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n of alpha-ketoglutarate (a-KG) via glutamate dehydrogenase
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cent developments have strongly improved our capability to
nerate information at multiple spatial and temporal scales
,2]. However, research on disease pathogenesis is hampered
the difficulty to understand the orchestration of individual

mponents. Here, mathematical models help to formalize rela-
ns between components, simulate their interplay, and to study
ocesses that are too complex to be understood intuitively [1].
is is particularly important when studying the pathophysiol-
y of metabolic liver diseases, where due to zonation different
etabolic processes take place in pericentral and periportal hep-
ocytes [3]. To be able to investigate such complex processes we
cently established a technique of integrated metabolic spatial-
mporal modeling (IM) [4]. These IM integrate conventional
etabolic models into spatial-temporal models of the liver lobule
,4,5]. The present study was motivated by the IM predictions,
hich proposed that the conventional mechanisms where
monia is metabolized by urea cycle enzymes in the periportal
mpartments of the liver lobules and by glutamine synthetase
S) reaction in the pericentral compartments (Supplementary
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a therapeutic strategy to reduce hyperammonemia in liver diseases. J

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
11

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact j.bakker@elsevier.com immediately prior to returning your corrections.

Original text:
Inserted Text
The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.

Original text:
Inserted Text
The country name has been inserted for the affiliation ‘6’. Please check, and correct if necessary.

Original text:
Inserted Text
The affiliations ‘7’ and ‘11’ were identical, the latter has been removed, and hence the affiliation link the author ‘Rolf Gebhardt’ has been changed, accordingly. Please check, and correct if necessary.

mailto:ghallab@ifado.de
mailto:hengstler@ifado.de
http://dx.doi.org/10.1016/j.jhep.2015.11.018


74 s
75 l
76 e
77 d
78 n
79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

127

128

129

130

131

132d
133g
134r
135n
136-

Research Article

JHEPAT 5901 No. of Pages 13

8 January 2016
Fig. 1) failed to explain the experimental findings [4]. The IM wa
applied to an experimental scenario, where the entire pericentra
and a part of the periportal compartment of the liver lobules wer
destroyed by a single high dose of the hepatotoxic compoun
carbon tetrachloride (CCl4). This leads to compromised nitroge

metabolism and hyperammonemia. In the present study, we per-
formed a series of new experiments accompanied by simulations
with novel models to explore the mechanism responsible for the
observed discrepancy. Experimentally, the time-resolved analysis
of metabolites and metabolic activities after CCl4 intoxication
offers good conditions to study ammonia detoxification and pos-
sible compensatory mechanisms during the damage and regener-
ation process. Time-resolved analysis of metabolites was
performed in the portal vein and heart blood, representing the
‘liver inflow’, and in the liver vein as ‘liver outflow’. These analy-
ses allowed a precise experimental validation of model predic-
tions. Finally, iterative cycles of modeling and experimental
validation allowed the identification of a so far unrecognized
mechanism of ammonia detoxification. Importantly, this mecha-
nism could be exploited therapeutically to reduce elevated blood
ammonia concentrations close to normal levels by intravenous
injection of glutamate dehydrogenase (GDH; 720 U/kg) and its
cofactors alpha-ketoglutarate (a-KG; 280 mg/kg) as well as
NADPH (180 mg/kg). This example illustrates how concrete ther-
apies can be derived by model guided experimental strategies.

Materials and methods

A detailed description of materials and methods is provided in the Supplemen-
tary materials. Male C57BL/6N 10–12 weeks old mice were used (Charles River,
Sulzfeld, Germany). Acute liver damage was induced by intraperitoneal injection
of 1.6 g/kg CCl4, unless other doses are indicated. Blood was taken from mice
under anesthesia from the portal and hepatic veins, as well as the right heart
chamber, and plasma was separated. Liver tissue samples were collected from
defined anatomical positions for histopathology, immunohistochemistry, enzyme
activity assays, gene array and q-RT-PCR analyses. The dead cell area was quan-
tified in hematoxylin and eosin stained tissue sections using Cell^M software
(Olympus, Hamburg, Germany). Whole-genome analysis of gene expression in
mouse liver tissue was performed in control as well as after CCl4 intoxication
with Affymetrix gene arrays. The latter techniques are described fully in the Sup-
plementary materials and methods. The analysis of ammonia and further
metabolites was performed using commercially available kits. Concentrations
of amino acids and organic acids in liver tissue were measured in duplicate using
GC-MS. GS, GDH and transaminases activity assays were performed photometri-
cally as described in the Supplementary materials and methods. NADP+ and
NADPH were analyzed by LC-MS. Mouse hepatocytes were isolated by a two-
step EGTA/collagenase perfusion technique and either used directly in suspen-
sion or cultivated in collagen sandwiches (Supplementary materials and meth-
ods). For the mathematical modeling of ammonia and the related metabolites
the integrated metabolic, spatio-temporal model was applied [4,5]. In addition,
the IM was replaced by a set of novel models that include further reactions
and the blood compartment of the liver (Supplementary materials and methods).
Statistical analysis was done with SPSS software as described in the Supplemen-
tary materials.

Results

An integrated spatial-temporal-metabolic model suggests a so far
unrecognized mechanism of ammonia detoxification

The detoxification process in healthy, damaged and regenerating
livers was simulated using a recently established integrated
metabolic IM [4]. To compare the simulated metabolite concen-

Please cite this article in press as: Ghallab A et al. Model-guided identificatio
Hepatol (2016), http://dx.doi.org/10.1016/j.jhep.2015.11.018

2 Journal of Hepatology 2
trations with the in vivo situation, an experiment was performe
in which blood was collected from the portal vein (representin
85% of the ‘liver inflow’), the heart (representing 15% of the ‘live
inflow’), and the hepatic vein (representing the ‘liver outflow’) i
a time-resolved manner after CCl4 injection (Fig. 1A; Supplemen
137tary Fig. 2). The result shows that ammonia is detoxified during
138its passage through the liver as illustrated by the difference in
139ammonia concentrations between the portal vein and the hepatic
140vein in the control mice (Fig. 1B). This detoxification process is
141compromised after liver damage, particularly on days 1 and 2.
142Surprisingly, the IM model predicted higher ammonia concentra-
143tions than those experimentally observed, particularly on day 1
144(Fig. 1C; see the video in the Supplementary data). Analyses of
145heart blood demonstrate the contribution of the extrahepatic
146compartment, which includes brain, muscles, kidneys and blood,
147to ammonia detoxification between days 1 and 4 after the induc-
148tion of liver damage. However, this extrahepatic contribution is
149small compared to detoxification by the liver (Supplementary
150Figs. 2–8). In addition to the time-resolved study, similar
151experiments were also performed in a dose dependent manner
152on day 1 after CCl4 administration when the discrepancy between
153simulated and measured ammonia was maximal. For this pur-
154pose, doses ranging between 10.9 and 1600 mg/kg CCl4 were
155tested, resulting in a concentration dependent increase in the
156dead cell area, with only the highest dose causing damage to
157the entire CYP2E1 positive pericentral region of the liver lobule
158(Fig. 1D; Supplementary Fig. 9A, B). Destruction of the GS positive
159area occurred in with doses ranging between 38.1 and 132.4 mg/
160kg (Fig. 1D, E; Supplementary Fig. 9C); also CPS1 showed a
161dose dependent decrease (Supplementary Fig. 9C) leading to
162compromised ammonia metabolism (Supplementary Fig. 10).
163Using the IM [4], we also observed a discrepancy between the
164predicted and measured ammonia in the dose dependent study
165(Fig. 1F).
166To find an explanation for this discrepancy, we performed
167time-resolved gene array analysis of mouse liver tissue after
168CCl4 intoxication (Fig. 2A). Fuzzy clustering identified seven gene
169clusters which reflected time dependent gene expression alter-
170ations [6]. Clusters 4 and 6 contained genes whose expression
171was transiently repressed at early time points after CCl4 intoxica-
172tion (Fig. 2B). Further bioinformatics analyses revealed an over
173representation of nitrogen/ammonia metabolism KEGG and Gene
174ontology terms of genes in cluster 4 (Fig. 2C, D). Genes relevant
175for ammonia metabolism were further studied by qRT-PCR,
176immunostaining and activity assays. GS is the key enzyme for
177ammonia detoxification in the pericentral compartment. RNA
178levels of GS started to decrease as early as 6 h after CCl4 injection,
179it was at its lowest between days 1 and 4, before finally recover-
180ing to initial levels between days 6 and 30 (Fig. 2E). A similar
181time-dependent curve was obtained for GS activity although
182the decrease occurred slightly later than that of RNA with very
183low levels between days 2 and 4 (Fig. 2E). The pattern and inten-
184sity of GS immunostaining was found to be comparable to GS
185activity (Fig. 2F). In addition, ornithine aminotransferase (OAT),
186an enzyme exclusively localized in GS positive pericentral hepa-
187tocytes that provides additional glutamate for fixing ammonia
188[7], decreased to almost undetectable levels with a delayed
189recovery (Supplementary Fig. 3A). The key enzymes of the
190periportal compartment, CPS1, ASS1, ASL and arginase1 were
191similarly analyzed in the same tissue (Supplementary Figs. 3B
192and 4). Extending the IM [4], with time-dependent

n of a therapeutic strategy to reduce hyperammonemia in liver diseases. J

016 vol. xxx j xxx–xxx
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zyme concentrations (model 1), did not remove the discrep-
cy between model predictions and experimental data
upplementary Fig. 11), indicating that our model lacks a rele-
nt, but so far unrecognized mechanism of ammonia
toxification.
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ute liver damage provides systemic protection against ammonia
GDH release

rther evidence that an unrecognized mechanism of ammonia
toxification exists arose from metabolic analyses performed

0 h 1 h 6 h 12 h 1 d 2 d 3 d 4 d 6 d 12 d 30 d

*
*

*
* * *

Portal vein

Time after CCl4 administration

Hepatic vein
Heart

**
***

***

***

*

**
**

meas, in
meas, out
sim, out
0 h 1 h 6 h 12 h 1 d 2 d 3 d 4 d 6 d 12 d 30 d
Time after CCl4 administration

mg/kg 460 mg/kg 1600 mg/kg 
**

**

***
meas, in
meas, out
sim, out

0.0 10
.9

38
.1

13
2.4

46
0.0

16
00

.0

Dose of CCl4 (mg/kg)

a therapeutic strategy to reduce hyperammonemia in liver diseases. J

vol. xxx j xxx–xxx 3

Original text:
Inserted Text
(Supplementary 

Original text:
Inserted Text
11), 

http://dx.doi.org/10.1016/j.jhep.2015.11.018


202 using plasma from mice after CCl4 injection (Fig. 3A). Most of the
203 analyzed factors in plasma (urea, glutamine, glucose, lactate,
204 pyruvate, alanine, arginine and other amino acids: Supplemen-
205 tary Figs. 4–6) were within the expected concentration ranges,
206 a-KG, which dramatically decreased between 12 h and day 2
207 (Fig. 3A). This decrease was accompanied by an almost concur-
208 rent increase in glutamate levels, which persisted longer than
209 the drop in a-KG. One potential explanation is the delayed recov-
210 ery of GS, which uses glutamate and ammonia to form glutamine
211 (Fig. 2E, F). The decrease in a-KG (and the increase in glutamate)
212 was also accompanied by increased GDH activity in plasma,
213 because GDH is released from damaged hepatocytes (Fig. 3A).
214 The present observations suggest that GDH released from the
215 damaged hepatocytes into the blood catalyzes, at least tran-
216 siently, a reaction that consumes ammonia to produce glutamate
217 (Fig. 3D). To test this hypothesis, we collected plasma from mice
218 on day 1 after CCl4 injection. Addition of a-KG alone was suffi-
219 cient to slightly but significantly decrease blood ammonia con-
220 centrations (Fig. 3B). This decrease was enhanced by further
221 adding NADPH and particularly GDH; whereas the GDH inhibitor,
222 PDAC completely antagonized the effect. To test also higher
223 ammonia concentrations typically observed in patients with sev-
224 ere pre-coma hyperammonemia, 600 lM ammonia was added to
225 plasma collected on day 1 after CCl4 administration. Under these
226 conditions, a-KG also reduced ammonia and increased glutamate
227 concentrations (Fig. 3C; Supplementary Fig. 12A). Together, these
228 experiments suggest that a GDH reaction consuming ammonia in
229 blood takes place when GDH is released from acutely damaged
230 livers (Fig. 3D).

231 Validation of the ‘GDH-driven ammonia consumption’ in hepatocytes

232 The experiments described above suggest that high ammonia
233 concentrations in plasma leads to a ‘reverse’ GDH reaction, which
234 consumes rather than produces ammonia. To test whether this
235 ‘GDH-driven ammonia consumption’ occurs not only in plasma
236 but also in cells, we used an in vitro system with primary mouse
237 hepatocytes incubated with ammonia in suspension (Fig. 4).
238 PDAC was used to inhibit GDH (Fig. 4A) in order to determine
239 its influence on ammonia metabolism. In hepatocytes isolated
240 from control mice, unphysiologically high ammonia concentra-
241 tions (2 mM) were required until PDAC caused a significant
242 increase of ammonia levels in the suspension buffer (Fig. 4B).
243 However, when hepatocytes from mice 24 h after CCl4 intoxica-
244 tion were used, PDAC treatment increased ammonia concentra-
245 tions in the suspension buffer, even with 0.5 mM ammonia.
246 Furthermore, in the absence of ammonia, hepatocytes secreted
247 a small but statistically significant amount of ammonia into the
248 buffer. Similarly, glutamate production was reduced by PDAC,

249an effect that was also stronger in hepatocytes isolated from
250CCl4-exposed mice (Fig. 4C), which corresponds to the reverse
251GDH reaction proposed in Fig. 3D (right panel). CCl4 destroys
252the pericentral hepatocytes (Fig. 1D), which explains the reduced
253glutamine generation by GS (Fig. 4D) and compromises urea cycle
254enzymes (Supplementary Fig. 3B, C), which explains the reduced
255urea production (Fig. 4E). Similar experiments were also per-
256formed with cultivated (instead of suspended) hepatocytes from
257untreated mice. The results demonstrate that inhibition of GDH
258at high ammonia concentrations increases ammonia-induced
259cytotoxicity (Supplementary Fig. 12B). These results show that
260the catalytic direction of GDH reverses a clearly becomes ammo-
261nia consuming also in hepatocytes in order to compensate the
262compromised metabolism by urea cycle enzymes and GS after
263intoxication.
264Further evidence emerges from simulations with a set of
265novel models 1–4 (Supplementary Fig. 11). If a reversible GDH
266reaction was integrated into the hepatocyte compartment
267(Fig. 5A; Supplementary Fig. 11), the discrepancy between
268in vivo measured and simulated ammonia concentrations
269(Fig. 1C) completely disappeared (Fig. 5B). The quantitative
270agreement was obtained even without considering the blood
271compartment of the liver, suggesting that after CCl4-induced
272damage, the ammonia consumption catalyzed by GDH in
273the hepatocytes represents the missing ammonia sink predicted
274by [4].

275Therapy of hyperammonemia based on the reverse GDH reaction

276The above described ammonia consumption catalyzed by the
277GDH reaction (Figs. 3B–D and 4) and the aforementioned
278decrease in plasma a-KG levels (Fig. 3A) prompted us to test
279whether supplementation of a-KG in mice helps to detoxify
280ammonia. Therefore, mice received a hepatotoxic dose of CCl4
281(1.6 g/kg) and 24 h later a-KG (280 mg/kg) was injected into
282the tail vein. Blood was collected immediately before as well as
28315, 30 and 60 min after injection of a-KG. A decrease in plasma
284ammonia concentrations by 31, 40 and 43% was observed 15,
28530 and 60 min after a-KG injection, respectively (Fig. 6A). Gluta-
286mate increased after 15 min and decreased again after longer
287periods probably due to the consumption by further metabolism.
288a-KG transiently increased in plasma after injection and then
289rapidly decreased. Analysis of GDH activity demonstrated that
290the experiment was performed under conditions of high plasma
291activity. In control mice, injection of a-KG did not alter blood
292concentrations of ammonia or glutamate (Fig. 6B). In addition,
293plasma a-KG levels were lower in CCl4-treated mice compared
294to the control mice, suggesting increased consumption in mice
295with damaged livers.

Fig. 1. Evidence for a so far unrecognized mechanism of ammonia detoxification. (A) Experimental design. (B) Ammonia concentrations in the portal vein, hepatic vein
and heart. ⁄p <0.05 compared to the corresponding controls (0 h). (C) Integrated metabolic spatio-temporal model using the technique described by [4] (video in the
Supplementary data). Predicted ammonia concentrations in the liver outflow are higher compared to the experimental data. ⁄⁄⁄p <0.001, ⁄⁄p <0.01 and ⁄p <0.05 compared to
the measured ammonia output. (D) Dose dependent experiment (10.9 to 1600 mg/kg CCl4 24 h after administration) showing macroscopic alterations with a spotted
pattern at 132.4 mg/kg and higher doses, corresponding to the central necrotic lesion in hematoxylin/eosin staining, scale bars: 100 lm. Destruction of the pericentral
CYP2E1 positive region which begins at 132.4 mg/kg with central necrosis still surrounded by CYP2E1 positive surviving hepatocytes; the entire CYP2E1 positive region was
destroyed at the highest dose of 1600 mg/kg. The GS positive region was destroyed only at 132.4 mg/kg and higher doses, which corresponds to the decrease in GS activity
(E), scale bars: 200 lm. ⁄p <0.05 when compared to the control group (0). (F) Comparison of analyzed and simulated ammonia concentrations in the liver vein for the
experiment in (D); meas, in: analyzed concentrations in the portal vein (representing 85% of the liver inflow) and heart blood (representing 15% of the liver inflow); meas.
out: analyzed concentrations in the liver vein; sim. out: simulated concentrations in the liver vein. Data are mean values and SD of three mice per time point and dose of
CCl4. ⁄⁄⁄p <0.001 and ⁄⁄p <0.01 compared to the measured ammonia output.
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Fig. 2. Spatio-temporal alterations of ammonia metabolizing enzymes after CCl4 intoxication. (A) Experimental design. (B) Time dependent changes of gene expression
in fuzzy cluster 4 from [6]. The dots correspond to the average of the mean scaled values for all 310 genes, between their respective maximal and minimal expression levels
at each time point, using healthy liver (time 0) as reference. Error bars indicate standard error. (C) Changes in expression of genes associated to the KEGG terms ammonia/
nitrogen metabolism (Gene Ontology [GO] ID 910) as revealed by KEGG pathways enrichment analysis in fuzzy cluster 4 (p = 2.36 � 10�7). (D) Changes in the expression of
genes associated to the GO terms ‘urea cycle/urea metabolic process’ (Gene Ontology ID 0000050 and 0019627 respectively) as revealed by GO enrichment analysis in fuzzy
cluster 4 (p = 3.83 � 10�4). In C and D, the values indicate fold of expression over healthy liver at each time point after CCl4 administration, and correspond to the average of
5 independent biological replicates. Time course of GS RNA levels, GS activity (E) and immunostaining (F), Scale bars: 200 lm. ⁄p <0.05 when compared to the control group
(0 h).
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Fig. 3. Detoxification of ammonia by a reverse GDH reaction. (A) After in
accompanied by a decrease in alpha-ketoglutarate (a-KG) and an increase in gl
observed in liver tissue (Supplementary Tables 1 and 2). (B) Validation of the
injection was analyzed. a-KG was added alone or in combination with AOA, NAD
similar experimental design was chosen as in B. However, 600 lM ammonia wa
decreases ammonia and increases glutamate concentrations, which can be bloc
NH4Cl group (0 h). Data are mean values and SD of 3 biological replicas. (D)
hepatocytes, GDH generates ammonia, which is detoxified by the urea cycle. In
GS reaction to form glutamine (Gln). Biosynthesis of a-KG takes place in the pe
hepatocytes, where it is needed for GS [25,26]. After induction of liver damag
completely destroyed. This leads to increased blood ammonia concentrations. H
consuming ammonia and a-KG to generate glutamate (Glu). This reaction c
therapeutically substituted.
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In the aforementioned experiment, the molar amount of glu-
mate produced in the damaged liver after a-KG injection was
gher than ammonia consumption (Fig. 6A). Therefore, the
sults cannot only be explained by the reverse GDH reaction,
t may be due to the consumption of a-KG by transaminases
at contribute to the generation of glutamate. Indeed, tail vein
jection of the transaminases inhibitor AOA prior to a-KG injec-
n reduced the production of glutamate (Fig. 6C) and improved

patocytes were isolated from CCl4 (1.6 g/kg) intoxicated (day 1) and untreated
ice and suspended at a concentration of 2 million hepatocytes/ml for 1 h with
fferent concentrations of ammonia. (A) Inhibition of GDH activity by PDAC. (B)
mpromised ammonia detoxification after GDH inhibition. (C) Reduced gluta-
ate production by GDH inhibition. ⁄⁄⁄p <0.001, ⁄⁄p <0.01 and ⁄p <0.05 compared
– PDAC. ��p <0.01 and �p <0.05 compared to hepatocytes from untreated mice.
& E) compromised urea and glutamine production by hepatocytes of CCl4

toxicated mice. ⁄⁄p <0.01 and ⁄p <0.05 compared to hepatocytes from untreated
ice. Data are mean values and SD of three independent experiments.
monia detoxification. The efficiency of transaminases inhibi-
n by AOA in vivo has been confirmed in preliminary experi-

335

336an
337in
338in
339ad
340(2
341ve
ents (Supplementary Figs. 13 and 14).
The reverse GDH reaction requires NADPH as a cofactor; how-
er, NADPH concentrations are very low in blood. To determine
w NADPH levels are altered in our model of liver damage, both
ADPH and its oxidized form NADP+ were analyzed. Blood con-
lease cite this article in press as: Ghallab A et al. Model-guided identification of
epatol (2016), http://dx.doi.org/10.1016/j.jhep.2015.11.018
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ADPH after induction of liver damage, the concentrations are
ill relatively low. Therefore, to study the influence of NADPH,
asma from mice collected 24 h after CCl4 injection was incu-
ted with varying concentrations of NADPH in the presence of
H4Cl (1 mM), a-KG (3 mM), AOA (1 mM) and GDH (12,000 U/
for one hour. A concentration dependent decrease in plasma
monia and an increase in glutamate were observed with

creasing concentrations of NADPH (Fig. 7A). A similar trend
r ammonia and glutamate was observed with increasing con-
ntrations of a-KG and GDH (Fig. 7B, C). Moreover, addition of
A reduced both ammonia and glutamate concentrations (Sup-
ementary Fig. 16). To understand how the orientation of the
DH reaction is controlled by ammonia and glutamate concen-
ations, titration experiments were performed, which indicated
at GDH significantly consumes ammonia beginning at concen-
ations of 150 lM and higher (Fig. 7D). In contrast, unphysiolog-
ally high concentrations of more than 10 mM glutamate were
quired to block the reaction (Fig. 7E).
Based on these in vitro optimized concentrations, we designed
in vivo study to treat hyperammonemia in mice. After the

duction of liver damage by CCl4, transaminases activities were
hibited by AOA (13 mg/kg; tail vein injection; 24 h after CCl4
ministration). Thirty minutes later a cocktail of a-KG
80 mg/kg), GDH (720 U/kg) and NADPH (180 mg/kg) was intra-
nously injected. A dose of 280 mg/kg a-KG was chosen because
a therapeutic strategy to reduce hyperammonemia in liver diseases. J

vol. xxx j xxx–xxx 7
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342 it transiently normalized a-KG levels in mice 24 h after CCl4.
343 720 U/kg GDH was used because it resulted in plasma levels of
344 approximately 6000 U/l 15 min after injection (Supplementary
345 Fig. 17), an activity level shown to allow maximal ammonia con-
346 sumption in plasma in vitro ( Fig. 7C). The dose of 180 mg/kg
347 NADPH was also considered as adequate in a pharmacokinetic
348 experiment (Supplementary Fig. 18) as it transiently increased
349 plasma NADPH to approximately 1.6 mM 2 min after injection.
350 Injection of the a-KG/GDH/NADPH cocktail (KGN cocktail)
351 reduced ammonia concentrations from 213 to 74 lM within
352 15 min after administration (Fig. 8). Simultaneously, glutamate
353 levels increased from 131 to 369 lM. Analysis of a-KG and
354 GDH activity in the plasma showed that substitution was suc-
355 cessful 15 min after the injection of the KGN cocktail. Moreover,
356 the activities of aspartate and alanine aminotransferase were suc-
357 e
358 s.

359

360 a
361 e
362

363can be used therapeutically by the administration of a cocktail
364of GDH and cofactors.
365Therapy for hyperammonemia remains challenging [8–10].
366Hemodialysis is the most efficient treatment for reducing ele-
367vated blood ammonia concentrations [11,12]. For milder forms
368of hyperammonemia, pharmacologic management is possible
369[13]. Efficient strategies for patients with urea cycle defects
370include infusion of phenylacetate or benzoate. Phenylacetate
371combines with glutamine to form a product which can be
372excreted by the kidneys [9,13,14]. Conversely, benzoate combines
373with glycine to form hippurate, which is also excreted in urine
374[13,15]. Both compounds reduce the total body nitrogen content;
375however, this therapy has also failed in a fraction of patients with
376hyperammonemic crisis who became refractory most probably
377due to the accumulation of nitrogen waste [9]. This led to the
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cessfully inhibited by AOA. The mice were observed for thre
weeks after the experiment and did not show any complication

Discussion

Guided by simulations with an IM predicting a missing ammoni
sink after severe CCl4-induced liver damage, we identified th

GDH reaction as fundamental for ammonia consumption, which
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concept that only blood ammonia concentrations below 500 lM
should be treated pharmacologically; whereas, more sever
hyperammonemia requires aggressive interventions with rena
replacement therapies, such as hemodialysis [12,16]. In such sit
uations with either severe or refractory hyperammonemia th
therapeutic strategy developed in the present study may be a
alternative to hemodialysis.

The current experiments demonstrate that infusion of a KGN
cocktail reduces ammonia close to normal levels within minute
n of a therapeutic strategy to reduce hyperammonemia in liver diseases. J
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nder these conditions, a GDH-catalyzed reaction takes place in
ood where ammonia and a-KG are consumed to form gluta-
ate in an NADPH-dependent reaction. GDH was also previously
ported to switch its catalytic orientation under physiological
nditions. In the periportal compartment of the liver lobule,
DH generates ammonia (Fig. 3D), which fuels the urea cycle.
the pericentral compartment, GDH is known to consume
monia to generate glutamate for the GS reaction [17–19].

g. 7. Optimization of cofactor concentrations for the GDH reaction and identific
jection was incubated with varying concentrations of NADPH in the presence of NH
H (12,000 U/L) for one hour. (B) Alpha-ketoglutarate (a-KG): plasma was colle
ncentrations of a-KG in the presence of NH4Cl (1 mM) and other cofactors; AOA (1 m
er CCl4 injection was incubated with varying concentrations of GDH in the presence
r one hour. ⁄⁄⁄p <0.001, ⁄⁄p <0.01 and ⁄p <0.05 compared to the situation where the
fferent ammonia concentrations were added to plasma of untreated mice and a cock
alyze ammonia and glutamate one hour later. ⁄⁄⁄p <0.001, ⁄⁄p <0.01 and ⁄p <0.05 c
ocked by unphysiologically high glutamate concentrations. ⁄⁄⁄p <0.001 compared t
lease cite this article in press as: Ghallab A et al. Model-guided identification of
epatol (2016), http://dx.doi.org/10.1016/j.jhep.2015.11.018
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a-KG (3 mM), NADPH (0.5 mM), GDH (6000 U/L) and AOA (1 mM) was added to
e present study shows by use of a GDH inhibitor that GDH
leased from damaged liver tissue may catalyze an ammonia
leasing GDH from damaged hepatocytes into the blood, the
maged liver provides a mechanism that reduces blood ammo-
a levels. However, this protective mechanism is limited by the
ailability of the GDH substrate, a-KG. The present study shows
at a-KG strongly decreases upon induction of acute liver dam-
a therapeutic strategy to reduce hyperammonemia in liver diseases. J

vol. xxx j xxx–xxx 9
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age, because it is consumed by the reverse GDH reaction. Thi
prompted us to supplement a-KG, increase blood concentration
of NADPH, and infuse GDH. Indeed, the combined injection of a
KG, GDH and NADPH efficiently reduced blood ammonia concen
trations. A GDH bolus was injected to result in plasma peak con
centrations between 5000 and 6000 U/L. This is in the same orde
of magnitude as observed in patients after acetaminophen intox
ication [20]. Therefore, in patients with acute liver intoxicatio
with high blood GDH, therapy with a-KG and NADPH might b
sufficient. However, it should be considered that the GDH reac
tion in blood described here (Fig. 3D) does not explain all exper
imental observations: a-KG decreases significantly 12 h after CCl
administration when there is no significant increase in bloo
GDH (Fig. 3A). This discrepancy may be explained by the intrace
lular change of the catalytic direction of GDH in the periporta
hepatocytes, which may precede the GDH release into the blood
However, this was not further analyzed in the present study a
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Fig. 8. Treatment of hyperammonemia by injection of a cocktail of GDH an
optimized cofactor doses. A cocktail of GDH (720 U/kg), a-KG (280 mg/kg) an
NADPH (180 mg/kg) (KGN) was injected into mice 24 h after induction of live
damage using CCl4 (1.6 g/kg). Thirty minutes prior to treatment with the cockta
mice received a single dose of 13 mg/kg AOA to block transaminases. Injection
the KGN cocktail reduced ammonia and increased glutamate concentrations i
the blood of mice. a-KG and GDH activity increased while aspartate (AST) an
alanine aminotransferase (ALT) activities decreased. Data are mean values and S
of four mice treated at different experimental days with individually prepare
therapeutic cocktails. ⁄⁄⁄p <0.001, ⁄⁄p <0.01 and ⁄p <0.05 when compared to th
control group (�30).
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we choose to focus on the therapeutically more relevant GDH
reaction taking place in blood.
was abandoned because it was not sufficiently efficient for clin
cal application. The reverse GDH reaction in the blood and it
requirement for NADPH as a cofactor was not yet known whe
the early therapeutic studies with a-KG were performed. In add
tion, injection of a-KG alone in the present study resulted in onl
released from deteriorating hepatocytes after CCl4 injection.
The concept of treating hyperammonemia by a-KG/GDH

NADPH infusion originates from simulations using an integrate
metabolic spatio-temporal model [4]. This model is based o
well-understood pathways of ammonia detoxification, such a
urea cycle enzymes and the GS reaction [23,24]. It predicte
higher ammonia concentrations compared to the measured data
Therefore, we analyzed liver tissue during the damage inductio
and regeneration processes, but the results could also not explai
the discrepancy. Time-resolved gene array experiments followin
CCl4 injection led to the observation that a general decrease i
metabolizing enzymes occurs including enzymes involved i
ammonia metabolism. All enzymes of the urea cycle were tran
scriptionally downregulated by at least 60%. Factors identifie
by the gene array analysis were further analyzed by activit
assays and immunostaining. Key observations were: (a) the G
positive region, which is initially completely destroyed by CCl
shows a delayed recovery and does not return to normal level
before day 12; and (b) CPS1, the rate limiting enzyme in the ure
cycle normally expressed in the periportal region, is downregu
lated during the destruction process (days 1–3), but its expres
sion then extends throughout the entire liver lobule durin
days 4–6. The other urea cycle enzymes showed a similar tim
course as CPS1 with the exception of arginase1, which decrease
only slightly during the destruction and regeneration proces
Glutaminase showed a similar time course and pattern a
CPS1. Nevertheless, none of these alterations could explain th
observed discrepancy. However, the refined models that take int
account the reversible GDH reaction show an excellent agree
ment with the experimental data suggesting that consumptio
by the GDH reaction represents the previously predicted ammo
nia sink, hence providing an example for model guide
experimentation.

In conclusion, a novel form of therapy has been identified tha
allows the rapid correction of hyperammonemia by the infusio
of a-KG, GDH and NADPH. This pharmacotherapy may prove re
evant as an emergency therapy for episodes of hyperammonemi
in urea cycle disease or liver cirrhosis.
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