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Abstract

The particle Gibbs (PG) sampler is a systematic way of using a particle filter within
Markov chain Monte Carlo (MCMC). This results in an off-the-shelf Markov kernel on the
space of state trajectories, which can be used to simulate from the full joint smoothing
distribution for a state space model in an MCMC scheme. We show that the PG Markov
kernel is uniformly ergodic under rather general assumptions, that we will carefully review
and discuss. In particular, we provide an explicit rate of convergence which reveals that:
(i) for fixed number of data points, the convergence rate can be made arbitrarily good
by increasing the number of particles, and (ii) under general mixing assumptions, the
convergence rate can be kept constant by increasing the number of particles superlinearly
with the number of observations. We illustrate the applicability of our result by studying
in detail two common state space models with non-compact state spaces.

Keywords: Particle Gibbs, Particle Markov chain Monte Carlo, Conditional sequential
Monte Carlo, Particle smoothing, State space models

1 Introduction

Statistical inference in general state space hidden Markov models involves computation of the
posterior distribution of a set Xt:t′ := [Xt, . . . , Xt′ ] of hidden state variables conditionally on
a record Y0:T of observations, which we denote as φt:t′〈Y0:T 〉. Of particular interest is the so
called joint smoothing distribution (JSD) φ0:T 〈Y0:T 〉. Any marginal or fixed-interval smoothing
distribution can be obtained from the JSD by marginalization. The JSD can be expressed
in closed-form only in very specific cases, principally, when the state space model is linear and
Gaussian or when the state space of the hidden Markov chain is a finite set. In the vast majority
of cases, nonlinearity or non-Gaussianity render analytic solutions intractable.

This limitation has lead to an increase of interest in computational strategies handling more
general state and measurement equations. Among these, sequential Monte Carlo (SMC) meth-
ods play a central role. SMC methods—in which the sequential importance sampling and sam-
pling importance resampling methods proposed by Handschin and Mayne (1969) and Rubin
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(1987), respectively, are combined—refer to a class of algorithms approximating a sequence of
probability distributions, defined on a sequence of probability spaces. This is done by updat-
ing recursively a set of random particles with associated nonnegative importance weights. The
SMC methodology has emerged as a key tool for approximating JSD flows in general state space
models; see Del Moral (2004); Del Moral and Doucet (2009); Doucet and Johansen (2011) for
general introductions as well as applications and theoretical results for SMC methods.

However, a well known problem with SMC methods is that the particle approximation of
any marginal smoothing distribution φt:t〈Y0:T 〉 becomes inaccurate for t ≪ T . The reason is
that the particle trajectories degenerate gradually as the interacting particle system evolves
(Godsill et al., 2004; Fearnhead et al., 2010). To address this problem, several methods have
been proposed; see Lindsten and Schön (2013) and the references therein. Among these meth-
ods, the recently introduced particle Markov chain Monte Carlo (PMCMC) framework, proposed
in the seminal paper by Andrieu et al. (2010), plays a prominent role. PMCMC samplers make
use of SMC (or variants thereof) to construct efficient, high-dimensional MCMC kernels which
are reversible with respect to the JSD. These methods can then be used as components of
more general sampling schemes relying on Markov kernels, for instance enabling joint state and
parameter inference in general state space models. We will not discuss such composite sampling
schemes in this paper, but instead focus on one of the PMCMC kernels that can be used to
simulate from the JSD.

Coupling SMC and MCMC is very useful since the distribution of the state sequence given
the stream of observations is generally both high-dimensional and strongly dependent, ren-
dering the design of alternative MCMC procedures, such as single-state Gibbs samplers and
Metropolis-Hastings samplers, problematic. PMCMC has already found many applications
in areas such as hydrology (Vrugt et al., 2013), finance (Pitt et al., 2012), systems biology
(Golightly and Wilkinson, 2011), and epidemiology (Rasmussen et al., 2011), to mention a few.
Several methodological developments of the framework have also been made; see e.g. Whiteley et al.
(2010); Lindsten et al. (2012); Chopin and Singh (2013); Pitt et al. (2012).

PMCMC algorithms can, broadly speaking, be grouped into two classes of methods: those
based on particle independent Metropolis-Hastings (PIMH) kernels and those based on particle
Gibbs (PG) kernels. The two classes of kernels are motivated in different ways and they have
quite different properties. The former class, PIMH, exploits the fact that the SMC method
defines an unbiased estimator of the likelihood, which is used in place of the intractable likelihood
in the MH acceptance probability. This method can thus be viewed as a special case of the
pseudo-marginal method introduced by Beaumont (2003); Andrieu and Roberts (2009) and later
analyzed by Andrieu and Vihola (2012); Lee and Latuszynski (2012). The latter class, PG, on
the other hand relies on conditioning the underlying SMC sampler on a reference trajectory
to enforce the correct limiting distribution of the kernel; see Section 3. This algorithm can be
interpreted as a Gibbs sampler for an extended model where the random variables generated by
the SMC sampler are treated as auxiliary variables.

One of the main practical issues with PMCMC algorithms is the choice of the number, N , of
particles. Using fewer particles will result in faster computations at each iteration, but can at
the same time result in slower mixing of the resulting Markov kernel. For a fixed computational
budget, there is a trade-off between taking the number of particles N large to get a faster
mixing kernel, and to run many iterations of the MCMC sampler. Andrieu and Roberts (2009);
Andrieu and Vihola (2012); Lee and Latuszynski (2012) investigate the rate of convergence of
the pseudo-marginal method and characterize the approximation of the marginal algorithm by
the pseudo-marginal algorithm in terms of the variability of their respective ergodic averages.
Doucet et al. (2012) and Pitt et al. (2012) conclude, using partially heuristic arguments, that it
is close to optimal to let N scale at least linearly with T .
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The theoretical properties of the PG kernel, however, are not as well understood. Andrieu et al.
(2010) establish under weak conditions that the PG kernel is φ-irreducible and aperiodic for any
N ≥ 2 (see Meyn and Tweedie (2009) for definitions). However, this does not provide a control
for the rate of convergence of the iterates of the PG kernel to stationarity. In this work, we
establish that the PG kernel is, under mild assumptions, uniformly ergodic. This interesting
property has already been established in an earlier work by Chopin and Singh (2013), but we
give here a more straightforward proof under weaker conditions, which in addition provides an
explicit lower bound for the convergence rate.

During the preparation of this manuscript, a preprint was made available by Andrieu et al.
(2013), who, independently, have found similar results as presented here. Indeed, they establish
basically the same lower bound on the minorizing constant for the PG kernel (which they refer
to as the iterated conditional SMC kernel), though using a different proof technique based on
a “doubly conditional” SMC algorithm. There are, however, several differences between these
two contributions. We focus in particular on analyzing the minorizing constant under mixing
conditions for the state space model which hold very generally, even if the state space is not
compact (see Section 4.3). We then study how the number of particles N should be increased
with the number of observations T . We show that under weak assumptions, it suffices to increase
the number of particles N as T δ where δ ≥ 1 can be determined explicitly. This is in contrast
with Andrieu et al. (2013) who, effectively, assume a compact state space; see Remark 3 and
Section 4.2. On the other hand, Andrieu et al. (2013) study necessary (i.e., not only sufficient)
conditions for uniform ergodicity and translate the convergence results for the PG kernel to a
composite MCMC scheme for simulating both states and parameters of a state space model.
Given these differences, we believe that the two contributions complement each other.

This paper is organized as follows: In Section 2 we introduce our notation, and in Section 3
we review the PG sampler and formally define the PG Markov kernel. In Section 4 we state
the main results, starting with a minorization condition for the PG kernel followed by mixing
conditions that allow for time uniform control of the convergence rate. In Section 5 we study,
in detail, two commonly used state space models (with non-compact state spaces) to illustrate
how the conditions of our results can be verified in practice. The proofs of the main theorems
are postponed to Sections 6 and 7.

2 Notations and problem statement

Let (X,X ) and (Y,Y) be two measurable spaces and let P(X) be the set of all probability
measures on (X,X ). Let M be a kernel on (X,X ) and G a kernel on (X,Y). Assume that for
all x ∈ X, G(x, ·) is dominated by some common nonnegative measure κ on (Y,Y) and denote
by g(x, ·) its Radon-Nikodym derivative, i.e., for all (x, y) ∈ X× Y,

g(x, y) =
dG(x, ·)
dκ(·) (y) .

Let {(Xt, Yt) , t ∈ N} be a hidden Markov chain associated to the pair (M,G). That is,
{(Xt, Yt) , t ∈ N} is a Markov chain with transition kernel defined by: for all (x, y) ∈ X×Y and
all C ∈ X ⊗ Y,

((x, y), C) 7→
∫∫

C

M(x, dx′)G(x′, dy′) .

The sequence {Xt, t ∈ N} is usually not observed and inference should be carry out on the basis
of the observations {Yt, t ∈ N} only. With µ ∈ P(X) being the initial distribution of the hidden
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state process, for all t ≥ 0, denote by

y0:t 7→ pµ(y0:t) :=

∫
µ(dx0)g(x0, y0)

t∏

s=1

M(xs−1, dxs)g(xs, ys) ,

the density of the observations Y0:t with respect to κ⊗(t+1). In what follows, we set, by abuse
of notation, for all x ∈ X,

px(y0:t) = pδx(y0:t) , (1)

where δx is the Dirac measure at x.
For all y ∈ Y, define the (unnormalized) kernel Q〈y〉 on (X,X ) by

Q〈y〉(x,A) =
∫
M(x, dx′)g(x′, y)1A(x

′) , (2)

and for all s ≤ t and all ys:t ∈ Yt−s+1, define the kernel Q〈ys:t〉 on (X,X ) by

Q〈ys:t〉(x,A) = Q〈ys〉Q〈ys+1〉 . . . Q〈yt〉(x,A) . (3)

In what follows, we set by convention Q〈ys:t〉(x,A) = 1 for all s > t. With these notations,
pµ(y0:t) = µQ〈y0:t〉1 where 1 is the constant function, 1(x) = 1 for all x ∈ X. For all µ ∈ P(X)
and for all 0 ≤ s ≤ t, denote

pµ(ys:t|y0:s−1) :=

{
pµ(y0:t)/pµ(y0:s−1) , if pµ(y0:s−1) 6= 0 ,

0 , otherwise

with the convention pµ(y0:t|y0:−1) = pµ(y0:t).
A quantity of central interest is the JSD, given by

φµ,0:t〈y0:t〉(D) :=
1

pµ(y0:t)

∫
µ(dx0)g(x0, y0)

t∏

s=1

M(xs−1, dxs)g(xs, ys)1D(x0:t) , (4)

for all D ∈ X⊗(t+1). With T being some final time point, the PG sampler (reviewed in the
subsequent section) defines a Markov kernel which is reversible with respect to φµ,0:T 〈y0:T 〉.
Samples drawn from the PG kernel can thus be used to draw inference about the states (and/or
parameters) of the state space model.

3 The particle Gibbs sampler

Consider first an SMC sampler targeting the sequence of JSDs defined in (4). The SMC sampler
approximates φµ,0:t〈Y0:t〉 by a collection of weighted samples {(X i

0:t, ω
i
t)}Ni=1, in the sense that

φNµ,0:t〈Y0:T 〉(h) :=
N∑

i=1

ωi
t∑N

ℓ=1 ω
ℓ
t

h(X i
0:t)

is an estimator of φµ,0:t〈Y0:t〉(h) for a measurable function h : Xt+1 → R. These weighted
samples can be generated in several different ways, see e.g. Doucet et al. (2000); Del Moral
(2004); Doucet and Johansen (2011); Cappé et al. (2005) and the references therein. Here we
review a basic method, though it should be noted that the PG sampler can be generalized to
more advanced procedures, see Andrieu et al. (2010); Chopin and Singh (2013).
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Initially, φµ,0:0〈Y0〉 is approximated by importance sampling. That is, we simulate indepen-
dently {X i

0}Ni=1 from a proposal distribution: X i
0 ∼ r0〈Y0〉(·). The samples, commonly referred

to as particles, are then assigned importance weights,

ωi
0 = w0〈Y0〉(X i

0) , (5)

where w0〈Y0〉(x) = g(x, Y0)
dµ

dr0〈Y0〉
(x), provided that r0〈Y0〉 is such that µ≪ r0〈Y0〉.

We proceed inductively. Denote by FN
t the filtration generated by the particles and weights

up to the current time instant t:

FN
t := σ

(
{(X i

0:s, ω
i
s)}Ni=1, 0 ≤ s ≤ t

)
. (6)

Assume that we have at hand a weighted sample {(X i
0:t−1, ω

i
t−1)}Ni=1 approximating the JSD

φµ,0:t−1〈Y0:t−1〉 at time t− 1. This weighted sample is then propagated sequentially forward in
time. This is done by sampling, conditionally independently given the particle history FN

t−1, for
each particle i ∈ {1, . . . , N} an ancestor index Ai

t with probability

P
(
Ai

t = j
∣∣FN

t−1

)
=

ωj
t−1∑N

ℓ=1 ω
ℓ
t−1

, j ∈ {1, . . . , N} , (7)

and then by sampling a new particle position from the proposal kernel R〈Yt〉:

X i
t ∼ R〈Yt〉(XAi

t
t−1, ·) . (8)

The particle trajectories (i.e., the ancestral paths of the particles X i
t , i ∈ {1, . . . , N}) are

constructed sequentially by associating the current particle X i
t with the particle trajectory of

its ancestor:
X i

0:t := (X
Ai

t
0:t−1, X

i
t) . (9)

Finally, similarly to (5) the particles are assigned importance weights given by

ωi
t = w〈Yt〉(XAi

t
t−1, X

i
t) :=

dQ〈Yt〉(XAi
t

t−1, ·)
dR〈Yt〉(XAi

t
t−1, ·)

(X i
t) , (10)

where Q〈y〉 is defined in (2) and, as before, it is assumed that Q〈y〉(x, ·) ≪ R〈y〉(x, ·). This
results in a weighted particle system {(X i

0:t, ω
i
t)}Ni=1 targeting φµ,0:t〈Y0:t〉, completing the induc-

tion. Two classical choices for the proposal kernel R〈y〉 are:

R〈y〉(x, dx′) =
{
M(x, dx′) bootstrap filter,
M(x,dx′)g(x′,y)
∫

M(x,dx′)g(x′,y)
fully-adapted filter.

(11)

Assume now that T is some final time point and that we are interested in simulating from
the JSD φµ,0:T 〈Y0:T 〉 using an MCMC procedure. For that purpose, it is required to define
a Harris positive recurrent Markov kernel on the path space (XT+1,X⊗(T+1)) having the JSD
φµ,0:T 〈Y0:T 〉 as its unique invariant distribution. The PG sampler accomplishes this by making
use of SMC. From an algorithmic point of view, the difference between PG and a standard SMC
sampler is that in the former, one particle trajectory, denoted as x′0:T = (x′0, . . . , x

′
T ) ∈ Xt+1, is

specified a priori. This trajectory is used as a reference for the PG sampler, as discussed below.
The reference trajectory is taken into account by simulating only N − 1 particles in the

usual way. The Nth particle is then set deterministically according to the reference. At the
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initialization, we thus simulate independently {X i
0}N−1

i=1 with X i
0 ∼ r0〈Y0〉(·) and set XN

0 = x′0.
We then compute importance weights for all particles, i = 1, . . . , N , according to (5).

Analogously, at any consecutive time point t, we sample the firstN−1 particles {(Ai
t, X

i
t)}N−1

i=1

conditionally independently given FN
t−1 according to (7)–(8). Note that these particles will de-

pend on the reference trajectory through the resampling step (7). The Nth particle and its
ancestor index are then set deterministically: XN

t = x′t and AN
t = N . Finally, importance

weights are then computed for all the particles according to (10). Note that, by construction,
the Nth particle trajectory will coincide with the reference trajectory for all t, XN

0:t = x′0:t.
After a complete pass of the above procedure, a trajectory X⋆

0:T is sampled from among the
particle trajectories at time T (see (9)), with probability proportional to the importance weight
ωi
T , i ∈ {1, . . . , N}, i.e.

P
(
X⋆

0:T = X i
0:T

∣∣FN
T

)
=

ωi
T∑N

ℓ=1 ω
ℓ
T

, i ∈ {1, . . . , N} . (12)

This procedure thus associates each trajectory x′0:T ∈ XT+1 to a probability distribution on
(XT+1,X⊗(T+1)), defining a Markov kernel on (XT+1,X⊗(T+1)). More specifically, this kernel
is given by

PT,N (x′0:T , D) := E

[∑N
i=1 ω

i
T1D(X i

0:T )∑N
i=1 ω

i
T

]
, (13)

for (x′0:T , D) ∈ XT+1 × X⊗(T+1), where E refers to expectation with respect to the random
variables generated by the PG algorithm. We refer to PT,N as the PG kernel.

As shown by Andrieu et al. (2010), the conditioning on a reference trajectory implies that
the PG kernel leaves the JSD invariant:

φµ,0:T 〈Y0:T 〉(D) =

∫
PT,N (x′0:T , D)φµ,0:T 〈Y0:T 〉(dx′0:T ) , ∀D ∈ X (T+1).

Quite remarkably, this invariance property holds for any N ≥ 1.
Empirically, it has been found that the mixing of the PG kernel can be improved significantly

by updating the ancestor indices AN
t for t ∈ {1, . . . , T }, either as part of the forward recursion

(Lindsten et al., 2012) or in a separate backward recursion (Whiteley et al., 2010). We shall not
specifically analyze these modified PG algorithms in this work, although our uniform ergodicity
result apply straightforwardly to these algorithms as well.

4 Main result

In this section we state the main results. First, in Section 4.1, we give a minorization condition
for the PG kernel. Following this we discuss how to increase the number of particles N = NT

as a function of the number of observations T in order to obtain a non-degenerate lower-bound.
We consider first a strong mixing condition and then a much weaker moment assumption in
Section 4.2 and Section 4.3, respectively.

4.1 Minorization condition

Define the sequence of nonnegative random variables {Bt,T}Tt=0 by

Bt,T = sup
0≤ℓ≤T−t

|w〈Yt〉|∞|Q〈Yt+1:t+ℓ〉1|∞
pµ(Yt:t+ℓ|Y0:t−1)

(14)
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where, by convention, |Q〈Yt+1:t〉1|∞ = 1.

Theorem 1. For all x′0:T ∈ XT+1 and D ∈ X⊗(T+1),

PT,N (x′0:T , D) ≥ ǫT,N φµ,0:T 〈Y0:T 〉(D) , (15)

where

ǫT,N =

T∏

t=0

N − 1

2Bt,T +N − 2
. (16)

Proof. The proof is postponed to Section 6. However, to provide some intuition for the result,
the main ideas of the proof are outlined below.

Using the representation of the PG kernel from (13) we can write

PT,N (x′0:T , D) ≥ (N − 1)E

[
ω1
T1D(X1

0:T )∑N
i=1 ω

i
T

]
≥ (N − 1)E

[
E

[
ω1
T1D(X1

0:T )

2|w〈Yt〉|∞ +
∑N−1

i=2 ωi
T

∣∣∣∣∣F
N
T−1

]]
,

where, for the first inequality, we have simply discarded the Nth term (corresponding to the
reference particle) and used the fact that the N − 1 weighted particles {(X i

0:T , ω
i
T )}N−1

i=1 are
equally distributed. For the second inequality, we bound the first and the last term of the sum
in the denominator by |w〈Yt〉|∞. This has the effect that the random variables entering the
numerator and the denominator of the expression are conditionally independent given FN

T−1.
By convexity of x 7→ 1/x and using Jensen’s inequality we therefore obtain the bound

PT,N (x′0:T , D) ≥ (N − 1)E

[
E
[
ω1
T1D(X1

0:T )
∣∣FN

T−1

]

2|w〈Yt〉|∞ + (N − 2)E
[
ω2
T | FN

T−1

]
]
.

The inner conditional expectations can be computed explicitly. Principally, the result follows
by repeating this procedure for time T − 1, then for T − 2, etc.

Corollary 2. Assume that g(x, y) > 0 for all (x, y) ∈ X × Y and |w〈y〉|∞ < ∞ for all y ∈ Y.
Then, for fixed T ,

ǫT,N ≥ 1 +
1

N − 1

T∑

t=0

(1− 2Bt,T ) +OP(N
−2) ,

and limN→∞ ǫT,N = 1.

Proof. From the definition (16) we have

ǫT,N = exp

{
−

T∑

t=0

ln

(
1 +

2Bt,T − 1

N − 1

)}
≥ exp

{
1

N − 1

T∑

t=0

(1− 2Bt,T )

}
.

For a fixed T , we thus obtain the result provided that Bt,T <∞ for all t ∈ {0, . . . , T }. However,
the positivity of g implies that pµ(Yt:t+ℓ|Y0:t−1) > 0 for all ℓ ≥ 0, and since |w〈y〉|∞ <∞ for all
y ∈ Y, it can be easily checked that

|Q〈Yt+1:t+ℓ〉1|∞ ≤
t+ℓ∏

s=t+1

|w〈Ys〉|∞ <∞ ,

which immediately implies that Bt,T <∞ for all t ∈ {0, . . . , T }.
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Remark 3. The minorization condition of Theorem 1 is similar to Proposition 6 by Andrieu et al.
(2013). However, they express the minorizing constant in terms of the expectation of a likelihood
estimator with respect to the law of a “doubly conditional SMC” algorithm. They do not pursue
an analysis of the effect on the minorization condition by the forgetting of the initial condition
of the state space model. To obtain an explicit rate of convergence they assume, in our notation,
that the triangular array of random variables {Bt,T }0≤t≤T is uniformly bounded for T ≥ 0. This
is the case, basically, only when the model satisfies strong mixing conditions, as we discuss in
the subsequent section. Indeed, Andrieu et al. (2013, Proposition 14 and Lemma 17) is the same
as our Proposition 5.

4.2 Strong mixing condition

We first assume a strong mixing condition for the kernel M :

(S-1) There exist positive constants (σ−, σ+), a nonnegative measure γ and an integer m ∈ N such
that for all x ∈ X,

σ−γ(dx
′) ≤Mm(x, dx′) ≤ σ+γ(dx

′) .

This condition has been introduced by Del Moral and Guionnet (1999) to establish the uniform-
in-time convergence of the particle filter. This condition, which is stronger than the Doeblin
condition, typically requires that the state space is compact. It is overly restrictive but is often
use in the analysis of state space models because it implies a form of uniform forgetting of the
initial condition of the filter, which is key to obtaining long-term stability of the particle filter.

Proposition 4. Assume that (S-1) holds with m = 1 and that the proposal kernel is fully-
adapted as defined in (11). Then, taking NT ∼ λT for some λ > 0, we have

lim inf
T→∞

ǫT,NT ≥ exp

(
1− 2(σ+/σ−)

2

λ

)
> 0 , P-a.s.

Proof. First, note that for all ℓ ≥ 1,

|Q〈Yt+1:t+ℓ〉1|∞ ≤ σ+

∫
γ(dxt+1)g(xt+1, Yt+1)Q〈Yt+2:t+ℓ〉1(xt+1) (17)

and

pµ(Yt:t+ℓ|Y0:t−1) ≥ σ2
−

∫
γ(dxt)g(xt, Yt)

∫
γ(dxt+1)g(xt+1, Yt+1)Q〈Yt+2:t+ℓ〉1(xt+1) . (18)

Now, in the fully-adapted case, we have:

R〈y〉(x, dx′) = M(x, dx′)g(x′, y)∫
M(x, du)g(u, y)

,

so that by the definition of w〈y〉,

|w〈Yt〉|∞ = sup
x∈X

∣∣∣∣
∫
M(x, dxt)g(x,Yt)

∣∣∣∣ ≤ σ+

∫
γ(dxt)g(xt, Yt) .

Combining this equality with (17) and (18) yields:

Bt,T = sup
0≤ℓ≤T−t

|w〈Yt〉|∞|Q〈Yt+1:t+ℓ〉1|∞
pµ(Yt:t+ℓ|Y0:t−1)

≤
(
σ+
σ−

)2

.
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By the definition (16), we then obtain:

ǫT,N ≥
T∏

t=0

N − 1

2Bt,T +N − 2
≥
(

N − 1

N − 2 + 2(σ+/σ−)2

)T+1

.

Finally, letting NT ∼ λT , we obtain

lim inf
T→∞

ǫT,NT ≥ exp

(
1− 2(σ+/σ−)

2

λ

)
> 0 , P-a.s.

It is worthwhile to stress that Proposition 4 holds whatever the distribution of the observa-
tion process, {Yt, t ∈ N} is. This is a consequence of the strong mixing condition (S-1) which
provides a simple result, but at the expense of an assumption which is rarely met in practice. If
instead of the fully adapted case, we consider the bootstrap filter (see (11)), we may also obtain
a uniform-in-time bound. However, this requires an even stronger assumption of the existence
of a lower and an upper bound for the observation likelihood.

(S-2) There exists a positive constant δ, such that for all y ∈ Y,

1 ≤ supx∈X g(x, y)

infx∈X g(x, y)
≤ δ .

Proposition 5. Assume that (S-1)-(S-2) hold and that the bootstrap proposal is used: R〈y〉(x, ·) =
M(x, ·). Then, taking NT ∼ λT for some λ > 0, we have

lim inf
T→∞

ǫT,NT ≥ exp

(
1− 2δmσ+/σ−

λ

)
> 0 , P-a.s. ,

where m is defined in (S-1).

Proof. For the bootstrap filter, w〈y〉(x, x′) = g(x′, y). Therefore, |w〈y〉|∞ = supx∈X g(x, y). On
the other hand, for ℓ ≥ m,

|Q〈Yt+1:t+ℓ〉1|∞ ≤ σ+

(
t+m−1∏

s=t+1

sup
x∈X

g(x, Ys)

)∫
γ(dxt+m)g(xt+m, Yt+m)Q〈Yt+m+1:l〉1(xt+m) ,

(19)

and

pµ(Yt:t+ℓ|Y0:t−1) ≥ σ−

(
t+m−1∏

s=t

inf
x∈X

g(x, Ys)

)∫
γ(dxt+m)g(xt+m, Yt+m)Q〈Yt+m+1:t+ℓ〉1(xt+m) .

(20)

Combining (19) and (20) yields

Bt,T ≤ δm
σ+
σ−

. (21)

The result follows as in the proof of Proposition 4.
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4.3 Moment assumption

Under the strong mixing condition (S-1) and the even more restrictive (S-2), we obtained non-
degenerate uniform convergence bounds when the number of trajectories NT depends linearly
on the number of observations T . However, these conditions are very restrictive and hardly ever
satisfied when the state space is non-compact. We now turn to the analysis of the minorization
condition under a much weaker moment assumption. However, when the strong mixing assump-
tion is relaxed, we are no longer able to obtain bounds that hold uniformly with respect to the
observation sequence. Instead, we will take a probabilistic approach. In Theorem 6 below, we
show that the minorizing constant will be bounded away from zero, in probability, provided
that NT is a power of T . Moreover, the result presented in this section is not restricted to the
fully-adapted or the bootstrap PG kernel and may be obtained for virtually any proposal kernel.

This result holds with respect to the law of the observation process {Yt, t ∈ N}. It is
therefore of interest to carry out the analysis for a parametric family of state space models
{(Mθ, Gθ), θ ∈ Θ}, where Θ is a compact subset of a Euclidean space. Informally, this allows
us to analyse the ergodicity of the PG kernel, even when the algorithm is executed using a
misspecified model. We consider a sequence of parameters {θT , T ∈ N} that become increasingly
close to some “true” parameter θ⋆ (in a sense that will be made precise in Theorem 6 below),
converging at a rate 1/

√
T . The rationale for this assumption is that we are considering the

large T regime and we can therefore expect θT to be close to θ⋆. We discuss this further in
Remark 7 below. Note that, for a fixed observation sequence Y0:T (with finite T ) we can instead
appeal to Corollary 2.

(A-1) For all θ ∈ Θ, the kernel Mθ has a unique stationary distribution denoted as πθ.

In what follows, for θ ∈ Θ we let Eθ
µ and P

θ
µ refer to the expectation and probability, respectively,

induced on ((X × Y)N, (X ⊗ Y)⊗N) by a Markov chain {(Xt, Yt), t ∈ N} evolving according to
the state space model (Mθ, Gθ) starting with X0 ∼ µ. For simplicity, we write Ē

θ = E
θ
πθ and

P̄
θ = P

θ
πθ . For 1 ≤ s ≤ t, we write

pθµ,s(ys:t) =

∫
pθµ(y0:t)κ

⊗s(dy0:s−1)

for the marginal probability density function of Ys:t with respect to κ⊗(t−s+1).
Define for all (t, ℓ) ∈ N× N

⋆,

B̃θ
t 〈Yt:t+ℓ〉 :=

|wθ〈Yt〉|∞|Qθ〈Yt+1:t+ℓ〉1|∞
pθµ,t(Yt:t+ℓ)

, (22)

C̃θ
t 〈Yt:t+ℓ〉 :=

|wθ〈Yt〉|∞
∫
λ(dxt+1)g

θ(xt+1, Yt+1)Q
θ〈Yt+2:t+ℓ〉1(xt+1)

pθµ,t(Yt:t+ℓ)
, (23)

with, by convention,

B̃θ
t 〈Yt〉 = |wθ〈Yt〉|∞/pθµ,t(Yt) , C̃θ

t 〈Yt:t+1〉 = |wθ〈Yt〉|∞
∫
λ(dxt+1)g

θ(xt+1, Yt+1)/p
θ
µ,t(Yt:t+1) .

(A-2) There exists a constant σ+ ∈ R
+ and a nonnegative measure λ such that for all θ ∈ Θ and

(x,A) ∈ X×X ,
Mθ(x,A) ≤ σ+λ(A) .
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Denote by mθ(x, ·) the Radon-Nikodym derivative

mθ(x, x′) =
dMθ(x, ·)
dλ(·) (x′) . (24)

Under (A-2), the stationary distribution πθ is absolutely continuous with respect to λ. Fur-
thermore, for notational simplicity it is assumed that the initial distribution µ is absolutely
continuous with respect to λ. By abuse of notation, we write πθ and µ also for the correspond-
ing density functions.

(A-3) For all θ ∈ Θ and (x, x′, y) ∈ X2 × Y, mθ(x, x′) > 0 and gθ(x, y) > 0.

(A-4) There exist constants (ℓ⋆, α) ∈ N
⋆ × (0, 1) such that,

sup
t∈N

sup
θ∈Θ

E
θ
µ

[
(B̃θ

t 〈Yt:t+ℓ〉)α
]
<∞ , for all ℓ ∈ {0, . . . , ℓ⋆ − 1} , (25)

sup
t∈N

sup
θ∈Θ

E
θ
µ

[
(C̃θ

t 〈Yt:t+ℓ⋆〉)α
]
<∞ . (26)

Theorem 6. Assume that (A-1), (A-2), (A-3), and (A-4) hold. Let θ⋆ ∈ Θ and let {θT , T ∈ N}
be a sequence of parameters such that

lim sup
T→∞

T Ēθ⋆

[
ln

(
mθ⋆(X0, X1)g

θ⋆(X1, Y1)

mθT (X0, X1)gθT (X1, Y1)

)]
<∞ . (27)

Furthermore, assume that

Ē
θ⋆

[
ln

(
πθ⋆(X0)

µ(X0)

)]
<∞ , (28)

where µ is the initial distribution used in the PG algorithm. Then, for all 0 ≤ γ < α (where α is
defined in (A-4)) and for all sequences of integers {NT}T≥1 such that NT ∼ T 1/γ, the sequence
{ǫ−1

T,NT
(θT )}T≥1, defined in (16) is P̄

θ⋆-tight (bounded in probability).

Proof. The proof is postponed to Section 7.

Remark 7. For any θ ∈ Θ,

D(θ⋆||θ) := Ē
θ⋆

[
ln

(
mθ⋆(X0, X1)g

θ⋆(X1, Y1)

mθ(X0, X1)gθ(X1, Y1)

)]
,

is the expectation under the stationary distribution πθ⋆ of the Kullback-Leibler divergence between
the conditional distribution of pθ⋆(X1, Y1|X0) and pθ(X1, Y1|X0). Hence, D(θ⋆||θ) ≥ 0 for all
θ ∈ Θ and D(θ⋆||θ⋆) = 0. Assuming that θ⋆ belongs to the interior of Θ and that the function
θ 7→ D(θ⋆||θ) is twice differentiable at θ⋆, a Taylor expansion at θ⋆ yields

D(θ⋆||θ) =
1

2
(θ⋆ − θ)tHθ⋆(θ⋆ − θ) + o(‖θ⋆ − θ‖2) ,

where Hθ is the Hessian of θ 7→ D(θ⋆||θ). Consequently, for regular statistical models, (27) holds
provided that θT converges to θ⋆ at a rate 1/

√
T , i.e.,

θT = θ⋆ + ̺T /
√
T ,

where the sequence {̺T , T ∈ N} is bounded: supT≥0 ‖̺T ‖ <∞.
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Remark 8. It should be noted that our results do not cover explicitly the case when the sequence
{̺T , T ∈ N} is stochastic. Still, we believe that our results hint at the possibility of obtaining
a non-degenerate lower bound on the minorizing constant also in the stochastic case, given that
{̺T , T ∈ N} is tight, under conditions that are much weaker than the previously considered
strong mixing assumption.

Remark 9. It is interesting to note that we do not require the initial distribution µ to be equal
to πθ⋆ , but only that the Kullback-Leibler divergence (28) is bounded. Hence, we may use a quite
arbitrary initial distribution and still obtain a sequence of inverse minorization constants that
is tight with respect to P̄

θ⋆ .

A straightforward generalization of the above result is to let the initial distribution belong to
a parametric family of distributions, {µθ : θ ∈ Θ}. The condition (28) should then be replaced
by

lim sup
T→∞

Ē
θ⋆

[
ln

(
πθ⋆(X0)

µθT (X0)

)]
<∞ .

Allowing for the initial distribution to depend on θ can be useful in some cases. For instance, if
the stationary distribution πθ is known it may serve as a natural choice for the initial distribution
used in the algorithm.

5 Examples

In this section we consider two examples to illustrate how the assumptions of Theorem 6 can be
verified in practice. We preface the examples by a technical lemma, which will be very useful
for checking the assumptions.

Lemma 10. Let (Z,Z) be a measurable set and ξ be a measure on (Z,Z). Let α ∈ (0, 1) and
let ϕ, ψ and q be nonnegative measurable functions, such that

∫
ψ(z)ϕ(z)ξ(dz) <∞ , (29)

∫
ϕ− α

1−α (z)q(z)ξ(dz) <∞ . (30)

Then, ∫
ψα(z)q1−α(z)ξ(dz) <∞ . (31)

Proof. The result follows from Hölder’s inequality:

∫
ψα(z)q1−α(z)ξ(dz) =

∫
[ψ(z)ϕ(z)]α

[
ϕ− α

1−α (z)q(z)
]1−α

ξ(dz)

≤
(∫

ψ(z)ϕ(z)ξ(dz)

)α(∫
ϕ− α

1−α (z)q(z)ξ(dz)

)1−α

.
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5.1 A nonlinear model with additive measurement noise

We consider first a class of nonlinear state space models where the latent process is observed in
additive noise,

Xt+1 = hξ(Xt) + σWWt+1 (32)

Yt = φXt + σUUt (33)

where {Wt, t ∈ N} and {Ut, t ∈ N} are two independent sequences of i.i.d. standard Gaussian
random variables and {hξ, ξ ∈ Ξ} is a parametric family of measurable real-valued functions,
where Ξ is a compact subset of a Euclidean space. We denote by θ = (ξ, φ, σU , σW ) the pa-

rameters of the model. It is assumed that θ ∈ Θ, where Θ is a compact subset of Ξ × (0,∞)
3
.

We assume that for all ξ ∈ Ξ, x 7→ hξ(x) is continuous and supξ∈Ξ lim supx→∞ |hξ(x)|/|x| < 1.

For any δ > 0, we set Vδ(x) = eδ|x|. It is easily seen that there exist constants λδ ∈ (0, 1) and
bδ <∞ such that

sup
θ∈Θ

E
θ
x [Vδ(X1)] ≤ λδVδ(x) + bδ . (34)

The Markov chain is strong Feller, Harris recurrent, all the compact sets are small, and the
Markov chain admits a single invariant distribution. Therefore, (A-1) and (A-2) are satisfied.
Since both the transition density and the observation density are Gaussian, (A-3) is also readily
satisfied. We will thus focus on verifying the moment assumption (A-4).

First, note that

sup
t∈N

sup
θ∈Θ

E
θ
x [Vδ(Xt)] ≤ λtδVδ(x) + bδ(1 + λδ + · · ·+ λt−1

δ ) ≤ Vδ(x) + bδ/(1− λδ) . (35)

We assume that the initial distribution µ is such that µ(Vδ) <∞. Therefore,

sup
t∈N

sup
θ∈Θ

E
θ
µ [Vδ(Xt)] <∞ . (36)

Interestingly for the model (32)–(33) it is possible to use the fully adapted proposal kernel
(Doucet et al., 2000) as defined in (11), for which

wθ〈y〉(x, x′) =
∫
mθ(x, x′′)gθ(x′′, y)dx′′

=
1√

2π(φ2σ2
W + σ2

U )
exp

(
− 1

2(φ2σ2
W + σ2

U )

(
y − φhξ(x)

)2
)
, (37)

for all (x, x′) ∈ R× R, y ∈ R, and θ ∈ Θ. It can be seen that, for any θ ∈ Θ and any y ∈ R,

∫ ∞

−∞

gθ(x, y)dx =
1

φ
, and |wθ〈y〉|∞ ≤ 1√

2π(φ2σ2
W + σ2

U )
,

which implies the existence of constants D1 and D2 such that

sup
θ∈Θ

∫ ∞

−∞

gθ(x, y)dx ≤ D1 , and sup
θ∈Θ

|wθ〈y〉|∞ ≤ D2 . (38)

Analogous bounds hold also if we would instead consider the bootstrap proposal (see (11)).
To verify (A-4) we let ℓ⋆ = 1 and show that,

sup
t∈N

sup
θ∈Θ

E
θ
µ

[
(B̃θ

t 〈Yt〉)α
]
<∞ , sup

t∈N

sup
θ∈Θ

E
θ
µ

[
(C̃θ

t 〈Yt:t+1〉)α
]
<∞ , (39)
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for some (and actually any) α ∈ [0, 1). Consider first

E
θ
µ

[
(B̃θ

t 〈Yt〉)α
]
=

∫
|wθ〈yt〉|α∞{pθµ,t(yt)}1−αdyt ≤ Dα

2

∫
{pθµ,t(yt)}1−αdyt , (40)

where the inequality follows from (38). We apply Lemma 10 to establish a bound for the right-
hand side of (40). Let ψ(y) = 1 and ϕ(y) = 1/(1 ∨ |y|2). With these definitions the first
condition in (29) is satisfied. To check (30), note that

ϕ− α
1−α (y) = (1 ∨ |y|2) α

1−α ≤ 1 + |y|2α/(1−α) .

The integral in (30) may be expressed as
∫
ϕ− α

1−α (yt)p
θ
µ,t(yt)dyt = E

θ
µ

[
ϕ− α

1−α (Yt)
]
= E

θ
µ

[
E
θ
Xt

[
ϕ− α

1−α (Y0)
]]
. (41)

Since Y0 = φX0 + σU0, we get that for any x ∈ X, Eθ
x

[
ϕ− α

1−α (Y0)
]
≤ 1 + E

[
|φx+ U |2α/(1−α)

]
,

where U is standard normal. This implies that there exists a constant D3 such that, for all
x ∈ X and all θ ∈ Θ,

E
θ
x

[
ϕ− α

1−α (Y0)
]
≤ D3(1 + |x|2α/(1−α)) . (42)

Plugging this into (41) and using (36), this verifies the second condition in (30). Lemma 10 can

thus be used to conclude that E
θ
µ

[
(B̃θ

t 〈Yt〉)α
]
< ∞ for all α ∈ (0, 1). Since this holds for any

t ∈ N and θ ∈ Θ, we obtain the first part of (39).
Next, we consider

E
θ
µ

[
(C̃θ

t 〈Yt:t+1〉)α
]
= E

θ
µ

[
|wθ〈Yt〉|α∞

(∫
gθ(xt+1, Yt+1)dxt+1

)α

{pθµ,t(Yt:t+1)}α

]

≤ Dα
1D

α
2

∫∫
{pθµ,t(yt:t+1)}1−αdyt:t+1 .

We will again make use of Lemma 10 to bound this quantity. Proceeding analogously to above,
we let ψ(y0, y1) = 1 and

ϕ(y0, y1) =
1

(y20 ∨ 1) (y21 ∨ 1)
, (43)

for which (29) is satisfied. To check (30), we use the conditional independence of the observations
given the states and (41) to get, for any θ ∈ Θ,

∫∫
ϕ− α

1−α (yt:t+1)p
θ
µ,t(yt:t+1)dyt:t+1 = E

θ
µ

[
E
θ
µ

[
ϕ− α

1−α (Yt:t+1)
∣∣Xt:t+1

]]

≤ E
θ
µ

[
E
θ
Xt

[
1 + |Y0|

2α
1−α

]
E
θ
Xt+1

[
1 + |Y0|

2α
1−α

]]
≤ D2

3E
θ
µ

[
(1 + |Xt|

2α
1−α )(1 + |Xt+1|

2α
1−α )

]
.

From the Cauchy-Schwarz inequality we get, by using (36),

sup
t∈N

sup
θ∈Θ

E
θ
µ

[
ϕ− α

1−α (Yt:t+1)
]
≤ D2

3 sup
t∈N

sup
θ∈Θ

E
θ
µ

[
(1 + |Xt|

2α
1−α )2

]
<∞ .

This shows that (30) is satisfied for any θ ∈ Θ and any t ∈ N which, by Lemma 10 implies

supt∈N
supθ∈Θ E

θ
[
(C̃θ

t 〈Yt:t+1〉)α
]
<∞ for all α ∈ [0, 1), verifying (A-4).

Provided that θT converges to θ⋆ at a rate 1/
√
T (see Remark 7), we may therefore apply

Theorem 6 which shows that for any γ ∈ (0, 1), {ǫ−1
T,NT

(θT )}T≥1 is tight with NT ∼ T 1/γ .
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5.2 A stochastic volatility model

The canonical model in stochastic volatility for discrete-time data has been introduced by
Taylor (1982) and worked out since then by many authors; see Hull and White (1987) and
Jacquier et al. (1994) for early references and Shephard and Andersen (2009) for an up-to-date
survey. In this model, the hidden volatility process, {Xt, t ∈ N}, follows a first order autore-
gression,

Xt+1 = φXt + σWt+1 , (44)

Yt = β exp(Xt/2)Ut . (45)

where {Wt, t ∈ N} and {Ut, t ∈ N} are white Gaussian noise with mean zero and unit variance.
The error processes {Wt, t ∈ N} and {Ut, t ∈ N} are assumed to be mutually independent. We

denote by θ = (φ, σ, β) ∈ Θ, where Θ is a compact subset of (−1, 1)× (0,∞)2. For δ > 0, denote
by Vδ(x) = eδ|x| and let µ an arbitrary distribution on (R,B(R)), for which µ(Vδ) <∞.

For this model the transition kernel and the likelihood of the observation are given by

mθ(x, x′) =
1√
2πσ2

exp

(
− 1

2σ2
(x′ − φx)2

)
and (46)

gθ(x, y) =
1√
2πβ2

e−(x/2+(y2/2β2)e−x) , (47)

respectively. For any θ ∈ Θ, the autoregressive process {Xt, t ∈ N} has a unique stationary
distribution πθ, which is Gaussian, with mean 0 and variance σ2/(1 − φ2). Hence, (A-1) is
satisfied.

We consider the bootstrap proposal kernel as defined in (11), in which case

wθ〈y〉(x, x′) = gθ(x′, y) , for all (x, x′) ∈ R× R and y ∈ R . (48)

Note that, |wθ〈y〉|∞ = |gθ(·, y)|∞. Assumptions (A-2) and (A-3) are readily satisfied. We finally
check (A-4). It is easily shown that, for all θ ∈ Θ,

∫ ∞

−∞

gθ(x, y)dx =
D1

|y| , D1 :=
1√
2π

∫ ∞

0

e−u/2

√
u

du (49)

sup
x∈R

gθ(x, y) =
D2

|y| , D2 :=
1√
2πe

. (50)

Similarly to Section 5.1 we will check (A-4) with ℓ⋆ = 1, i.e., we show that

sup
t∈N

sup
θ∈Θ

E
θ
µ

[
(B̃θ

t 〈Yt〉)α
]
<∞ , sup

t∈N

sup
θ∈Θ

E
θ
µ

[
(C̃θ

t 〈Yt:t+1〉)α
]
<∞ , (51)

for any α ∈ (0, 1). Note that we cannot expect (51) to hold with α = 1 since,

E
θ
µ

[
B̃θ

t 〈Yt〉
]
= E

θ
µ

[
|wθ〈Yt〉|∞
pθµ,t(Yt)

]
=

∫
sup
x∈R

gθ(x, y)dy = D2

∫
1

|y|dy = ∞ .

We now turn to the proof of (51). Note first that

lim sup
|x|→∞

sup
θ∈Θ

E
θ
x [Vδ(X1)]

Vδ(x)
= 0 ,
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and for any M < ∞, sup|x|≤M supθ∈Θ E
θ
x [Vδ(X1)] < ∞. Therefore, there exist constants λδ ∈

(0, 1) and bδ <∞ such that, for all x ∈ X,

sup
θ∈Θ

E
θ
x [Vδ(X1)] ≤ λδVδ(x) + bδ . (52)

Analogously to (35), this implies that, for all δ > 0,

sup
t∈N

sup
θ∈Θ

E
θ
µ [Vδ(Xt)] ≤ µ(Vδ) + bδ/(1− λδ) <∞ . (53)

Using (48) and (50), we get

E
θ
µ

[
(B̃θ

t 〈Yt〉)α
]
=

∫
|wθ〈yt〉|α∞{pθµ,t(yt)}1−αdyt ≤ Dα

2

∫
|yt|−α{pθµ,t(yt)}1−αdyt . (54)

We apply Lemma 10 to establish a bound for (54). Consider the functions ϕ and ψ given by

ψ(y) = 1/|y| , (55)

ϕ(y) =
|y|γ

|y|2 ∨ 1
, with

γα

1− α
< 1 , 0 < γ < 1 . (56)

With these definitions, we get

∫
ϕ(y)ψ(y)dy =

∫
1

|y|
|y|γ

|y|2 ∨ 1
dy <∞ ,

showing that the first condition in (29) is satisfied. We now check (30):

∫
ϕ− α

1−α (yt)p
θ
µ,t(yt)dyt = E

θ
µ

[
E
θ
Xt

[
ϕ− α

1−α (Y0)
]]
. (57)

Since Y0 = β exp(X0/2)U0 it follows that E
θ
x

[
ϕ− α

1−α (Y0)
]
= E

[
ϕ− α

1−α (βex/2U)
]
where U is

standard normal. We have

E

[(
β2exU2 ∨ 1

βγeγx/2|U |γ
) α

1−α

]

≤ E

[
(βex/2|U |)−

γα
1−α

1{β|U|ex/2≤1}

]
+ E

[
(β2exU2)

α
1−α

1{β|U|ex/2>1}

]

≤ (βe
x
2 )−

γα
1−αE

[
|U |− γα

1−α

]
+ (β2ex)

α
1−αE

[
|U | 2α

1−α

]
.

Since γα/(1 − α) < 1 it holds that E

[
|U |− γα

1−α

]
< ∞ and, additionally, E

[
|U | 2α

1−α

]
< ∞.

Therefore, there exist constants D3 <∞ and δ > 0 such that, for all x ∈ R and θ ∈ Θ,

E
θ
x

[
ϕ− α

1−α (Y0)
]
≤ D3e

δ|x| = D3Vδ(x) . (58)

Using (57), (58) and (53) verifies the second condition in (30). Lemma 10 can thus be used to

conclude that Eθ
µ

[
(B̃θ

t 〈Yt〉)α
]
< ∞ for all α ∈ (0, 1). Since this holds for any t ∈ N and θ ∈ Θ,

we establish the first part of (51).
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We will now check that, for all α ∈ (0, 1), Eθ
µ

[
(C̃θ

t 〈Yt:t+1〉)α
]
<∞. Using (49) and (50), we

get

E
θ
µ

[
(C̃θ

t 〈Yt:t+1〉)α
]
= E

θ

[
|wθ〈Yt〉|α∞

(∫
gθ(xt+1, Yt+1)dxt+1

)α

(pθµ,t(Yt:t+1))α

]

=

∫∫
|wθ〈yt〉|α∞

(∫
gθ(xt+1, yt+1)dxt+1

)α

(pθµ,t(yt:t+1))
1−αdyt:t+1 ,

≤ Dα
1D

α
2

∫∫
|ytyt+1|−α(pθµ,t(yt:t+1))

1−αdyt:t+1 . (59)

We use again Lemma 10 with
ψ(y0, y1) = |y0|−1|y1|−1 (60)

and

ϕ(y0, y1) =
|y0|γ |y1|γ

(y20 ∨ 1) (y21 ∨ 1)
, (61)

with γα/(1− α) < 1 and γ ∈ (0, 1). Note first that
∫∫

ψ(y0, y1)ϕ(y0, y1)dy0:1 =

∫∫ {
(|y0||y1|)1−γ(y20 ∨ 1)(y21 ∨ 1)

}−1
dy0:1 <∞ . (62)

Hence, (29) is satisfied. We finally check (30). Using the conditional independence of the
observations given the states and (58),

∫∫
ϕ− α

1−α (yt:t+1)p
θ
µ,t(yt:t+1)dyt:t+1 = E

θ
µ

[
E
θ
µ

[
ϕ− α

1−α (Yt:t+1)
∣∣Xt:t+1

]]

= E
θ
µ

[
E
θ
Xt

[(
β2eX0U2 ∨ 1

βeγX0/2|U |γ
) α

1−α

]
E
θ
Xt+1

[(
β2eX0U2 ∨ 1

βeγX0/2|U |γ
) α

1−α

]]
≤ D2

3E
θ
µ

[
eδ|Xt|eδ|Xt+1|

]
.

Using (52), we get, from the Cauchy-Schwarz inequality,

E
θ
µ

[
eδ|Xt|eδ|Xt+1|

]
≤
(
E
θ
µ

[
e2δ|Xt|

]
E
θ
µ

[
e2δ|Xt+1|

])1/2
,

Applying (53) with δ replaced by 2δ yields (30). Using Lemma 10 thus establishes (51) and
thereby, (A-4) holds.

Provided that θT converges to θ⋆ at a rate 1/
√
T (see Remark 7), we may therefore apply

Theorem 6 which shows that for any γ ∈ (0, 1), {ǫ−1
T,NT

(θT )}T≥1 is tight with NT = T 1/γ .

6 Proof of Theorem 1

We will now turn to the proof of the minorization condition in Theorem 1. As in the statement
of the theorem, we will not explicitly indicate any possible dependence on unknown model
parameters in the notation in this section. This is done for notational convenience and is
without loss of generality. Throughout this section, P and E refer to probability and expectation,
respectively, with respect to the random variables generated by the PG algorithm. The proof is
inductive and follows from a series of lemmas.

Lemma 11. Let X ≥ 0 and Y > 0 be independent random variables. Then,

E

[
X

Y

]
≥ E [X ]

E [Y ]
.
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Proof. Since f(y) = 1/y is convex on y > 0 the result follows by independence and Jensen’s
inequality.

Lemma 12. Let f and h be nonnegative measurable functions. For t ∈ {0, . . . , T − 1}, we have

E

[∑N
i=1 ω

i
t+1f(X

i
0:t+1)∑N

i=1 ω
i
t+1h(X

i
t+1)

∣∣∣∣∣F
N
t

]

≥
∑N

i=1 ω
i
t

∫
Q〈Yt+1〉(X i

t , dxt+1)f(X
i
0:t, xt+1)

∑N
i=1 ω

i
t

[
N−2
N−1Q〈Yt+1〉h(X i

t) +
2

N−1 sup(x,x′) w〈Yt+1〉(x, x′)h(x′)
] , (63)

and

E

[∑N
i=0 ω

i
0f(X

i
0)∑N

i=0 ω
i
0h(X

i
0)

]
≥ (N − 1)µ(g(·, Y0)f(·))

(N − 2)µ(g(·, Y0)h(·)) + 2 supx[w〈Y0〉(x)h(x)]
. (64)

Proof. Using that

ω1
t+1h(X

1
t+1) + ωN

t+1h(X
N
t+1) ≤ 2 sup

(x,x′)

w〈Yt+1〉(x, x′)h(x′) ,

and that the weighted particles {(X i
t+1, ω

i
t+1)}N−1

i=1 are conditionally i.i.d. with respect to FN
t ,

we get

E

[∑N
i=1 ω

i
t+1f(X

i
0:t+1)∑N

i=1 ω
i
t+1h(X

i
t+1)

∣∣∣∣∣F
N
t

]
≥ E

[∑N−1
i=1 ωi

t+1f(X
i
0:t+1)∑N

i=1 ω
i
t+1h(X

i
t+1)

∣∣∣∣∣F
N
t

]

≥ (N − 1)E

[
ω1
t+1f(X

1
0:t+1)∑N−1

i=2 ωi
t+1h(X

i
t+1) + 2 sup(x,x′) w〈Yt+1〉(x, x′)h(x′)

∣∣∣∣∣F
N
t

]

≥ (N − 1)
E
[
ω1
t+1f(X

1
0:t+1)

∣∣FN
t

]

E

[∑N−1
i=2 ωi

t+1h(X
i
t+1)

∣∣∣FN
t

]
+ 2 sup(x,x′) w〈Yt+1〉(x, x′)h(x′)

, (65)

where the last inequality follows from Lemma 11. Consider first the numerator in the right-hand
side of (65). We have

E
[
ω1
t+1f(X

1
0:t+1)

∣∣FN
t

]
=

1
∑N

l=1 ω
l
t

N∑

j=1

ωj
t

∫
R〈Yt+1〉(Xj

t , dxt+1)w〈Yt+1〉(Xj
t , xt+1)f(X

j
0:t, xt+1)

=
1

∑N
l=1 ω

l
t

N∑

j=1

ωj
t

∫
Q〈Yt+1〉(Xj

t , dxt+1)f(X
j
0:t, xt+1) . (66)

We now consider the denominator in the right-hand side of (65):

E

[
N−1∑

i=2

ωi
t+1h(X

i
t+1)

∣∣∣∣∣F
N
t

]
= (N − 2)E

[
ω1
t+1h(X

1
t+1)

∣∣FN
t

]

= (N − 2)
1

∑N
l=1 ω

l
t

N∑

j=1

ωj
tQ〈Yt+1〉h(Xj

t ) ,

where the last identity follows from (66) with f(x0:t+1) = h(xt+1). The proof of (63) follows.
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Consider now (64). Since the particles {X i
0}N−1

i=1 are i.i.d., we obtain, using again Lemma 11,

E

[∑N
i=1 ω

i
0f(X

i
0)∑N

i=1 ω
i
0h(X

i
0)

]
≥ (N − 1)E

[
ω1
0f(X

1
0 )∑N−1

i=2 ωi
0h(X

i
0) + 2 supx w〈Y0〉(x)h(x)

]

≥ (N − 1)E
[
ω1
0f(X

1
0 )
]

E

[∑N−1
i=2 ωi

0h(X
i
0)
]
+ 2 supx w〈Y0〉(x)h(x)

.

The numerator is given by

E
[
ω1
0f(X

1
0 )
]
=

∫
r0〈Y0〉(dx0)w〈Y0〉(x0)f(x0) =

∫
µ(dx0)g(x0, Y0)f(x0) .

Similarly, we get

E

[
N−1∑

i=2

ωi
0h(X

i
0)

]
= (N − 2)E

[
ω1
0h(X

1
0 )
]
= (N − 2)

∫
µ(dx0)g(x0, Y0)h(x0) .

Define a sequence of nonnegative scalars {βt}Tt=0 by the backward recursion: βT = |w〈YT 〉|∞,
and for t = T − 1, T − 2, . . . , 0,

βt = |w〈Yt〉|∞

{
2

N − 1

T−t∑

ℓ=1

(
N − 2

N − 1

)ℓ−1

βt+ℓ |Q〈Yt+1:t+ℓ−1〉1|∞

+

(
N − 2

N − 1

)T−t

|Q〈Yt+1:T 〉1|∞

}
. (67)

Given {βt}Tt=0, define the functions {ht}Tt=0, ht : X → R+, by the backward recursion: hT = 1

and, for all t = T − 1, T − 2, . . . , 0,

ht : x 7→ ht(x) =
N − 2

N − 1
Q〈Yt+1〉ht+1(x) +

2

N − 1
βt+1 . (68)

By solving the backward recursion, (68) implies

ht(x) =
2

N − 1

T−t∑

ℓ=1

(
N − 2

N − 1

)ℓ−1

βt+ℓQ〈Yt+1:t+ℓ−1〉1(x)+
(
N − 2

N − 1

)T−t

Q〈Yt+1:T 〉1(x) . (69)

For D ∈ X⊗(T+1), set fT (x0:T ) = 1D(x0:T ) and, for t = T − 1, T − 2, . . . , 0,

ft(x0:t) =

∫
Q〈Yt+1〉(xt, dxt+1)ft+1(x0:t+1) , (70)

or equivalently,

ft(x0:t) =

∫ T−t∏

ℓ=1

Q〈Yt+ℓ〉(xt+ℓ−1, dxt+ℓ)1D(x0:T ) . (71)
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Lemma 13. For any D ∈ X⊗(T+1),

E

[∑N
i=1 ω

i
T1D(X i

0:T )∑N
i=1 ω

i
T

]
≥

(N − 1)pµ(Y0:T )

(N − 2)µ(g(·, Y0)h0(·)) + 2β0
φµ,0:T 〈Y0:T 〉(D) .

Proof. Note first that, by construction,

E

[∑N
i=1 ω

i
T1D(X i

0:T )∑N
i=1 ω

i
T

]
= E

[∑N
i=1 ω

i
T fT (X

i
0:T )∑N

i=1 ω
i
ThT (X

i
T )

]
. (72)

We now show that, by backward induction, for all t ∈ {0, . . . , T − 1},

E

[∑N
i=1 ω

i
t+1ft+1(X

i
0:t+1)∑N

i=1 ω
i
t+1ht+1(X i

t+1)

]
≥ E

[∑N
i=1 ω

i
tft(X

i
0:t)∑N

i=1 ω
i
tht(X

i
t)

]
. (73)

To obtain (73), note first that the tower property of the conditional expectation, Lemma 12,
and (70) imply

E

[∑N
i=1 ω

i
t+1ft+1(X

i
0:t+1)∑N

i=1 ω
i
t+1ht+1(X i

t+1)

]
= E

[
E

[ ∑N
i=1 ω

i
t+1ft+1(X

i
0:t+1)∑N

i=1 ω
i
t+1ht+1(X i

t+1)

∣∣∣∣∣F
N
t

]]

≥ E




∑N
i=1 ω

i
tft(X

i
0:t)∑N

i=1 ω
i
t

[
N−2
N−1Q〈Yt+1〉ht+1(X i

t) +
2

N−1 sup(x,x′) w〈Yt+1〉(x, x′)ht+1(x′)
]


 .

By the triangle inequality, it follows directly from (67) and (69) that

sup
x
w〈Y0〉(x)h0(x) ≤ β0 , (74)

sup
x,x′

w〈Yt+1〉(x, x′)ht+1(x
′) ≤ βt+1 , t ∈ {0, . . . , T − 1} . (75)

Combining the inequality (75) with the definition of ht in (68) yields

N∑

i=1

ωi
t

[
N − 2

N − 1
Q〈Yt+1〉ht+1(X

i
t) +

2

N − 1
sup
(x,x′)

w〈Yt+1〉(x, x′)ht+1(x
′)

]
≤

N∑

i=1

ωi
tht(X

i
t) ,

showing (73). Combining (73) with (72) and using Lemma 12-(64) establishes that

E

[∑N
i=1 ω

i
T1D(X i

0:T )∑N
i=1 ω

i
T

]
≥ E

[∑N
i=1 ω

i
0f0(X

i
0)∑N

i=1 ω
i
0h0(X

i
0)

]
≥ (N − 1)µ(g(·, Y0)f0(·))

(N − 2)µ(g(·, Y0)h0(·)) + 2β0
,

where the last inequality stems from (74). The proof is completed by noting that

µ(g(·, Y0)f0(·)) = φµ,0:T 〈Y0:T 〉(D)pµ(Y0:T ) .

Finally, to prove Theorem 1 it remains to show the following.

Lemma 14. With Bt,T defined as in (14), it holds that

(N − 2)µ(g(·, Y0)h0(·)) + 2β0 ≤ (N − 1)pµ(Y0:T )

[
T∏

t=0

2Bt,T +N − 2

N − 1

]
. (76)
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Proof. Define for t ∈ {0, . . . , T },

αt =
βt

pµ(Yt:T |Y0:t−1)
, (77)

with the convention pµ(Y0:T |Y0:−1) = pµ(Y0:T ). In particular, α0 = β0/pµ(Y0:T ).
Eq. (67) implies

αt = |w〈Yt〉|∞

{
2

N − 1

T−t∑

ℓ=1

(
N − 2

N − 1

)ℓ−1

αt+ℓ

[ |Q〈Yt+1:t+ℓ−1〉1|∞pµ(Yt+ℓ:T |Y0:t+ℓ−1)

pµ(Yt:T |Y0:t−1)

]

+

(
N − 2

N − 1

)T−t |Q〈Yt+1:T 〉1|∞
pµ(Yt:T |Y0:t−1)

}
.

The identity
pµ(Yt+ℓ:T |Y0:t+ℓ−1)

pµ(Yt:T |Y0:t−1)
=

1

pµ(Yt:t+ℓ−1|Y0:t−1)

and the definition in (14) imply that

αt ≤ Bt,T

{
2

N − 1

T−t∑

ℓ=1

(
N − 2

N − 1

)ℓ−1

αt+ℓ +

(
N − 2

N − 1

)T−t
}
. (78)

By a backward induction, define the sequence {α̃t}Tt=0 as follows: set α̃T = BT,T and

α̃t = Bt,T

[
2

N − 1

T−t∑

ℓ=1

(
N − 2

N − 1

)ℓ−1

α̃t+ℓ +

(
N − 2

N − 1

)T−t
]
. (79)

Since by construction, αT ≤ BT,T = α̃T , an elementary backward recursion using (78) shows
that,

for all t ∈ {0, . . . , T }, αt ≤ α̃t . (80)

However

α̃t−1 = Bt−1,T

[
2

N − 1

T−t+1∑

s=1

(
N − 2

N − 1

)ℓ−1

α̃t+ℓ−1 +

(
N − 2

N − 1

)T−t+1
]

= Bt−1,T

[
2

N − 1
α̃t +

2

N − 1

T−t∑

k=1

(
N − 2

N − 1

)k

α̃t+k +

(
N − 2

N − 1

)T−t+1
]

=
2Bt−1,T

N − 1
α̃t +Bt−1,T

N − 2

N − 1

α̃t

Bt,T

=
Bt−1,T

Bt,T

[
2Bt,T

N − 1
+
N − 2

N − 1

]
α̃t .

Therefore

α̃0 = B0,T

T∏

t=1

2Bt,T +N − 2

N − 1
. (81)

Now, since

h0(x) =
2

N − 1

T∑

s=1

(
N − 2

N − 1

)s−1

βsQ〈Y1:s−1〉1(x) +
(
N − 2

N − 1

)T

Q〈Y1:T 〉1(x) ,
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we have

µ(g(·, Y0)h0(·)) =
2

N − 1

T∑

s=1

(
N − 2

N − 1

)s−1

βspµ(Y0:s−1) +

(
N − 2

N − 1

)T

pµ(Y0:T ) .

Plugging (77) into this equation and using that

pµ(Y0:s−1) =
pµ(Y0:T )

pµ(Ys:T |Y0:s−1)

yield

µ(g(·, Y0)h0(·)) =
2

N − 1

T∑

s=1

(
N − 2

N − 1

)s−1

αspµ(Y0:T ) +

(
N − 2

N − 1

)T

pµ(Y0:T ) .

Finally, using (80) and then (79),

(N − 2)µ(g(·, Y0)h0(·)) + 2β0

≤ pµ(Y0:T )

{
(N − 2)

[
2

N − 1

T∑

s=1

(
N − 2

N − 1

)s−1

αs +

(
N − 2

N − 1

)T
]
+ 2α0

}

≤ pµ(Y0:T )

{
(N − 2)

[
2

N − 1

T∑

s=1

(
N − 2

N − 1

)s−1

α̃s +

(
N − 2

N − 1

)T
]
+ 2α̃0

}

≤ pµ(Y0:T )

(
(N − 2)

α̃0

B0,T
+ 2α̃0

)

= pµ(Y0:T )(N − 2 + 2B0,T )
T∏

t=1

2Bt,T +N − 2

N − 1
,

where the last equality follows from (81). The proof follows.

7 Proof of Theorem 6

Define

B̂θ
t 〈Y0:t+ℓ〉 :=

|wθ〈Yt〉|∞|Qθ〈Yt+1:t+ℓ〉1|∞
pθµ(Yt:t+ℓ|Y0:t−1)

, (82)

Ĉθ
t 〈Y0:t+ℓ〉 :=

|wθ〈Yt〉|∞
∫
λ(dxt+1)g

θ(xt+1, Yt+1)Q
θ〈Yt+2:t+ℓ〉1(xt+1)

pθµ(Yt:t+ℓ|Y0:t−1)
. (83)

Note that

B̂θ
t 〈Y0:t+ℓ〉 = B̃θ

t 〈Yt:t+ℓ〉
pθµ,t(Yt:t+ℓ)

pθµ(Yt:t+ℓ|Y0:t−1)
and Ĉθ

t 〈Y0:t+ℓ〉 = C̃θ
t 〈Yt:t+ℓ〉

pθµ,t(Yt:t+ℓ)

pθµ(Yt:t+ℓ|Y0:t−1)
,

(84)

where B̃θ
t 〈Yt:t+ℓ〉 and C̃θ

t 〈Yt:t+ℓ〉 are defined in (22) and (23), respectively.

Lemma 15. For all θ ∈ Θ, the sequence {Ĉθ
t 〈Y0:t+ℓ〉}ℓ≥0 defined in (83) is a (Pθ

µ, {Ft+ℓ}ℓ≥0)-
martingale, where Ft = σ(Y0:t).
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Proof. For all ℓ ≥ 0,

E
θ
µ

[
Ĉθ

t 〈Y0:t+ℓ+1〉
∣∣∣Ft+ℓ

]
= |wθ〈Yt〉|∞

∫ {
pθµ(yt+ℓ+1|Y0:t+ℓ)

×
∫
λ(dxt+1)g

θ(xt+1, Yt+1)Q
θ〈Yt+2:t+ℓ〉(xt+1, dxt+ℓ)Q

θ〈yt+ℓ+1〉1(xt+ℓ)

pθµ(Yt:t+ℓ, yt+ℓ+1|Y0:t−1)
κ(dyt+ℓ+1)

}
.

Combining this identity with

pθµ(Yt:t+ℓ, yt+ℓ+1|Y0:t−1) = pθµ(yt+ℓ+1|Y0:t+ℓ)p
θ
µ(Yt:t+ℓ|Y0:t−1) ,

and
∫
Qθ〈yt+ℓ+1〉1(xt+ℓ)κ(dyt+ℓ+1) =Mθ(xt+ℓ,X) = 1, we obtain

E
θ
µ

[
Ĉθ

t 〈Y0:t+ℓ+1〉
∣∣∣Ft+ℓ

]

=
|wθ〈Yt〉|∞

∫
λ(dxt+1)g

θ(xt+1, Yt+1)Q
θ〈Yt+2:t+ℓ〉1(xt+1)

pθµ(Yt:t+ℓ|Y0:t−1)
= Ĉθ

t 〈Y0:t+ℓ〉 ,

which completes the proof.

Lemma 16. For all 0 ≤ γ < 1 and all ℓ ∈ N,

E
θ
µ

[
(B̂θ

t 〈Y0:t+ℓ〉)γ
]
≤ E

θ
µ

[
(B̃θ

t 〈Yt:t+ℓ〉)γ
]
, (85)

E
θ
µ

[
(Ĉθ

t 〈Y0:t+ℓ〉)γ
]
≤ E

θ
µ

[
(C̃θ

t 〈Yt:t+ℓ〉)γ
]
. (86)

Proof. Using (84), the proof of (85) and (86) follow from the inequality:

E
θ
µ

[
ψ(Yt:t+ℓ){

pθµ(Yt:t+ℓ|Y0:t−1)
}γ

]
≤ E

θ
µ

[
ψ(Yt:t+ℓ){

pθµ,t(Yt:t+ℓ)
}γ

]
, (87)

which holds for any nonnegative measurable function ψ : Yℓ+1 → R
+. We now show (87).

Note first that, by applying the tower property of the conditional expectation and then the
Tonelli-Fubini theorem, we get

E
θ
µ

[
ψ(Yt:t+ℓ){

pθµ(Yt:t+ℓ|Y0:t−1)
}γ

]
= E

θ
µ

[
E
θ
µ

[
ψ(Yt:t+ℓ){

pθµ(Yt:t+ℓ|Y0:t−1)
}γ

∣∣∣∣∣Y0:t−1

]]

= E
θ
µ

[∫
ψ(yt:t+ℓ)

{
pθµ(yt:t+ℓ|Y0:t−1)

}1−γ
κ⊗(ℓ+1)(dyt:t+ℓ)

]

=

∫
ψ(yt:t+ℓ)E

θ
µ

[{
pθµ(yt:t+ℓ|Y0:t−1)

}1−γ
]
κ⊗(ℓ+1)(dyt:t+ℓ) . (88)

By the Jensen identity, Eθ
µ

[{
pθµ(yt:t+ℓ|Y0:t−1)

}1−γ
]
≤
{
E
θ
µ

[
pθµ(yt:t+ℓ|Y0:t−1)

]}1−γ
. On the other

hand,

E
θ
µ

[
pθµ(yt:t+ℓ|Y0:t−1)

]
=

∫
pθµ(yt:t+ℓ|y0:t−1)p

θ
µ(y0:t−1)κ

⊗t(dy0:t−1) = pθµ,t(yt:t+ℓ) . (89)

The proof of (87) follows by combining the above relations.
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Lemma 17. Assume (A-2) and (A-4). Then, for all 0 ≤ γ < α,

sup
t≥0

sup
θ∈Θ

E
θ
µ

[(
sup
ℓ≥0

B̂θ
t 〈Y0:t+ℓ〉

)γ]
<∞ .

where α is defined in (A-4).

Proof. Under (A-2), we obtain by definitions of B̂θ
t 〈Y0:t+ℓ〉 and Ĉθ

t 〈Y0:t+ℓ〉,

sup
ℓ≥0

B̂θ
t 〈Y0:ℓ〉 ≤

ℓ⋆−1∑

ℓ=0

B̂θ
t 〈Y0:ℓ〉+ sup

ℓ≥ℓ⋆

B̂θ
t 〈Y0:t+ℓ〉 ≤

ℓ⋆−1∑

ℓ=0

B̂θ
t 〈Y0:t+ℓ〉+ σ+ sup

ℓ≥ℓ⋆

Ĉθ
t 〈Y0:t+ℓ〉 ,

where σ+ and ℓ⋆ are defined in (A-2) and (A-4), respectively. Then, by subadditivity of u 7→ uγ ,

E
θ
µ

[(
sup
ℓ≥0

B̂θ
t 〈Y0:t+ℓ〉

)γ]
≤

ℓ⋆−1∑

ℓ=0

E
θ
µ

[
(B̂θ

t 〈Y0:t+ℓ〉)γ
]
+ (σ+)

γ
E
θ
µ

[
sup
ℓ≥ℓ⋆

(Ĉθ
t 〈Y0:t+ℓ〉)γ

]
.

Applying Lemma 16 and (25), it is thus sufficient to bound

E
θ
µ

[
sup
ℓ≥ℓ⋆

(Ĉθ
t 〈Y0:t+ℓ〉)γ

]
.

Since by Lemma 15, {Ĉθ
t 〈Y0:t+ℓ〉}k≥0 is a {Ft+ℓ}ℓ≥0-martingale and α ∈ (0, 1), we have that

{(Ĉθ
t 〈Y0:t+ℓ〉)α}ℓ≥0 is a nonnegative {Ft+ℓ}ℓ≥0-supermartingale. The Doob maximal inequality

then applies: for all a > 0,

aPθ
µ

[
sup
ℓ≥ℓ⋆

(Ĉθ
t 〈Y0:t+ℓ〉)α ≥ a

∣∣∣∣Ft+ℓ⋆−1

]
≤ E

θ
µ

[
(Ĉθ

t 〈Y0:t+ℓ⋆〉)α
∣∣∣Ft+ℓ⋆−1

]
.

Take now the expectation in both sides of the previous inequality and set δ = aγ/α. We obtain

P
θ
µ

[
sup
ℓ≥ℓ⋆

(Ĉθ
t 〈Y0:t+ℓ〉)γ ≥ δ

]
≤ δ−α/γ

E
θ
µ

[
(Ĉθ

t 〈Y0:t+ℓ⋆〉)α
]
.

Combining this with the inequality E [U ] ≤ 1+
∫∞

1
P [U > δ] dδ which holds for all nonnegative

random variable U , we obtain under (A-4)

E
θ
µ

[
sup
ℓ≥ℓ⋆

(Ĉθ
t 〈Y0:t+ℓ〉)γ

]
≤ 1 +

(∫ ∞

1

δ−α/γdδ

)
E
θ
µ

[
(Ĉθ

t 〈Y0:t+ℓ⋆〉)α
]

= 1 +
γ

α− γ
E
θ
µ

[
(Ĉθ

t 〈Y0:t+ℓ⋆〉)α
]
.

The proof follows by applying again Lemma 16 under (A-4).

Proof of Theorem 6. For simplicity we will use in this proof the notations p̄ θ(Y0:t) := pθπθ(Y0:t)
and p̄ θ(Yt:s|Y0:t−1) = pθπθ (Yt:s|Y0:t−1). First note that

P̄
θ⋆

{
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )
> ρ

}
= P̄

θ⋆

{
ln
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )
+
pθTµ (Y0:T )

p̄ θ⋆(Y0:T )
− 1 > ln ρ+

pθTµ (Y0:T )

p̄ θ⋆(Y0:T )
− 1

}

≤ P̄
θ⋆

{
ln
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )
+
pθTµ (Y0:T )

p̄ θ⋆(Y0:T )
− 1 > ln ρ− 1

}
.
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Now, since for all u > 0, ln(u) + u−1 − 1 ≥ 0, we obtain for for all ρ > e = exp(1):

P̄
θ⋆

{
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )
> ρ

}
≤ 1

ln ρ− 1
Ē
θ⋆

[
ln
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )
+
pθTµ (Y0:T )

p̄ θ⋆(Y0:T )
− 1

]

=
1

ln ρ− 1
Ē
θ⋆

[
ln
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )

]
.

This implies that for all M > 0 and all ρ > e,

P̄
θ⋆(ǫ−1

T,NT
(θT ) > M) ≤ E

θT
µ



p̄ θ⋆(Y0:T )

pθTµ (Y0:T )
1

{

p̄ θ⋆ (Y0:T )

p
θT
µ (Y0:T )

≤ρ

}

1

{

ǫ−1
T,NT

(θT )>M
}


+ P̄

θ⋆

{
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )
> ρ

}

≤ ρPθT
µ

[
ǫ−1
T,NT

(θT ) > M
]
+

1

ln ρ− 1
Ē
θ⋆

[
ln
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )

]

≤ ρPθT
µ

[
ǫ−1
T,NT

(θT ) > M
]
+

1

ln ρ− 1

(
sup
T≥0

Ē
θ⋆

[
ln
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )

])
. (90)

We consider first the last term of the right-hand side. Note first that, by the tower property,

Ē
θ⋆

[
ln
p̄ θ⋆(X0:T |Y0:T )
pθTµ (X0:T |Y0:T )

]
= Ē

θ⋆

[∫
· · ·
∫ (

ln
p̄ θ⋆(x0:T |Y0:T )
pθTµ (x0:T |Y0:T )

)
p̄ θ⋆(x0:T |Y0:T )

T∏

i=0

λ(dxi)

]
≥ 0

because this quantity is the expectation under the stationary distribution of a Kullback-Leibler
divergence. This implies that

Ē
θ⋆

[
ln
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )

]
≤ Ē

θ⋆

[
ln
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )

]
+ Ē

θ⋆

[
ln
p̄ θ⋆(X0:T |Y0:T )
pθTµ (X0:T |Y0:T )

]
= Ē

θ⋆

[
ln
p̄ θ⋆(X0:T , Y0:T )

pθTµ (X0:T , Y0:T )

]
.

On the other hand, using

Ē
θ⋆

[
ln
p̄ θ⋆(X0:T , Y0:T )

pθTµ (X0:T , Y0:T )

]

= Ē
θ⋆

[
ln

(
πθ⋆(X0)g

θ⋆(X0, Y0)

µ(X0)gθT (X0, Y0)

)]
+ T Ēθ⋆

[
ln

(
mθ⋆(X0, X1)g

θ⋆(X1, Y1)

mθT (X0, X1)gθT (X1, Y1)

)]
,

we obtain, under (27) and (28), that

sup
T≥0

Ē
θ⋆

[
ln
p̄ θ⋆(Y0:T )

pθTµ (Y0:T )

]
<∞ . (91)

Assume first that
lim sup
M→∞

sup
T≥0

P
θT
µ

[
ǫ−1
T,NT

(θT ) > M
]
= 0 . (92)

The proof of the tightness of {ǫ−1
T,NT

(θT )}T≥0 then follows by plugging (91) into (90) and by
noting that (90) holds for all ρ > e, combined with (92). To complete the proof, it thus remains
to show (92). Rewriting the definition (16), we obtain

ǫ−1
T,NT

(θT ) ≤
T∏

t=0

2BθT
t +NT − 2

NT − 1
= exp

{
T∑

t=0

ln

(
2BθT

t +NT − 2

NT − 1

)}
≤ exp

{
T∑

t=0

2BθT
t − 1

NT − 1

}
.
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where Bθ
t := supℓ≥0 B̂

θ
t 〈Y0:t+ℓ〉. This implies that for M > 1,

P
θT
µ

[
ǫ−1
T,NT

(θT ) > M
]
≤ P

θT
µ

[
T∑

t=0

2BθT
t − 1

NT − 1
> lnM

]
≤ 1

(lnM)γ
E
θT
µ

[(
T∑

t=0

2BθT
t − 1

NT − 1

)γ]
.

The proof of (92) follows by noting that NT ∼ T 1/γ and by using

E
θT
µ

[(∑T
t=0 2B

θT
t − 1

T 1/γ

)γ]
≤ E

θT
µ

[∑T
t=0(2B

θT
t )γ

T

]
≤ 2γ sup

t≥0
sup
θ∈Θ

E
θ
µ

[
(Bθ

t )
γ
]
<∞ ,

where the last inequality follows from Lemma 17.
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