjust its own configuration to link the input/outputs of the new
task to the rest of the system (this is made possible because all controller have
an unique ID, therefore the code can know exactly where it runs). For any
controller above the direct supervisor of the two tasks, the activation of one or
the other task has no effect, as long as the communication schemes of the tasks
are identical.

6. Conclusion

This work addresses the development of embedded systems dedicated to
pervasive video applications in the Ambient Intelligence universe. The compu-
tation and bandwidth constraints of these applications exceed today’s general-
purpose processors by orders of magnitude, yet the cost of application-specific
hardwired components becomes disproportionate with product lifetimes. To
address these challenges, we stressed the need for a fast and efficient develop-
ment process for domain-specific system solutions.

We surveyed the SANDRA approach to the architecture, compilation and
language issues addressed by real-time streaming applications. The project led
to promising results in four different aspects:

19

m The development of Multi-Periodic Process Networks — providing time
and hierarchy to a restricted class of Kahn Process Networks — helps in
design-space exploration, validation of resource/time properties, and in
mapping onto distributed components.

m The design of SALLY, a domain-oriented language combining streams
and implicit parallel constructs with non-functional properties such as
time requirements and resource allocation.

= A compiler chain, using state-of-the-art algorithms for extracting paral-
lelism, affine scheduling, software pipelining and code generation.

= A hierarchical architecture, easily tuned to the application requirements
and allowing to run highly demanding algorithms at consumer price.

The proposed approach can also be applied when the resources are net-
worked, mainly inside a SoC, and it allows to support dynamic behavior to
some extend in an environment where hard time constraints are important,
therefore demanding real-time streaming applications for Ambient Intelligence
can be defined and efficiently mapped with our approach on embedded sys-
tems.

Further work is required before demonstrating a running prototype, and
larger examples should be studied to explore the system’s scalability. Nev-
ertheless, we believe our model has matured enough to clearly state the most
important directions towards a domain-specific approach to architecture and
compilation development.

Acknowledgements

This project is supported by a Pierre et Marie Curie fellowship and a Euro-
pean Community project MEDEA+ A502 “MESA”.

20

References

(1]

(2]
(3]
(4]

(5]

(6]
(7]
(8]
(9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]

(18]

C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proc. third SGPLAN
Symp. on Principles and Practice of Parallel Programming, pages 39-50. ACM Press,
April 1991.

F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity.
Wiley, 1992.

C. Bastoul. Generating loops for scanning polyhedra. Technical Report 23, PRiSM,
University of Versailles, 2002.

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for simu-
lating and prototyping heterogeneous systems. J. Comp. Smulation, 4, 1992.

A. Cohen, D. Genius, A. Kortebi, Z. Chamski, M. Duranton, and P. Feautrier. Multi-
periodic process networks: prototyping and verifying stream-processing systems. In Pro-
ceedings of Euro-Par 2002, volume 2400 of LNCS, pages 299-308, Paderborn, Germany,
August 2002.

J. B. Crop and D. K. Wilde. Scheduling structured systems. In EuroPar’ 99, LNCS, pages
409-412, Toulouse, France, September 1999. Springer Verlag.

P. Feautrier. Parametric integer programming. RAIRO Recherche Oprationnelle, 22:243-
268, September 1988.

P. Feautrier. Dataflow analysis of scalar and array references. Intl. Journal of Parallél
Programming, 20(1):23-53, February 1991.

P. Feautrier. Some efficient solutions to the affine scheduling problem. part 1. multidi-
mensional time. Intl. J. of Parallel Programming, 21(6):389-420, 1992.

G. Kahn. The semantics of a simple language for parallel programming. In Jack L. Rosen-
feld, editor, Information Processing 74: Proceedings of the IFIP Congress 74, pages
471-475. IFIP, North-Holland Publishing Co., August 1974.

B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaan: Deriving process networks from
matlab for embedded signal processing architectures. In Proc. 8th workshop CODES
pages 13-17, NY, May 3-5 2000. ACM.

M. S. Lam. Software pipelining: An effective scheduling technique for vliw machines. In
Proc. ACM Conf. Programming Language Design and Implementation, pages 318-328,
1988.

H. Leverge, C. Mauras, and P. Quinton. The ALPHA language and its use for the design
of systolic arrays. J. of VLS Sgnal Processing, 3:173-182, 1991.

F. Quiller, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops from poly-
hedra. Intl. J. of Parallel Programming, 28(5):469-498, October 2000.

J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast prototyping of datapath intensive
architectures. |IEEE Design and Test of Computers, 8(2):40-51, 1991.

L. Thiele. Resource constrained scheduling of uniform algorithms. J. of VLS Sgnal
Processing, 10:295-310, 1995.

F. Vivien. On the optimality of Feautrier’s scheduling algorithm. In Proceedings of Euro-
Par 2002, volume 2400 of LNCS, pages 299-308, Paderborn, Germany, August 2002.

J. Wang, C. Eisenbeis, M. Jourdan, and B. Su. DEcomposed Software Pipelining: a New
Perspective and a New Approach. Intl. J. on Parallel Processing, 22(3):357-379, 1994.
Special Issue on Compilers and Architectures for Instruction Level Parallel Processing.

