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ABSTRACT

Storage mapping optimization is a flexible approach to folding ar-
ray dimensions in numerical codes. It is designed to reduce the
memory footprint after a wide spectrum of loop transformations,
whether based on uniform dependence vectors or more expressive
polyhedral abstractions. Conversely, few loop transformations have
been proposed to facilitate register promotion, namely loop fusion,
unroll-and-jam or tiling. Building on array data-flow analysis and
expansion, we extend storage mapping optimization to improve op-
portunities for register promotion.

Our work is motivated by the empirical study of a computa-
tional biology benchmark, the approximate string matching algo-
rithm BPR from NR-grep, on a wide issue micro-architecture. Our
experiments confirm the major benefit of register tiling (even on
non-numerical benchmarks) but also shed the light on two novel is-
sues: prior array expansion may be necessary to enable loop trans-
formations that finally authorize profitable register promotion, and
more advanced scheduling techniques (beyond tiling and unroll-
and-jam) may significantly improve performance in fine-tuning reg-
ister usage and instruction-level parallelism.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Optimization.

General Terms

Algorithms, Performance.

Keywords

Register Promotion, Tiling, Blocking, Scheduling, Array Contrac-
tion, Array Folding, Pattern Matching, String Matching, Itanium.

1. INTRODUCTION
Scalar optimizations applied to register promotion are ubiquitous

in production compilers and successful in improving performance
of a large spectrum of programs. Most of them are based on con-
stant sub-expression elimination or partial redundancy elimination,
combined with pointer analysis and loop unrolling [34, 31, 7].
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Register promotion for large register files must be combined with
more aggressive loop transformations. First of all, it is critical
to exploit scalar reuse over iterations of the innermost loop [16],
e.g., to optimize the benefits of software pipelining. Register tiling
is a complementary approach to exhibit scalar reuse at different
depths in a loop nest; it plays the first role in optimization strate-
gies for many memory-bound kernels from numerical, multimedia,
cryptography, or computational biology benchmarks. A typical ex-
ample is matrix-matrix multiplication [36], it is also the case for
the computational biology example described in this paper. Most
works build on locality-improving techniques like loop fusion [8,
10, 33] or tiling [11, 33, 21] to exhibit more opportunities for scalar
promotion. In this paper, we will refer to both tiling and unroll-and-
jam based techniques as register blocking. Recent improvements to
these approaches proved their applicability to wide issue machines
[21] and codesign and synthesis tools [42, 43].

1.1 Running Example
We will now present a simple example to clarify the basic reg-

ister blocking concepts and to motivate the use of array expansion
and storage mapping optimization. The nest in Figure 1 is typical
of hand-optimized programs with scalar reuse, both intra-loop —
n and p — and loop-carried — n and o. Dependences on D (and
scalars) hamper register blocking: it does not seem possible to fur-

ther reduce the number of memory accesses.

Dependence removal

To enable unroll-and-jam or tiling, one may first convert D to the
single-assignment array E in Figure 2, thanks to array data-flow
analysis [17], then eliminate scalars n, o and p by forward substitu-
tion, see Figure 3. The expansion of D removes all memory-based
dependences on arrays, while forward substitution removes output
and anti dependences on scalars n and o (at the cost of redundant
memory accesses, but at a lower cost than expanding scalars n and
o into arrays). Notice other dependence removal techniques are not
really applicable to this case: array renaming is not applicable [24],
and array privatization [46] does not easily apply in the presence of
loop-carried dependences and induces a copy overhead that may
only be fully eliminated by array data-flow analysis, the core tech-
nique for conversion to single assignment form. One may now un-
roll the outer loop, fuse the resulting inner loops, and finally unroll
the inner loop, see Figures 4 and 5 (we use unroll factors of 2 and
assume m and k are odd numbers for the sake of clarity). Figure 7
shows array data-flow dependences (arrows) and the resulting load
(L) and store (S) pattern on the 2× 2 (fully unrolled) tile. A sim-
ple scalar promotion algorithm [34] will only take intra-loop reuse
into account and lead to the code in Figure 6. The corresponding
load/store pattern is shown in Figure 8.



for (i=0; i<m; i++)

o = n = D[0];

for (j=0; j<k; j++)

p = D[j];

n = f(n, o, p);

D[j] = n;

o = p;

1 load and
1 store per
iteration of j.

Figure 1: Original nest

for (i=0; i<m; i++)

o = n = D[0];

for (j=0; j<k; j++)

if (i==0) p = D[0];

else p = E[i-1][j];

n = f(n, o, p);

o = p;

E[i][j] = n;

Figure 2: Expansion

E[0][0] = D[0];

for (j=1; j<k; j++)

E[0][j] = f(E[0][j-1], D[0], D[0]);

for (i=1; i<m; i++)

E[i][0] = f(D[0], D[0], E[i-1][0]);

for (j=1; j<k; j++)

E[i][j] = f(E[i][j-1], E[i-1][j-1], E[i-1][j]);

Figure 3: Scalar forward substitution and peeling

// first iteration omitted

for (i=1; i<m; i+=2)

E[i][0] = f(D[0], D[0], E[i-1][0]);

E[i+1][0] = f(D[0], D[0], E[i][0]);

for (j=1; j<k; j++)

E[i][j] = f(E[i][j-1], E[i-1][j-1], E[i-1][j]);

E[i+1][j] = f(E[i+1][j-1], E[i][j-1], E[i][j]);

Figure 4: Unroll-and-jam

// first iteration omitted

for (i=1; i<m; i+=2)

E[i][0] = f(D[0], D[0], E[i-1][0]);

E[i+1][0] = f(D[0], D[0], E[i][0]);

for (j=1; j<k; j+=2)

E[i][j] = f(E[i][j-1], E[i-1][j-1], E[i-1][j]);

E[i+1][j] = f(E[i+1][j-1], E[i][j-1], E[i][j]);

E[i][j+1] = f(E[i][j], E[i-1][j], E[i-1][j+1]);

E[i+1][j+1] = f(E[i+1][j], E[i][j], E[i][j+1]);

Figure 5: Inner loop unrolling

Overall, array expansion seems a good idea to reduce the impact

of manual optimizations on the applicability of important compiler

phases. Yet the result is worse than the original code: one spare
store is traded for an additional load every four iterations of j, and
the array is now two-dimensional. The additional load comes from
the lack of scalars reuse along the inner loop (vertical dependence):
the hand-optimized version dedicated n to the value that is now
loaded from E[i][j-1]. In addition, no dimension of E can be
eliminated by array contraction [38], since live values flow from
both leftward and downward tiles. Such a disappointing result ru-
ins the applicability of array expansion as an enabling technique
for register blocking. Of course, this does not improve when ap-
plying more advanced rescheduling transformations before scalar
promotion (beyond unroll-and-jam).

Notice that some extended scalar promotion techniques discover
scalar reuse across loop iterations, most notably the one by Duester-
wald et al. [16], but along the innermost loop only. Compared to
what can be done with array data-flow analysis, these techniques
fail to discover many cases of scalar reuse because they rely on
simpler (and faster) analyses of array references. They typically
fail for most imperfectly nested loops (including the example in
Figure 6), for tiled nests where the innermost loops have not been
fully unrolled, and for complex loop bounds and dependence pat-

// first iteration omitted

d0 = D[0];

for (i=1; i<m; i+=2)

e30 = f(d0, d0, E[i-1][0]);

E[i][0] = e30;

E[i+1][0] = f(d0, d0, e30);

for (j=1; j<k; j+=2)

e11 = E[i-1][j];

e12 = E[i][j-1];

e10 = f(e12, E[i-1][j-1], e11);

e20 = f(E[i+1][j-1], e12, e10);

e30 = f(e11, e10, E[i-1][j+1]);

E[i+1][j] = e20;

E[i][j+1] = e30

E[i+1][j+1] = f(e20, e10, e30);

0.5 load and
1 store
for j= 0.

1.25 load and
0.75 store per
subsequent
iteration of j.

Figure 6: State-of-the-art scalar promotion
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terns, like the skewed version of our benchmark example in the next
section. In any case, such techniques would not succeed in folding
the expanded arrays.

Exploring a more ambitious approach

We face two challenges:

1. enable loop-carried and cross-loop scalar reuse at every level
of an imperfect loop nest, in the context of complex (but reg-
ular) array data-flow information;

2. guarantee that the memory footprint will be minimal, undo-
ing any unnecessary array expansion induced by the conver-
sion to single-assignment form.

To address the first issue, we duplicate the declaration of array E

for each surrounding loop. The new arrays are called reuse buffers:
they store every value that will be reused across the corresponding

loop iterations. Practically, right after unroll-and-jam, we duplicate
writes to E[i+1][*] — values flowing to the next iteration of the
outer loop — with references to a new array B, and we replace reads
from E[i-1][*] — values flowing from the previous iteration of
the outer loop — by references to B, see Figure 9. After unrolling
the inner loop, we repeat the process and store the values reused
along the inner loop in a new array C, see Figure 10. This technique
generalizes the inter-iteration reuse mechanism of [16] and extends
the virtual register concept [31] to arrays. These progresses make
inter-iteration and cross-loop reuse applicable to a large class of

imperfectly nested loops and arbitrary loop levels.
Next, we may reduce the memory footprint with array folding

techniques. The second dimension in array C is easily removed by
array contraction, but arrays B and E require a finer-grain folding
technique. This is precisely what storage mapping optimization
is intended for [26]. Studying the number of intermediate writes
during the lifetime of values produce at every iteration, one may



// first iteration omitted

for (i=1; i<m; i+=2)

E[i][0] = f(D[0], D[0], B[i-1][0]);

E[i+1][0] = f(D[0], D[0], E[i][0]);

B[i+1][0] = E[i+1][0];

for (j=1; j<k; j++)

E[i][j] = f(E[i][j-1], B[i-1][j-1], B[i-1][j]);

E[i+1][j] = f(E[i+1][j-1], E[i][j-1], E[i][j]);

B[i+1][j] = E[i+1][j];

Figure 9: Outer loop buffer

// first iteration omitted

for (i=1; i<m; i+=2)

E[i][0] = f(D[0], D[0], B[i-1][0]);

E[i+1][0] = f(D[0], D[0], E[i][0]);

C[i][0] = E[i][0];

C[i+1][0] = E[i+1][0];

B[i+1][0] = E[i+1][0];

for (j=1; j<k; j+=2)

E[i][j] = f(C[i][j-1], B[i-1][j-1], B[i-1][j]);

E[i][j+1] = f(E[i][j], B[i-1][j], B[i-1][j+1]);

E[i+1][j] = f(C[i+1][j-1], C[i][j-1], E[i][j]);

E[i+1][j+1] = f(E[i+1][j], E[i][j], E[i][j+1]);

C[i][j+1] = E[i][j+1];

C[i+1][j+1] = E[i+1][j+1];

B[i+1][j] = E[i+1][j];

B[i+1][j+1] = E[i+1][j+1];

Figure 10: Inner loop buffer

check that only two columns of B (separated by a useless column
recording no value) and two lines and two columns of E are si-
multaneously alive. Analogously, one may improve the folding of
array C since only two of its elements are simulataneously alive.
Using the technique by Lefebvre and Feautrier, we obtain the code
in Figure 11 (the integer division in the subscript of B is due to
the removal of the useless column).1 The corresponding load/store
pattern is shown in Figure 13.

The introduction of buffers B and C split the iteration space of
values produced and consumed within a tile — array E — from the
iteration space of values flowing to the upward tile — array C —
and from the iteration space of values flowing to rightward tiles —
array B. Storage mapping optimization exploits this iteration-space
partitioning to decouple the folding of each array, B, C and E, hence
to further reduce the memory footprint, and to discover opportuni-
ties for scalar promotion: it is now straightforward to promote the
small, bounded size arrays C and E to scalars. Applying intra-block
scalar promotion to B as well, we obtain the optimized code in Fig-
ure 12. The corresponding load/store pattern is shown in Figure 14.
This final version needs only three fourths of the loads and half the
stores of the original code. In addition, considering the peeled it-
eration j = 0, scalar promotion eliminates all array references but
one, reusing values of C when entering the inner loop and reusing
values of B across iterations of the outer loop. This kind of scalar
reuse is out of reach of previously proposed techniques.

1.2 Facilitating Register Promotion
Previous works studied loop transformations facilitating register

promotion (mostly) in isolation from the other optimization phases.
A real loop nest optimizer includes transformations to deal with
the cache hierarchy and to exploit instruction or thread level par-

1Their method generates modulo operations for arrays C and E as
well, of the form C[i%2] and E[i%2][j%2], but these subscripts
can be further simplified because i and j are odd numbers. Like-
wise, notice that the complex subscript of array B may be simplified
by further unrolling (or strip-mining) the outer loop.

// first iteration omitted

for (i=1; i<m; i+=2)

E[1][0] = f(D[0], D[0], B[(i/2)%2][0]);

E[0][0] = f(D[0], D[0], E[1][0]);

C[1] = E[1][0];

C[0] = E[0][0];

B[(i/2+1)%2][0] = E[0][0];

for (j=1; j<k; j+=2)

E[1][1] = f(C[1], B[(i/2)%2][j-1], B[(i/2)%2][j]);

E[1][0] = f(e10, B[(i/2)%2][j], B[(i/2)%2][j+1]);

E[0][1] = f(C[0], C[1], E[1][1]);

E[0][0] = f(E[0][1], E[1][1], E[1][0]);

C[1] = E[1][0];

C[0] = E[0][0];

B[(i/2+1)%2][j] = E[0][1];

B[(i/2+1)%2][j+1] = E[0][0];

Figure 11: Array folding

// first iteration omitted

d0 = D[0];

for (i=1; i<m; i+=2)

e30 = f(d0, d0, e40);

e40 = f(d0, d0, e30);

c1 = e30; // can be

c2 = e40; // forwarded

B[(i/2+1)%2][0] = e40;

for (j=1; j<k; j+=2)

b = B[(i/2)%2][j];

e10 = f(c1, B[(i/2)%2][j-1], b);

e30 = f(e10, b, B[(i/2)%2][j+1]);

e20 = f(c2, c1, e10);

e40 = f(e20, e10, e30);

c1 = e30; // can be

c2 = e40; // forwarded

B[(i/2+1)%2)/2][j] = e20;

B[(i/2+1)%2)/2][j+1] = e40;

0 load and
0.5 store
for j= 0.

0.75 load and
0.5 store per
subsequent
iteration of j.

Figure 12: Improved scalar promotion
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allelism. Unfortunately, controlling the interplay of loop transfor-
mations is one of the hardest problem for todays loop-restructuring
compilers: first of all, predicting the effect of loop transformations
is tough on micro-architectures with complex dynamic structures
like branch predictors and reorder buffers [20], and predicting their
interactions is even worse [36]; in addition, classical transforma-
tions do not compose easily because they rely on fragile pattern
matching rules [12].

Of course, no technique is supposed to solve all performance
problems, but a practical loop transformation for register promo-
tion should minimize the constraints imposed on other transforma-
tion phases. For example, loop distribution or skewing [1] may
favor software pipelining, exposing more ILP without degrading
instruction cache locality. Register promotion should not forcibly



tile loops and rule out other important transformations. Our work
addresses this interplay issue by three means:

• decoupling the array folding technique from the scheduling
algorithm or profitability heuristic for loop transformation;

• decoupling the array folding technique from unrolling and
low-level register handling mechanisms (e.g., rotation);

• relying on storage-mapping optimization [26, 44, 40, 45], a
generalized approach to array folding compatible with the
most advanced scheduling algorithms.

We describe a polyhedral approach combining array expansion
with affine scheduling and storage mapping optimization.

Array expansion

Unlike other array expansion techniques, conversion to (dynamic)
single-assignment form [17] removes every memory-based (output
and anti) dependence. This improves the potential for loop trans-
formations and reduces the impact of syntactic variations in the
indexing scheme of the original arrays. Maximal static expansion
[2] is a natural extension suitable for irregular nests: it removes a
memory dependence only when the producer of a value is statically
known (i.e., without evaluating φ functions at run-time).

At first glance, array expansion seems the exact opposite of our
final goal. However, removing spurious dependence constraints fa-
vors the combination of register promotion with other optimiza-
tions. Interestingly, it also favors register promotion itself by en-
abling alternative array folding opportunities with better impact on
memory traffic. In addition, we will show that storage mapping
optimization controls the overhead of array expansion on the re-
maining memory accesses.

Affine scheduling

Most schedule-oriented loop optimizations can be modeled with
affine schedules. It is the case for unimodular transformations, loop
fusion, unroll-and-jam, tiling, software pipelining and statement re-
ordering [22, 27, 5], as well as more complex transformations like
shackling [25] or chunking [6]. In addition, several recent locality-
improving heuristics build directly on affine schedules [45, 29, 6].
The abstraction level of this model allows for register reuse across
iterations of any loop and across different loops, without suffering
from nesting restrictions.

Storage mapping optimization

Designed to reduce the memory footprint after a wide spectrum
of loop transformations, storage mapping optimization is a flexible
generalization of array contraction [28, 38]. It supports both uni-
form dependence vectors [9, 44] and polyhedral abstractions [26,
40, 45]. The last three techniques benefit from array data-flow anal-
ysis [17, 39, 14, 47, 3] and affine scheduling [19] to discover and
exploit liveness information.

Our work extends the algorithm by Lefebvre and Feautrier [26].
It can be generalized to irregular loop nests along the lines of [13],
and this is the main reason why we prefer this technique to the
algorithm by Quilleré and Rajopadhye [40]. However, we would
not be able to directly apply the techniques by Thies et al. [45]
because it cannot contract more than one array dimension, which
is required to reduce memory footprint after conversion to single-
assignment form.

Eventually, whereas traditional storage mapping folds multiple
array elements to a single location to reduce the memory footprint,
our technique combines this effect with buffer insertion (or index-
set splitting) to decrease the memory access rate in a loop nest, and
to factor memory transfers to folded locations.

1.3 Applications and Contributions
Our work is motivated by the empirical study of a computational

biology benchmark — the approximate pattern matching algorithm
BPR from NR-grep [35] — on a wide issue architecture. Our ex-
periments confirm the major benefit of register blocking (even on
non-numerical benchmarks) but also shed the light on two novel
issues: prior array expansion may enable loop transformations that
authorize profitable register promotion, and combination with alter-
native scheduling techniques (beyond interchange and fusion) may
significantly improve performance in fine-tuning register usage and
instruction-level parallelism.

Our main contributions are the following.

Register promotion. We revisit loop transformations for register
promotion in a more general setting, building on the most ad-
vanced techniques in array data-flow analysis, array expan-
sion, storage mapping optimization, and affine scheduling.

Storage mapping optimization. We extend a folding technique to
better handle tiled iteration spaces and exploit the topmost
level of the memory hierarchy. The main idea consists in
capturing inter-iteration and cross-loop reuse patterns into
so-called reuse buffers.

Computational biology. We present an optimized implementation
of an approximate pattern matching algorithm for modern
microprocessors. We experience strong speed-ups — over
6 on the Itanium1 and 5 on the Itanium2, with a number of
instructions per cycle (IPC) close to optimal. This promises
a significant impact on the relative merits and applicability
ranges of pattern matching algorithms.

The paper is organized as follows: Section 2 discusses the op-
timization of a computational biology benchmark and further mo-
tivates our approach, Section 3 presents our algorithm for register
promotion in the polytope model, before the conclusion.

2. BENCHMARK APPLICATION
We study the pattern matching algorithm BPR of practical use

for computational biology (and some data mining applications). It
is one of the main approximate string matching algorithms imple-
mented in the NR-grep utility (non-deterministic reverse grep ver-
sion 1.1.1) [35].

As opposed to well known tools like grep and agrep, NR-grep

is based on the bit-parallel simulation of a non-deterministic au-
tomaton. Practically, it makes use of each individual bit in a 64 bit
register to encode up to 64 states simultaneously. In addition, NR-

grep implements approximate string matching algorithms, suitable
for computational biology.

Practically, the implementation of BPR takes a (long) text and a
length m pattern, and search for occurrences of the pattern with at
most k errors (character insertion, deletion, substitution or swap).
Useful values of k range from 0 (exact string matching) to m/2,
and beyond for large alphabets. The main kernel of BPR is found
in file esimple.c, function esimpleScan in the “forward” case
with k ≥ 3, see Figure 15.

Compared to the running example, BPR is not perfectly nested,
uses one additional array T with similar access patterns, and imple-
ments a lot of bitwise logical operations. Interestingly, it also in-
cludes subscript of subscript references (to a read-only array) and
uses irregular control structures to report matches (unpredictable
early exit). None of these irregularities is a serious threat for array
and loop transformations, but both of them suggest the applica-
tion of modern techniques like fuzzy array data-flow analysis [14,



for (i=0; i<top; i++) {

B1 = Bits[Text[i]];

B2 = (B1 << 1) | ONE;

oD = D[0];

nD = D[0] = (oD << 1) | B1;

for (j=1; j<=k; j++) {

nD = ((D[j] << 1) | B1) & oD &

((oD & nD) << 1) & (T[j] | B2);

T[j] = (oD << 2) | B1;

oD = D[j]; D[j] = nD;

}

if (!(nD & E)) break;

}

Figure 15: Kernel of the BPR algorithm

47] and extensions of array expansion and storage mapping tech-
niques to irregular nests [2, 13]. In addition, the unpredictable early
exit requires speculative execution of the outer loop to implement
unroll-and-jam or other scheduling transformations.

2.1 Manual Optimizations
The kernel in Figure 15 is considered as highly optimized by pat-

tern matching experts: it is used for several empirical complexity
evaluations [35]. A quick performance evaluation on all variants of
the IA64 (Itanium) architecture confirms that the nest is memory-

bound: locality is not an issue here, but performance suffers from
compulsory misses on the text, and most of all, on L1 cache access
bottlenecks.

Compulsory misses are easily handled by prefetching. Factoring
loads to the text by (aligned) chunks of 8 characters helps solve
the second issue, but the rate of loads and stores per iteration is
still a major source of performance degradation. A more careful
analysis shows that computations are grouped in short dependent

chains, and that the number of arithmetic and logical operations
is not sufficient to cover the L1 cache latency. This is obvious on
the Itanium1 processor — 2 cycles latency — but also critical on
the Itanium2 — even with a 1 cycle latency. Loop unrolling does
increase instruction-level parallelism (ILP) and performance, but
does not solve the memory bottleneck issue.

As a result, it appears that the obvious method to achieve signif-
icant performance gains is to increase register reuse. This implies
tiling the loop nest and thus, expanding arrays D and T. Besides
tiling, we wish to apply other loop transformations to interleave a
sufficient number of short dependent chains, to improve ILP. Skew-
ing is very helpful in this case: iterations spanning oblique fronts
defined by i+j = constant can be executed in parallel. However,
this transformation has an impact on locality and on the complexity
of the generated code (array subscripts, loop bounds). Fortunately,
the skewed version has a better intra-tile locality, leading to shorter
life times after scalar promotion, avoiding unnessesary spill code
for large tile sizes.

Overall, it is very hard to tell which version will have the best
performance. Depending on whether skewing is applied or not,
and whether it is applied before or after tiling, we must evaluate
three candidate versions of the optimized code, namely rect, skew
and pllm. Figure 16 shows the tile shapes and schedules for these
three candidates. Each version is parameterized by the tile height
— p — and width — q. Except the reuse buffer — the vertical bar
depicted on the figures — all other accesses to arrays D and T have
been promoted to scalars.

Suppose that a modern loop-restructuring compiler could dis-
cover these performance bottlenecks and decide on an appropriate
transformation. Loop-carried dependences would still hamper reg-
ister blocking, like in the running example. Skewing to improve

ILP would also be impossible. The only way to apply the required
transformations is to resort to array expansion (with array data-flow
analysis), relying on a phase of storage mapping optimization to
reduce the memory footprint and provide opportunities for register
promotion.

2.2 Experiments
We used an Itanium2 1.3 GHz (Madison) workstation with HP’s

ZX1 chip-set and Intel’s Electron compiler version 8. Measure-
ments were conducted for several values of the pattern length m, al-
phabet size σ, and error k. We checked that the number of matches
(early exists) never exceeded a few thousands.

First of all, it appears that skew and pllm — the second and third
candidate version in Figure 16 — have very similar performances;
we will thus limit ourselves to the results on rect and skew.

We consider two data-sets:

• dna corresponds to searches in the 600 kilobase genome of
the buchnera bacteria (σ = 4) , with pattern size m = 41;

• txt corresponds to searches in a 10 megabyte English LATEX
document (σ = 127), with pattern size m = 24.

Speed-ups are measured with respect to the base version of NR-

grep optimized with Electron (best optimization parameters with
profiling), running for approximately 150 million cycles on dna

(more than 100 milliseconds) and 1500 million cycles on txt (more
than 1 second).

The tile’s width and height are denoted by p and q, respectively.
We first study the combined effect of all parameters except q.

Figure 17 shows the speed-ups of the two optimized versions
(rect and skew), on the two data-sets (dna and txt), for k = 13
and k = 19 errors, for tile widths p = 8 and p = 16, and for the best

tile height. Performance of both versions is very good in all cases
— speed-up of 3 or more. Yet we experience significant variations,
depending on the version, data-set and parameters.

• The schedule of the nest is imporant: the skewed and tiled
version is always better than tiling alone, up to 25.8% for
dna, k = 19 and p = 16. This is due to a better exploitation
of ILP without deteriorating locality.

• Increasing the tile width has a rather unpredictable impact.
This is due to the large size of the loop body after full un-
rolling of the inner loops. Inspecting the generated code
shows that the compiler sometimes produce spill code, hav-
ing exhausted the 128 available registers.

rect skew rect skew

dna k = 13 k = 13 k = 19 k = 19

p = 8 2.99 3.31 4.60 5.08
p = 16 2.98 3.45 4.06 5.11

rect skew rect skew

txt k = 13 k = 13 k = 19 k = 19

p = 8 3.00 3.40 3.98 4.28
p = 16 2.99 3.54 3.41 4.05

Figure 17: Best speed-ups for p = 8 and p = 16

These results are confirmed by the IPC metric. On most combi-
nations of parameters and versions, we get over 5 IPC, with a peak
5.6 on the best case, for an optimal value of 6 on the Itanium. How-
ever, for some cases, performance is sub-optimal; e.g., 3.79 IPC for
k = 19, p = 16, version rect and data-set txt.
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Figure 16: Three candidate schedules for the optimized BPR kernel

Let us now study the effects of the tile height (q). Figure 18
shows the speed-up for dna, k = 19, p = 8 and p = 16, varying the
tile size q from 3 to 10. Beyond the performance advantage of skew
with respect to rect, the results are hard to predict from a compiler
perspective. Even this advantage comes down to a tiny difference
for some cases, like p = 8 and q = 5. Most of these variations are
due to the complex interplay of the tile shape with the relative size
of the prelude/postlude of the tiled loops (when q does not divide
k + 1), and with the back-end optimizer of the Electron compiler
(software-pipelining, register allocation, spilling heuristic).

These results confirm that predicting the interplay of loop trans-
formations is a tough problem for modern compilers and architec-
tures. We thus advocate for a flexible approach to register promo-
tion that does not restrict the applicable loop transformations to reg-
ister blocking alone. Any other framework would not be applicable
in future optimizers that are likely to rely on feedback information
and iterative (or adaptive) schemes [23, 15, 20].

To conclude this section, we showed that both array expansion
and storage mapping optimization are necessary to optimize the
memory-bound BPR kernel. Interestingly, we also showed that
significant performance benefits may be obtained by combining
this extended register blocking technique with other performance-
increasing transformations, like skewing to increase ILP. The next
section will take the point of view of compiler designers. It will
describe how this combination of transformations is made possible

by the expressiveness of multidimensional affine schedules [19].

3. POLYHEDRAL TRANSFORMATIONS
Our application to the BPR algorithm showed that dependence

removal is not only important for parallelization (ILP in this case),
but for register promotion as well. It enables locality-improving
transformations and leads to strong speed-ups.

3.1 StateoftheArt Array Folding
Let us summarize the storage mapping optimization method by

Lefebvre and Feautrier [26]. In this presentation, we assume a
static-control nest [17], i.e., affine bounds, conditional guards and
subscripts with respect to surrounding loop counters and symbolic
constants, but our method extends to irregular nests through the
extended algorithms in [3, 13].

About the polytope model

We first recall classical results and definitions. Each iteration of a
statement is called an instance. The instance of a statement s for
an iteration vector v (the vector formed by the surrounding loop
counters) is denoted by 〈s,v〉.

The polytope model assume that the relative ordering of every
iteration of every statement is fully characterized through a col-
lection of affine schedules. An affine schedule is a function from
iteration vectors to lexicographically ordered time vectors. For a
given statement s, the corresponding function θs is called the affine

schedule of s [19]. This model can represent parallel and sequential
schedules obtained through most loop transformations [22, 5].

Array data-flow analysis yields, for each reference r in right-
hand side of a statement s, the function RDs,r mapping any iteration
of s to the precise instance that produced the value read through
r (using the PIP tool [18]); it is a generalization of the classical
reaching definitions [34] to polyhedral sets of instances and arrays.
When a reference reads a value defined before the program frag-
ment of interest, array data-flow analysis yields the special ⊥ in-
stance. In general, RDs,r is a union of polyhedra and can be repre-
sented by a quast, short for quasi-affine selection tree [17] (a gen-
eralization of a last-write tree [32]). Each leaf in a quast is an affine

function — characterized as a convex polyhedron — mapping a
disjoint set of instances of s to their definitions. For example, if s is
the second assignment in the running example, p = D[j], and t is
the fourth assignment, D[j] = n, then

RDs,D[j]
(

〈s, i, j〉
)

=

{

if i = 0 then ⊥
else 〈t, i−1, j〉

Indeed, reference D[j] in s reads the value produced by the last
iteration of t, except for the first iteration of the outer loop where it
reads the intial value of array D.

Array expansion is a direct application of array data-flow analy-
sis [17]. Back to the running example, one may convert array D to
the single-assignment array E in two simple steps:

• replace every reference to D in left-hand side by a reference
to E subscripted with the surrounding loop indices,

statement t becomes E[i][j] = n;

• replace every reference to D in right-hand side by a C im-
plementation of the quast of its reaching definition, where ⊥
corresponds to the original references to incoming values of
D, and where non-⊥ leaves yield subscripts of E, statement s

becomes p = RDs,D[j](〈s,i,j〉), i.e.,

p = (i==0) ? D[0] : E[i-1][j].

This naive implementation of the right-hand side can be further op-
timized by polyhedral code generation techniques [41], hoisting all
conditionals out of the inner loops. Modern code generation tools
generate excellent control structures with no or very low overhead
on medium-sized loop nests: for example, Bastoul’s code generator
[4] generate nearly-optimal conditionals and loops for hundreds of
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Figure 18: Tile height effect on performance

INTERFERENCE(s,s’,A)
d1←max(depth(s),depth(s′))
For each (s′′,r′′) such that r′′ is a reference to A in right-hand side, do

d2← depth(s′′)
Compute RDs′′ ,r′′

For each quast leaf a in RDs′′ ,r′′ , do

For p ∈ {1, . . . ,d1} and q ∈ {1, . . . ,d2}, do

Ia,s′′ ,r′′
p,q ←

{

(v,v′) | v ∈ Ds ∧ v′ ∈ Ds′ ∧ v′′ ∈ Ds′′∧

θs(v)≪p θs′ (v
′)∧θs′ (v

′)≪q θs′′(v′′)∧ v = RDa
s′′ ,r′′

(v′′)
}

Return
⋃

p,q,a Ia,s′′ ,r′′
p,q

Figure 19: Algorithm to compute the interference relation

loop nests in the SpecFP and Perfect Club benchmarks, some with
thousands lines of code. On the running example, it automatically
peels the inner loop and generate the code in Figure 2.

Algorithm overview

For each pair of quast leaves, one may compute the relation be-
tween instances producing values that are simultaneously alive, ac-
cording to the affine schedules (using the PolyLib [30]). This rela-
tion is called the interference relation, a generalization of the clas-
sical interference for register allocation [34] to polyhedral sets of
instances and arrays.

The algorithm is formally stated in Figure 19. It uses the follow-
ing additional definitions: depth(s) is the nesting depth of statement
s, Ds is the iteration domain of s (the set of iteration vectors associ-
ated with executions of statement s),≪ is the lexicographic order-
ing of vectors,≪k is the lexicographic ordering at depth k (u≪k v

if u and v share a common prefix on the k−1 first dimensions and
the k-th component of u is lower than the one of v), and RDa

s′′,r′′ is
the affine function characterized by leaf a of the quast RDs′′,r′′ .

Considering the loop nest in Figure 3, an affine schedule for the
unique statement is

θ(i, j) = (i, j).

From the lexicographic order, iteration (i, j) executes before (i, j+
1), which executes before (i+ 1, j), etc. Considering the nest in
Figure 4, affine schedules for the first and second statements are

θ1(i, j) = (i,2 j) and θ2(i, j) = (i,2 j+1).

From the lexicographic order, iteration (i, j) of statement 1 executes
before iteration (i, j) of statement 2, which itself executes before
iteration (i, j+ 1) of statement 1, etc. Thanks to the flexibility of

MAXIMALREUSEDISTANCE(A)
For each (s,s′) such that A is in left hand side of both s and s′, do

For k ∈ {1, . . . ,depth(s)}, do

WSk
s,s′
← INTERSECT

(

INTERFERENCE(s,s′,A),≪k

)

For k ∈ {1, . . . ,d}, do
For each (s,s′) such that A is in left hand side of both s and s′, do

∆k
s,s′
←

{

(v′− v) | (v,v′) ∈ WSk
s,s′

}

Mk
s,s′
←max≪k

∆k
s,s′

mk
s,s′
←











∞ if one of the leaves of the quast Mk
s,s′

is not a constant

0 if all leaves of the quast Mk
s,s′

are ⊥

otherwise, the maximum value of the leaves in the quast Mk
s,s′

mk
s ←maxs′ m

k
s,s′

Figure 20: Algorithm to compute the maximal reuse distance

affine schedules, we will show that storage mapping optimization
smoothly handles inter-iteration and cross-loop reuse.

For each depth k of the loop nest, one may deduce a function
WSk

s mapping each instance i of a statement s to the set of inter-

fering writes following i according to the affine schedule (using the
PolyLib) — this set is called the working set of i. One may then
compute the maximal reuse distance mk

s between each instance of s

and its last interfering write at depth k (using PIP). It was proven in
[26] that a single-assignment array subscript [i1]...[id] in left
hand-side of s may be safely replaced by

[i1%(1+m1
s )]...[id%(1+md

s )].

The algorithm is formally stated in Figure 20. It uses the fol-
lowing additional definitions: d is the depth of the full nest and
INTERSECT is the intersection of polyhedra. Both INTERSECT and
the computation of ∆

p
s,s′ correspond to PolyLib functions.

In a final step, each array in left-hand side of a statement is given
a unique name, and the effects of these transformations are propa-
gated to the uses in right-hand side. In addition, non-convex array
access patterns (lattice footprints) with strided rows or columns of
useless data (never read nor written) can be further contracted by
dividing the corresponding subscripts by the strides greatest com-
mon divisor [40]. We applied optimization to array B in Figure 11.

Application to the running example

Let us now informally apply this algorithm to the code in Figure 5.
The first statement stores a value in E[i][j] that does not es-
cape the loop body. The second and fourth statements record in
E[i+1][j] and E[i+1][j+1] a value that is later consumed by



the next iteration of the outer loop. The third statement records in
E[i][j+1] a value that is later consumed by the next iteration of
the inner loop. No value flows across more than one iteration of the
outer loop: the maximal distance at depth 1 is 1. With a fixed value
of i, some values (produced by the second and fourth statement)
flow across all iterations the inner loop: the maximal distance at
depth 2 is k, hence m2

1 = m2
2 = m2

3 = m2
4 = ∞, i.e., there is no fold-

ing opportunity. One may thus fold array E down to two columns:
E[i][j] can be replaced by E[i%2][j], which is equivalent to
E[1][j] since i is an odd number. No renaming is necessary here
since E is a temporary single-assignment array.

We have shown that array contraction cannot remove any dimen-
sion after conversion to single-assignment form and unroll-and-
jam. Storage mapping optimization does a better job: the folded
array is only twice the size of array D in the original nest.

Important remarks

Interestingly, the number of folded dimensions of the resulting ar-
rays is proven maximal for all affine schedules and storage map-
pings based on dimension-per-dimension foldings [40]. This strong
result provides a “no-harm” guarantee for conversion to single-
assignment form: if no schedule transformation is applied (fusion,
interchange, etc.), it proves that the folded arrays will be no larger
than the ones before expansion. Of course, loop transformations
may modify the liveness of values, but this optimality result is a
good reason to expect that the scalar promotion benefits will not
be counterbalanced by side-effects on the memory footprint. Nev-
ertheless, we cannot prove that the size of folded dimensions will
be minimal. Indeed, in addition to improving the opportunities for
scalar promotion, our improved technique reduces the size of tem-
porary arrays by a factor of two (compared to the method by Lefeb-
vre and Feautrier) on the skewed version of the BPR algorithm.

Eventually, this algorithm assumes a known schedule; but some
approaches to storage mapping optimization are schedule indepen-
dent — including [44] and one of the methods in [45]. This allows
a greater flexibility in many parallelization purposes, and for some
cases of sequential program transformations as well. However, it
would not be sufficient to fold array E in our example: indeed, loop
interchange is a legal transformation in the single-assignment ver-
sion but does not support any folding of the first dimension of E.

3.2 Extended Register Blocking Algorithm
Manual optimization of the running example showed that array

folding opportunities may be increased thanks to intermediate reuse
buffers. Our extended algorithm combines array expansion, tiling,
insertion of reuse buffers, and storage mapping optimization.

First of all, we define a hierarchical boundary between the inner
depths where we will perform full unrolling for register promotion,
from the outer depths of the loop nest. Typically, such a separation
would be the natural result of a multidimensional tiling transforma-
tion [11]: we would not explicitly unroll the inner loops until the
last optimization phase (scalar promotion), but we would clearly
mark the hierarchy between the “array” and “scalar” reigns.

Notice that an aggressive but partial unrolling may be detrimen-
tal, because no reuse buffers have been introduced at the innermost
levels to capture inter-iteration reuse. If full unrolling is too expen-
sive (in terms of code size and instruction caches), it just means that
the boundary is not correctly defined or that the tiles are too large.

Reuse buffers

Reuse buffers are closely related to the generation of communica-
tions in a data-parallel language like HPF [37]. For a given state-
ment s at depth d in a loop nest, and for a given depth k ≤ d, we

automatically insert a buffer to decouple inter-iteration reuse from
intra-iteration reuse at depth k. If the left-hand side of s is of the
form A[i1]...[id], and if and only if, some values defined by s

flow to other iterations of the surrounding loops, we insert a new
statement s′ right before/after s replicating the stored value in a new
buffer Abuffer. Practically, we create a statement

s′ : Abuffer[i1]...[id] = A[i1]...[id],

with the same schedule as s and whose iteration domain is restricted
to the set of iteration vectors v of s such that there exists an iteration
vector v′ of a statement s′ with a reference r′ in right-hand side such
that RDs′,r′(v

′) = v and v≪k v′. Thanks to the result of array data-
flow analysis again, it is easy to propagate the new buffer in all

references accessing values reused over iterations at depth k. This
process may be repeated for all statements (or only those of interest
to inter-iteration scalar promotion). In the resulting nest, we have
transfered to the separate new buffers, all references reading values
produced at a different iteration of a surrounding loop at depth k.

Applying this technique to the outer and inner loops of the run-
ning example — respectively at depth 1 and 2 — produces the code
in Figures 9 and 10, introducing the new arrays B and C.

Notice these reuse buffers are just a convenient way to imple-
ment index-set splitting: they easily separate iterations producing
values that “escape” to other iterations, from the ones producing
local values only.

Folding heuristic

Despite the optimality result and alternative strategies proposed in
[40], there is no reason for choosing a computation order or another
for the maximal reuse distances at depth k (mk

s ). Both [26] and
[40] make arbitrary choices, like folding array dimensions from the
outermost loop inwards.

In the context of register promotion and reuse buffers, the sit-
uation is different. Recalling the hierarchical boundary concept
introduced in this section, we may safely begin the computation of
mk

s from the inner loops, taking the risk of generating a little more
variable names in the innermost loop body. This is very acceptable,
assuming that a good register allocation algorithm is implemented
in our compiler back-end (to carefully trade register pressure for
ILP). The evaluation of mk

s for the outer loops may lead to smaller
values since the working sets have been restricted to fixed values
of the inner loop counters. Practically, we thus reverse the order-
ing proposed by [26]: we compute mk

s from the innermost level
outwards.

This optimization is responsible for the reduction of the mem-
ory footprint in the pllm version of BPR: the reuse buffer (across
the outer loop) has half the storage size of the two other versions,
i.e., exactly the same size as arrays D and T. This is due to subtle
interactions between the affine schedule and the liveness of values
stored in the reuse buffer.

Algorithm summary

It is not the purpose of this paper to discuss locality-improving
schedule transformations. We will thus assume that an arbitrary
scheduling algorithm is applied to the single-assignment loop nest.
In the case of the running example, we would reproduce the man-
ual transformations through two-dimensional tiling. For the ap-
plication to NR-grep, this scheduling algorithm would optionally
combine two-dimensional tiling with a skewing transformation, ei-
ther before or after tiling, to reproduce the three candidate versions
presented in Section 2.1.

For complexity reasons, it is much better not to unroll the loops
until the final scalar promotion phase. Indeed, storage mapping



optimization is an expensive process (most polyhedral operations
are exponential in the worst case). We thus prefer tiling to unroll-
and-jam to improve locality.

Putting it altogether, the main steps of our extended algorithm
are as follows.

1. Run array data-flow analysis for every right-hand side array
reference.

2. Convert all temporary arrays and scalars (not escaping the
nest) to single-assignment form. Alternatively, forward sub-
stitution may be used to remove memory-based dependences
on scalars, reducing the memory footprint of the expanded
program. On demand, one may expand some escaping vari-
ables as well by insertion of copy-in/copy-out code.

3. Apply any affine scheduling algorithm, typically a locality-
improving one like hierarchical tiling. This scheduling phase
may include other loop transformations to address perfor-
mance issues like instruction and thread level parallelism.

4. Fix a hierarchical boundary, identifying the aggressively un-
rolled inner loops where scalar promotion will occur. This
boundary would typically correspond to the tile dimension,
i.e., depth 3 in the tiled running example.

5. Insert reuse buffers at all depths below (enclosing) the hier-
archical boundary to capture values flowing across iterations
of the outermost loops (not only the innermost one).

6. Apply storage mapping optimization from the inner loops
outwards.

7. Fully unroll the inner loops, up to the hierarchical boundary.

8. Apply a classical scalar promotion algorithm to eliminate as
many array accesses as possible.

9. Apply forward substitution to remove scalar duplicates. This
may require further unrolling of the inner loops or make use
of architectural features like rotating register files.

4. CONCLUSION AND FUTURE WORKS
We revisited loop transformations for register promotion in the

more general setting of polyhedral loop transformations, array ex-
pansion and storage mapping optimization. This is motivated by a
detailed study of the limitations of classical approaches — includ-
ing scalar reuse across outer-loop iterations and array folding —
and by empirical evidence on a real-world computational biology
example. Besides this compilation issue, our strong speed-ups on
this kernel modify the fragile balance between the relative merits
of pattern matching algorithms [35].

On the algorithmic side, we combine array expansion with other
enabling transformations to improve the opportunities for register
promotion. We also extend a schedule-dependent storage mapping
optimization technique to better handle tiled iteration spaces and
explicitly manage inter-iteration reuse through specific buffers. Fi-
nally, we sketched a flexible register blocking algorithm that inte-
grates these techniques, without restraining the application of loop
transformations targeting other architectural components (caches,
predictors, ILP, threads, etc.). We manually applied this algorithm
to reproduce the speed-up results on the computational biology
benchmark.

Some of the cited storage mapping optimization methods were
implemented by their authors, but only applied to small kernels.
Indeed, no large-scale implementation of polyhedral techniques for
locality improvement have been ever released. This is one of the
major goals of a more extensive project in our team: a framework

and polyhedral transformation library for iterative and feedback-
directed optimization of loop nests [5]. Register blocking is one of
the obvious optimizations that such a framework should provide.
Implementing a robust array data-flow analysis is the first prior-
ity, array expansion, insertion of reuse buffers and storage mapping
optimization will follow.

Our work may have applications beyond register promotion. Our
contributions should naturally apply to optimizations for random-
access memory structures as well, especially those where explicit
data transfers are either required (like for register-to-memory trans-
fers) or highly beneficial: scratch-pad or local memories, transla-
tion buffers, non uniform shared memories, and disks.
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