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Non-deterministic Semantics and the Undecidability of Boolean Bl
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DIDIER GALMICHE, LORIA-Université Henri Poincaré, Nancy, France

We solve the open problem of the decidability of Boolean Bi¢aBBI), which can be considered as the core of Separation
and Spatial Logics. For this, we define a complete phase d@m®idor BBl and characterize it as trivial phase semantics.

We deduce an embedding between trivial phase semantiastfitionistic linear logic (ILL) and Kripke semantics forBB.

We single out the elementary fragment of ILL which is both ecidable and complete for trivial phase semantics. Thus, we
obtain the undecidability of BBI.
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1. INTRODUCTION

The question of the decidability of the Boolean version & thgic of Bunched Implications
(denotedBl) was a longstanding open problei. itself was proved decidable by Galmiclke

al. [Galmiche et al. 2005] and Booleai was naively thought “simpler” thaBl until a faith-

ful embedding fronBI into BooleanBl was discovered [Larchey-Wendling and Galmiche 2009].
Independently, Brotherston and Kanovich [Brotherston Kadovich 2010] on the one hand and
Larchey-Wendling and Galmiche [Larchey-Wendling and Gela 2010] on the other hand re-
cently solved the issue byftierent techniques: the former by focusing mainly on the linésveen
BooleanBl and Separation Logic, the later by establishing semants Ibetween Intuitionistic Lin-
ear Logic (LL) and BoolearBI. This paper is an enriched and self-contained version ofabelts
and proofs of [Larchey-Wendling and Galmiche 2010].

The logicBI of bunched implications [O’Hearn and Pym 1999] is a subestmal logic which
freely combines additive connectivas v, — and multiplicative connectives —. In BI, both the
multiplicatives and the additives behave intuitionigiica=rom its inception Bl was given a nice
bunched sequent proof-system enjoying cut-eliminatigm{R002]. Later, [Galmiche et al. 2005]
gaveBI a sound and complete labeled tableaux system from whictlaleitity was derived. The
logic Bl is sometimes called intuitionistigl to distinguish it with other variants where either the
multiplicatives or the additives include a negation andtheahave classically.

From a proof-theoretical perspective, Boolézinor simply BBI) can be considered as the first
investigated variant oBl which contained a negatioBBI combines intuitionistic multiplicatives
with Boolean additives. This focus @Bl is the consequence of the natural links betwBBhand
separation or spatial logics. Indeed, for instance, the part of separation logic is essentially ob-
tained by considering a particular modelRBBI, based on a (partial) monoid of heaps [Ishtiag and
O’Hearn 2001] (see [Larchey-Wendling and Galmiche 2008afmore general discussion on these
links). The Hilbert proof-system d&&Bl was proved complete w.rrelational (or non-deterministic)
Kripke semanticGalmiche and Larchey-Wendling 2006]. However, the pribafory ofBBI was
rather poorly developed because it wadidult to conceive how the bunched sequent calculus of (in-
tuitionistic) Bl could be extended tBBI without losing key properties such as e.g. cut-elimination

Two main families of results emerged giving a contrasteavwé its proof-theory. On the one
hand, [Brotherston 2010] adapted the Display proof-sysi€@lassicalBl to BBI, circumventing
the difficulty of the multiplicatives oBBI lacking a negation. This system was proved sound and
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1:2 D. Larchey-Wendling and D. Galmiche

complete w.r.t. relational Kripke semantics. Cut-elintioa was also derived but, despite the ex-
pectations of Brotherston, no decidability result follalvé©n the other hand, [Larchey-Wendling
and Galmiche 2009] proposed a labeled tableaux proof+sy&ie (partial monoidalBBI and by
the study of the relations between the proof-search gestbcaunter-models @&l andBBI, showed
that (intuitionistic)BI could be faithfully embedded intBBI. This result, at first counter-intuitive,
hinted thaBBI, originally thought simpler thaBl, could in fact be much morefiicult to decide.

In this paper, we consider models®BI belonging to diferent classes:

ND. The class of non-deterministic monoids;

PD. The class of partial (deterministic) monoids;

TD. The class of total (deterministic) monoids;

HM. The class of heaps monoids (i.e. separation logic models);
FM. The class of free monoids.

Generally, each class of models definesféedent notion of (universal Kripke) validity on the for-
mulae ofBBI. For instance, we recall the result that the BBtyp of BBI-formulae valid in every
non-deterministic monoid is strictly included in the B&lpp of BBI-formulae valid in every partial
deterministic monoid [Larchey-Wendling and Galmiche Z0The classification of these classes
of models with respect tBBI Kripke validity is not finished though.

The principal result of this paper is th@decidability of universal validity iBBI, whichever class
of models is chosen amongst ND, PD, TD, HM and FM. Althougl¢hdasses of models generally
define diferent notions of universal validity for the whoBBI, we have identified a fragment of
BBI on which these semantics collapse to one. This fragmentiditect image ofhe elementary
fragment of ILL (denotedelLL) by anembedding ofiLL into BBI. This elementary fragment is
different from the minimal fragment of Boole&h identified in [Brotherston and Kanovich 2010]
but has similar properties. In our case, undecidabilitybiamed by the following steps:

— we show that the embedding eli_L into BBI is faithful for trivial phase semanti¢s

— we show that thellLL fragment iscomplete for trivial phase semantjoshichever class of
models is chosen amongst ND, PD, TD, HM and FM,;

— we show how to encode the computations of two counter Mims&ghines irelLL.

As a consequence, we derive the undecidability ofetué fragment, from which we deduce the
undecidability ofBBI. We complete the pictures with additional results of undebility on the
models based on the free mondidk N and the models based on the partial morigi@) (which
is also the simplest heap monoid). This last result is obthirsing bisimulation techniques.
Compared to the original LICS’10 paper [Larchey-Wendlimgl &Galmiche 2010], this paper
contains a more extensive study of the semantics oethe fragment with completeness results
for various classes of models and the adaptation of our udaleitity result ofBBI to heaps models
(i.e. to Separation Logic) using a bisimulation betweee freonoids and heap monoids.

2. CLASSES OF NON-DETERMINISTIC MONOIDS

In this section, we define the algebraic notion of non-deiteigtic (commutative) monoid. We de-
note algebraic structure by(, N,... classes of structures by C, D,... setXyy,... elements by,
y,... and well known constructs like the powersetH{X) or the set of (finite) multisets b (X).
The symbolN = {0,1,2,...} denotes the set of natural numbers. The synfibisl used either to
denote the empty set, the empty multiset or the empty class.

2.1. Non-deterministic monoids

Let us consider a séd and its powersekt(M), i.e. the set of subsets bf. A compositioris a binary
functiono : M x M — P(M) which naturally extended to a binary operatorik§i) by

XoY ={Xxoy|xe Xandye Y} (1)
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Non-deterministic Semantics and the Undecidability of Boolean Bl 1:3

for any subsetX, Y of M. Using this extension, we can view an elemanof M as the singleton
set{m} and derive equations likmo X = {m} o X anda o b = {a} o {b} by a slight abuse of notation.

Definition 2.1 A non-deterministic (or relational) monoid a triple (M, o, €) whereM is a set,
€ € M is theneutral elemenando : M x M — P(M) is thecomposition operatorn addition, the
following axioms are mandatory:

YaeM,eoca={a} (neutrality)
Ya,beM,aob=boa (commutativity)
Ya,b,ce M,ao(boc)=(aoh)oc (associativity)

The class of non-deterministic monoids is denoted ND.

Associativity should be understood using the extensiontofP(M) as defined by Equation (1).
The extension of to P(M) induces a commutative monoidal structure with unit elefigronP(M).

As a consequence, the structubéM), o, {e}) is a (usual) commutative monoid.

The termnon-deterministiavas introduced in [Galmiche and Larchey-Wendling 2006]riden
to emphasize the fact that the composittonb may yield not only one but an arbitrary number of
results including the possible incompatibility afandb in which caseao b = 0. If (M, +,0) is a
(usual) commutative monoid then, definiag b = {a + b} ande = 0 induces a non-deterministic
monoid (M, o, €). Using the bijectiorx — {x} mapping elements dfl to singletons irfP(M), we can
view (usual) commutative monoids as a particular case ofdeiarministic monoids (later called
total deterministic monoids). Partial monoids can alsodpasented using the empty geds the
result of undefined compositions (see section 2.2).

The termrelationalis sometimes used because the maMxM—P(M) can equivalently be un-
derstood as a ternary relatiers — 3 — : MxMxM—{0, 1} through the Curry-Howard isomorphism
and the axioms correspond to those of an internal monoiddicétegory of relations [Ghilardi and
Meloni 1990]. The two presentations are equivalent but vleerause the monoidal presentation in
this paper because it better suits the context and habitsasfgpsemantics and Kripke semantics.

2.2. Sub-classes of non-deterministic monoids

Definition 2.2 Let (M, o, €) be a non-deterministic monoid. It ispartial deterministic monoid
if for all x,y € M, the compositiorx o y is either empty or a singleton. It istatal deterministic
monoidif for all x,y € M, the compositiorx o y is a singleton. We use PD (resp. TD) to represent
the sub-class of partial deterministic (resp. total deteistic) monoids.

The reader may have noticed that total deterministic man@#l class TD) exactly correspond
to those non-deterministic monoids derived from usual comative monoids via the map+— {x}
because the compositienis a functional relation in this case (exactly one image ftepair of
parameters).

Let us give an example of non-deterministic monoid whichvehthat the class ND contains
structures that have properties which are fundamentatfgréint from those of partial or total
monoids. The non-deterministic monoif#,(x, y}, o, €) built over this 3 elements set and defined
by the following composition operator:

is an example of such non-deterministic monoid. It is a véghat PD is a proper sub-class of ND.
But also, we see that in this monoixljs both self inversee € x o xX) and this same composition
yields the absorbing element € x o X). In Section 6.1, we will see th&Bl is able to witness the
difference between the class ND and the class PD.
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1:4 D. Larchey-Wendling and D. Galmiche

A typical sub-class of partial deterministic monoids isaibéed by considering disjoint union
over the powerset. Given a ¢t consider the partial deterministic mono®(X), v, 0) where0 is
the empty subset of andw is defined forA, B € X by

0 whenANB #0

AL*JB:{{AUB} whenANnB =0

One could even restrict to finite subsetsxolby considering the partial monoit#(X), W, 0) where
Pt (X) is the set of finite subsets &f

A (more general) sub-class of partial deterministic moaagdof particular importance to Sepa-
ration Logic [Ishtiaq and O’Hearn 2001]. Given an (infinisstL of locationsand a (non-empty)
setV of values aheapis a partial function from locations to values defined onlyadimite number
of locations. We define

H_ v = {h:L—y V| def() is finite} where deff)) = {l € L | h(l) is defined

so deff) is the (finite) set of locations on whidhis defined. The binary compositia t of two
heapss,t € H, v is defined by

0 when deff) ndef(t) # 0 .
SHt= { ir} when defg A def8 —0 with graph¢) = graphg) U graphf)

The heap defined nowhere (i.e. with an empty graph) is dermt@&tie heap monoidH, v, 1+, @) is

a partial deterministic monoid of class PD. We point out tihenV = {«} is a singleton set, then
the heap monoid{ ., , @) is isomorphic to finite powerset monoi(L), v, 0). Hence, the class
of heap monoids contains (an isomorphic copy of) the clagmidé powersets. The class of heap
monoids is denoted HM:

HM = {(H_v, ¥, @) | L is infinite andV is not empty

Itis obviously a sub-class of PD. Since for any non-emptytaae havehsh = 0 (butgre = {2)),
it is clear that no heap monoit, y is a total deterministic monoid (because neithamor V is
empty). Hence, HM and TD are two disjoint sub-classes of PD.

Another important sub-class of non-deterministic mon@dse class of FM of free (commuta-
tive) monoids ¥ (X), x, ) whereX is a setMs(X) denotes the set of (finite) multisets of elements
of X, andx (resp.n) denotes multiset addition (resp. the empty multiset). VKeés not empty,

M (X) contains an element # 7 and in this casex x X # {X}. Since there are total deterministic
monoids satisfying the axiom x x = {x} (for example lattices), we deduce that FM is a proper
sub-class of TD.

Prorosition 2.3. FMC TD ¢ PD¢ ND, HM ¢ PDandHM N TD = 0.

3. SEQUENT CALCULUS AND PHASE SEMANTICS FOR ILL

Linear Logic and Intuitionistic Linear Logic (denotéid.) are well know sub-structural logics in-
troduced by Girard in [Girard 1987] to better study the intpafcstructural rules on the proof-
theoretical as well as semantical properties of logics.réaeer can consult [Troelstra 1992] for an
overview on those topics.

The formulae ofLL are defined by the following grammar:

A:z=V|c|!A|A®mA withveVar,ce{l T, 1} and® € {®, —, &, &}

A sequents a pair denotedl + Awherel  is a(finite) multiset of formulaandA is asingle formula
The sequent calculuS-ILL (see Figure 1) is provided fatLL and theset of derivable sequenis

1Sometimes the neutral & is denoted 0, but we favar as in [Troelstra 1992].
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I'rA AA+rB

id € T 1 cu
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Fig. 1. Sequent calculuS-ILL for ILL

the least set closed under its rules. Notice that denote multisets of formulae ad B, C denote
formulae. In rulg(lg), ! T denotes the multisef! =1 Aq, ...,V Af T = Aq,..., A2

The notion of sequent calculus proofis defined as usual:@ered tree where each node together
with its sons correspond to an instance of one of the rul&slaL. Hence, a sequent is derivable
if and only if there exists a proof of it iS-ILL. By historical definition ofiLL [Girard 1987], the
sequents which are provable$nlLL are exactly thevalid sequentsf ILL, and a formulaA of ILL
is valid if + Ais a valid sequent.

3.1. Non-deterministic phase spaces for ILL

We extend the notion of intuitionistic phase space [Giré@d87] to non-deterministic monoids and
show that this semantic interpretation is sound and complett. S-ILL, and thus equivalent to the
original notion (see Corollary 3.6).

Definition 3.1 A non-deterministic (intuitionistic) phase spaisggiven by a non-deterministic
monoid M = (M, o, €) together with a stable closure operatdt ( P(M) — P(M) and a sub-monoid
Kincluded ind = {x e M| X € {e}° N (X o X)°}.

— theclosure propertycorresponds to the condition
X CY?iff X*CcY® foranyX,Y e P(M)

We recall that the monoidal compositieris naturally extended tB(M) by Equation (1) providing
a (commutative) monoidal structure (M) with unit {€}. A subseX of M is (-)°-closed(or simply
closed when the closure operator is obvious from the conieXt’ = X or equivalentlyX® c X.
The set of closed subsets is denofdd = {X € P(M) | X° = X}, not to be confused witM°® where
M is viewed as the (total) subsetif(and in this caseéyi° = M). Any intersection of closed subsets
is a closed subset and thi$° is invariant under arbitrary intersections, inducing a ptete lattice
structure on M°, ©).

— thestability property corresponds to the condition

X®oY®C (XoY)® foranyX,Y € P(M)

2Notice that when multisets are considered as syntacticctshjé is usual to denote the composition of multisets by a
comma whereas when they are considered as semantic oltfemisthe denotation of the composition operator (and the
neutral element) might ffer. For example, we will use andr in this paper.

3A stable closure is guantic nucleusn quantale theory [Yetter 1990]. The “stability” propeityelf seems to have no well
established terminology.
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1:6 D. Larchey-Wendling and D. Galmiche

Let — be the adjoint of as a binary operator di(M). It is defined byx oY = {k e M | ko X C Y}
foranyX,Y € P(M). In the lattice P(M), ©), the operatoro is contra-variant in its first parameter
and co-variant in its second and the following adjoint proypkolds

ZCX—oYiffZoXCY foranyX,Y,ZeP(M)

By stability of the closure operator){, the subseX —o Y is closed as soon ag is closed and
X —o Y¢ = X® —o Y* holds for anyX, Y € P(M).
— the seK is a givensub-monoif M included inJ, i.e.K verifies both

ecKcCJ and KoK CK

We see that we have a (quite direct) generalization of thalustion of phase space in the case
where the monoid is neither supposed to be total nor detésticinin the particular case of total
deterministic monoids, we recover the usual notion of pispsee.

The interpretation ofLL connectives is done in the following way. Given iaterpretationof
logical variables as closed subsefs  Var— M?°, this interpretation is extended to all the formulae
of ILL by structural induction as follows:

[L] =0° [A® B] = ([Al v [BD*
[T] =M [A& B] =[A] N[B]
[1] = {ey’ [A® B] = ([Al ° [BD*

[' Al = (KNnTAD® [A—B] = [A]l < [B]

When the interpretation is done in a total deterministic oidnwe obtainexactly the same value
for [A] as in the usual phase semantics interpretation.

Definition 3.2 A sequentAy, ..., A¢+ B of ILL is valid in the interpretatior] -] if the inclusion
[Ad o---o[AJ < [B] holds.

We recall the soundness theorem which states that proyahils-I1LL entails semantic validity
in non-deterministic intuitionistic phase semantics.

TueoreM 3.3 (S UNDNEss oF Prase SemanTics). Ifthe sequent f. .., A+ B has a proofirS-ILL
then the inclusion relatiofiA1]] o --- o [A«] < [B] holds.

Proor. The proof of this theorem can be done directly by generadizhe soundness proof of
usual phase semantics [Girard 1987], or else, as done in&jipA by using the algebraic semantic
characterization ofLL of [Troelstra 1992]. O

Definition 3.4 We denote byLL, the set of sequents which have a prooBiiLL. We denote
by ILLx the set of sequents which are valid in every non-deterniirpbiase semantic interpretation
where the base monoid is of the class X.

In this paper, the class X ranges over the following set afsggND, PD, TD, HM, FM}. Let us
consider the following inclusion sequence:

ILLp C ILLnp S ILLpp € ILLyp S ILLEm C ILLp (2)

ThefirstinclusioriLL, C ILLnp is given by Theorem 3.3. The following inclusioli$np € ILLpp €
ILLtp C ILLgy are obvious consequences of the inclusions EMID <€ PD < ND between
classes of non-deterministic monoids. The last inclulibay C ILL, is just a reformulation of the
completeness of the phase semantics V&fILL:

Tueorem 3.5 (CompLETENESS OF PHASE Semantics). If the sequentI” + A is valid in every free
monoidal phase semantic interpretati@d, o, €, (-)°, K, [-T) (i.e. with (M, o, €) of the classFM),
thenI' + A has a proof irsS-ILL.
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Proor. The proof is based on a very nice semantic argument firsidoted by Okada [Okada
2002]. Nevertheless, as its understanding is not realiicatito the developments of this paper, it is
postponed to Appendix B.0O

CoroLrLary 3.6. ILLp = ILLnp = ILLpp = ILLtp = ILLgm and non-deterministic phase seman-
tics is both sound and complete w.BtILL.

Proor. With Theorem 3.5, we have closed the circular inclusionusege (2). In particular
ILLp = ILLnp. O

Remark: we let the question of determining whetheiw = ILL, or elselLLyy € ILL, as an
open question.

3.2. Trivial phase semantics for ILL

In this section, we define trivial phase semantics which igréqular case of phase semantics where
the choice of the least closure operator is mandatory.

Definition 3.7. Given a non-deterministic monoil = (M, o, €), thetrivial phase spacés de-
fined by taking the identity map di(M) as closure operator (i.e. for alle P(M), X° = X) and by
takingK = {e}.

It is clear that the identity of#®(M) is both a closure and stable. Obviously alsos {e} verifies
the conditions € K € J andK o K C K.* In a trivial phase space, every subsedbis closed and
thus M° = P(M). The interpretation ofl_LL connectives simplifies to:

[L]=0 [A®B] = [A] V[B]

[Tl =M [A& B] = [Al N[B]

[1] ={e} [A®B] =[A] -[B]

I' Al = {e} N [Al [A—B] =[A] —[B]

Trivial phase semantics isot completdor the wholelLL. Indeed, the additive operatogsand
& become distributive over each other in trivial phase seimanThis is not the case in (general)
phase semantics. In particular, the forméil& (B@ C) - (A& B) @ (A& C) is valid in trivial phase
semantics but has no proof83ILL.

However not complete for the wholkeL, we are now going to a introduce the elementary frag-
ment ofILL which is complete for trivial phase semantics and nevessetticiently expressive to
be able to encode computations of Minsky machines.

4. ELEMENTARY INTUITIONISTIC LINEAR LOGIC AND TRIVIAL PHASE SEMANTICS

We define and characterieéementaryLL (denotecelLL), an extension of the fragmestIMELL

of ILL [de Groote et al. 2004]. We provide a simple goal-directeabpsystem, denote@-elLL,
which is itself an extension of the goal-directed proofegsbfs-IMELL, obtained by the addition
of a new additive rule. Then we show that the proof sys@miLL and trivial phase semantics
are both sound and complete w.r.t. the fragnetht.. We also show that validity in trivial phase
semantics does not depend on a particular class of modeleagiedmentary fragment: all classes
among{ND, PD, TD, FM} define the same set of (universally) valid elementary seiguen

4.1. The elLL fragment of ILL

Definition 4.1 A formula of ILL is (—o, &) -elementaryf it is of the formu — v, (U—o V) —o w,
u— (v—ow)or (u& v) — w whereu, vandw are logical variables ivar. The sequents of the
fragmentelLL are those of the formX, I" + c wherel is a multiset of variableg; is a variable and
¥ is a multiset of {0, &)-elementary formulae.

4In fact, there is no other possible choice fobecausd = {x € M | x € {€}° N (X0 X)°} = {€} when ()° is the identity map
onP(M).
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1:8 D. Larchey-Wendling and D. Galmiche

12TruU 12 T,urv
— (AX) ——— U—oVEeX ——————— (U—oV)owWeX
12, uru 12TrV I, TrwW
1%, Tru I, ArvV 1%, T+u 12 Trv
U—o(VoweX U& V) oweX
IS, Arw 12T HwW

Fig. 2. G-elLL: a goal-directed sequent calculus &kL

From this definition, it is obvious that membership in thegfreentelLL is a recursive property.
Compared ta-IMELL’, the only new form isy & v) — w. The validity of sequents ielLL can
be established using the proof systSri L but we rather provide an alternative goal-directed proof
system calleds-elLL in Figure 2. Apart for the axiom ruléAx), each other rul€—o), ((—o)—o),
(—o(—0)) or {(&) —) is named according to the form of its side condition. Comgaoes-IMELL ,
the only new rule ig(&) —) (see [de Groote et al. 2004]). In this paper, the authorsaligrovide a
proof of soundnegsompleteness of the systessiMELL’, leaving it to the reader. Here we present
a full proof of soundnegsompleteness for our extensi@ielLL not only to please the reader but
also to derive completeness of the fragment w.r.t. triviedge semantics.

4.2. Completeness results for elLL

Even though validity irelLL is the same as in the wholleL (established for instance by a proof in
S-ILL), here we show that in this specific fragment, validity isoadsund and complete both w.r.t.
the systenG-elLL and w.r.t. free monoidal trivial phase semantics.

Lemma 4.2. Every proof of a sequent iG-elLL can be transformed into a proof (of the same
sequent) which uses only ruléd), (w), (c), {(—oL), (—or), (!L) and(&g) of S-ILL.

Proor. We proceed by induction on the proofsGrelLL and by case analysis, depending on the
last rule applied. Leh be the cardinal of the multis&L For each rule ofz-elLL, we propose the
corresponding (open) proof treeflLL:

— case of rulg Ax):
— (id)
uru
—w)
appliedn times
(W)

1Y uru

— case of rulg—o):
— (id)
I TrHU VRV
(—oL)

u

1 T,u—oVvrvV
I, (u—oV)FV
X TrvV
— case of rulg(—o)—o):

— (o —(id
!2,1"ru—<>v< R) WI—W<>

12T, (U—-oV)oWrW

12,1, ((u—-oVv) oW) W
I Trw

ACM Transactions on Computational Logic, Vol. 1, No. 1, Akt 1, Publication date: June 2011.
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— case of rulg—o(—)):

(id)

(=)
(—oL)
M)

I ArV WEW

ITrU 2 A VoWLW

I IE A u—o (VoW W

I A N (Uu—o (Vo W)FW

appliedn + 1 times

—(C
!E,F,AI—W<>

— case of rulg(&) —o):
IXTru !'ZTrV
IXTrUu&v
IZ.T,(U& V) oWrW |
I, ((u& v)—ow)rw<'L
(©)
I TrwW

&Ry ——(id)
WHW

Combining those (open) proof trees, it is obvious to desigacarsive algorithm which trans-
formsG-elLL proofs intoS-ILL proofs. O

Lemma 4.3. Ifthe sequentX, I'+c of elLL is valid in every free monoidal trivial phase semantic
interpretation then it has a proof iG-elLL.

Proor. Let us consider a fixed multis&t = o, ..., 0k of (-, &)-elementary formulae. We
consider the free commutative monoid over the set of logiealblesM = M;(Var), i.e. the set
of finite multisets of logical variables endowed with mudtimddition (denoted by the comma) as
monoidal composition and with the empty multiset (denoted|0]) as neutral element. We write
la, a b] for the multiset composed of two occurrencesacdind one ofb. Let us define the free
monoid (M, x, ) of class FM wheré = M (Var), 7 = [0] andx : M x M — P(M) is defined by
T[] % LA] = {II, A]}.5 The adjoint ofx is denoted—x.

We define the following semantic interpretation in the ai\phase space based o, &, r):

[cl ={ll'J]eM|!Z,T+chasaproofirG-elLL} force Var

Let us now show that € [o] holds for anyo; € X. We pick oneo; € X and proceed by case
analysis.

— if oy =u—oVv. Thenr € [u— V] iff [@0] % [u] < [v] iff [u]] < [V]. So letus consider one
'] such thaiI'| € [u]] and prove thatI'] € [v]. By definition of [[u]], the sequentX,T" + u has
a proof inG-elLL. Then, by rule(—o), the sequentX,I" + v has a proof inG-elLL. So we deduce
'] € [v]. Hence [u] < [V] and we obtainr € [o5].

— if o = (U— V) - w. We haver € [[(u—o V) o w] iff [u] — [v] < [w]. Let use choose
['] € [u] = [V]. Then{[T']} » [u]] < [V]. By rule (Ax), !X, u+ u has a proof irG-elLL and thus
Lul € [u]l. Thus{[I',ul} = [T'] % Lu] € [V]. Thus !X, T, urv has a proof irG-elLL. By rule{(—)—o),
12, T +w has a proof inG-elLL. We concludgI’] € [w]. Thus [u] —x [V] < [w] holds, hence
TE [[O'i]].

SHere,I' — [I'] is the identity map onvi;(Var) but the extra notatiof-] in the expressiori|I’,A]} has the side féect of
removing the ambiguity on the denotation of the comma: hedgnotes the composition of multisets, not the addition of
elements in a set.
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1:10 D. Larchey-Wendling and D. Galmiche

— if oy = U—(Vv—ow). We haver € [u—(V—owW)] i ff [u] x[V] < [w]. Letus choos¢l'] € [u]
and|A] € [v] and let us provél'| x |[A] € [w]. Both I Z,T'Fuand !Z, A+ v have a proof irG-elLL.
By rule (—(—0)), the sequentX, I', A + w has a proof irG-elLL. Thus|T'] x [A] = {[[, Al]} € [w].
We deduce [ x [v] < [w] and thus conclude € [o].

— if o = (U& V) ow. We haver € [(u& V) —ow] iff [ul N[V] € [w]. If L[] € [u]l n[V] then
both !X, T'+uand !X, I'+v have a proof irG-elLL. By rule((&) —o), the sequentX, '+ w has a proof
in G-elLL. Thus|I'| € [w]. We have proved thatd] N [v] < [w] and we concluder € [o].

So, for anyi € [1,K] the inclusionr € [[o] holds and as a consequenae¢ [! o] because
the identity ['oy] = {7} N [o;] holds in trivial phase semantics. Let us consifiet |ay, ..., ap]
and suppose that the sequeBtI + c of elLL is valid in every free monoidal trivial phase seman-
tics interpretation. As a particular case, it is valid in theerpretation ¥, x, 7, [-]) and thus the
inclusion

[' oa] % ---*[! o]l * [as] % ---x [ap] < [cl

holds. By rule(Ax), for anyi € [1, p] the sequentX, g + & has a proof inG-elLL and thus the
relation|a ] € [&] holds. Also remember that for anye [1, K], we havel0] = 7 € [[! oi]. So

[Tl €flas,....apl} = [0 * -+~ x [0] x [a1] * -~ * [ap] <[]
holds and we conclude thak!T + ¢ has a proof irG-elLL. O

Tueorem 4.4. The systenG-elLL is sound and complete for the fragmeiitL. Given a class
X € {ND, PD, TD, FM}, the trivial phase semantics over the clagss sound and complete for the
fragmentelLL.

Proor. Consider the following inclusion sequence
elLLg CelLLy C elLLyy C elllppy CelLLly CellLyy, C elllg

whereelLLy denotes the set of sequentsedfL which have a proof irG-elLL andelLL}, denotes
the set of sequents which are valid in every trivial phasessgiminterpretation of the class X. The
inclusionelLLg C elLL, is a direct consequence of Lemma 4.2. The inclusitih, C elLLL is a
particular case of Theorem 3.3. The inclusion sequetidg,, € elLL}, € elLLYy C elLLyy, is an
obvious consequence of the inclusions EMD ¢ PD € ND between classes of non-deterministic
monoids. The last inclusioglLLE,, C elLLg is the result of Lemma 4.3.0

Remark: the problem of the completeness of the fragrat w.r.t. trivial heap semantics re-
quires bisimulating free monoids with heap monoids andéladdressed in Section 7.2.

5. THE UNDECIDABILITY OF ELEMENTARY INTUITIONISTIC LINEAR LOGIC

We propose an encoding of two counter Minsky machines in ithgnfientelLL of ILL. The first
encoding of Minsky machines in Linear Logic was done by Kacloin the (! @)-Horn fragment of
ILL [Kanovich 1994; 1995]. In this encoding, the recovery of paations from proofs is obtained
through some form of proof normalization and th@dditive connective is used to simulate forking.
Lafont later showed that the use of proof normalization caratoided and replaced by a phase
semantics argument [Lafont 1996; Lafont and Scedrov 198@&jur encoding of Minsky machines
in elLL, the & connective is used to simulate forking and we will shibet a trivial phase semantics
argument is sficient to recover computability from provability.

5.1. Two counter Minsky machines

Let a andb be two distinct counter symbols. A (deterministic) two ctarrMinsky machine is a
pairdi = (I,) wherel > 0 is a strictly positive naturalumber of instructionand

w1l — {(+}x{a.b}x[0,1] | {-}x{a,b}x[0,1]x[0,]]
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is a total map representing tlist of instructions Here,| represents the (disjoint) set sum. Minsky
machines instructions (incrementation, zero/testrementation) are encoded as illustrated in the
two following examples:

(1) = (+,a,3) «» 1: a:=a+l;goto 3
¥(2) =(-,b,4,5) «» 2: if b=0 then goto 4 else b:=b-1;goto 5

Given a two counter Minsky maching = (1, ), we define the se3(M) of statesof the machine
by S(9t) = [0, 1] x N x N which collects the current instruction and the values oftthentersa and
b. With the following notations:

a=(10 b=(0,1) (Mna=m (Mn)p=n

we define a (binary) transition relation between statggs C S(W) x S(M). For any two states
(i,mn) and {/, m, '), the relation i, m, n) —gy (i’, M, n’) holds if

¥(i) = (+,x. ") and @, ') = (m,n) + X
or (i) = (= x1",K), (m n)x = 0 and (', n") = (M, n)
or (i) = (-, % j,i"),(mn)x # 0 and (,n’) + X = (m,n)
holds for somex € {a, b} and somej, k € [0, I]. Notice that {, m, n) —gy (i’, 7, n’) does not hold if
i = 0 because(0) is not defined. Let>;, be the reflexive and transitive closure of the relatiog.

We say that the maching acceptghe input (n, n) if starting from the state (In, n), there exists a
sequence of transitions leading to the stat®,0) and we define the s@&("t) of accepted inputs:

AM) = {(mn) e NxN | (1,m,n) -, (0,0,0)}

Tueorem 5.1 (Minsky). There exists a two counter Minsky machifidor which the seA(9t)
of accepted inputs is not recursive [Minsky 1961].

5.2. The encoding of two counter Minsky machines

Let us consider the two counter symbalandb as two (diferent) logical variables and let us choose
two new variablea andb so that the sefa, b, a, b} C Var has cardinal four. Let us choose an infinite
sef of new logical variablesgq; | i € N} such thaty; # qjunless = jand{a,b,a, b} N{qi | i € N} =

0. LetXg be the following multiset composed of fiveo &)-elementary formulae:

Zo={a—~(@a—~a)b—o(b—ob).(a—~a)—a (a—~a)—~b.(a—a)—qd

Given a Minsky machin&t = (I, y), fori € [1,1], we define the multisetsy, . .., of (—, &)-
elementary formulae by:
%i = {(x— q;) — qi) wheny(i) = (+., )
and % = {(X& qj) — qi, X — (ak — i)} wheny(i) = (-, X, J.K)
Let Xy be the multiseky, = 2o, X1, ..., 2. Given a natural numbar and a logical variable e
{a, b}, we definex" = x, X, ..., xas the multiset composed pbccurrences of the variable Then,

it is trivial to verify that for any natural numbenrs, nand anyi € [0, 1], the sequentZy;, a™, b" + g;
belongs to the fragmeeiLL.

Let us now consider a fixed Minsky machifie= (1, ). Then we denot&qyy; (resp.—a) simply
by X (resp.—). We prove four main intermediate results.

Proposition 5.2. Forany mn € N, the sequentsy, a™+a and! X, b"+b are provable inG-elLL.

8For our particular purpose, we only need as marly as there are instructions in the Minsky machine obtairrechf
Theorem 5.1.
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1:12 D. Larchey-Wendling and D. Galmiche

Proor. Here is a suitable proof tree for the case vaffa.

(AX)

(a—oa)—oackX

¥ ara

(AX)
1Y ara 1ZFa
a—o(@a—oael

appliedm - 1 times

(AX) P~
1Y ara 13 a Fa
—a—o(a—oa)ex

1%,amFa

The case ob/ b is similar. Here is a suitable proof tree:

(AX)
1Y ata
e b(Ax) D (a—oa)—obeX
I1X.br I3
—b—o(bob)ex
appliedn — 1 times
!kab<AX> IS, b1+ b
“b—o(b—ob)eX
IS, b"Fb -

In fact, these are the only possible proof trees but the dstretion of this uniqueness result is left
to the reader. O

Lemma 5.3. Foranyrmn € N and any i€ [0,1], if (i,mn) =" (0,0,0) then the sequent
1X,a™M b"+ g is provable inG-elLL.

Proor. We proceed by induction on the lengtlof the transition sequenceg n, n) —" (0,0, 0)
leading to the accepting state.
If r = 0 then we havei(m,n) = (0,0, 0). The sequentX + g has the following proof tree:

(AX)

(@—a)—oqoeX

¥ ara

12 +qo

Let us now consider a transition sequenicen(n) — (i’,m’,n") —" (0,0, 0) of lengthr + 1. By
induction hypothesis, le® be a proof tree for the sequer®.!a™,b" + q;.. We consider the & 2
possible cases for,(m,n) — (i’,m,n’).

— if (i) = (+,a,i") and f',n") = (m n) + a. ThennY = m+ 1 andn’ = n. We provide the
following proof tree for &, a™, b" + q;:

P
— if (i) = (+,b,1"), M = mandn’ = n+ 1. Here is a proof tree for®, a™ b" + q;:
P

— if y(i) = (-,a,",K), (m,n), = 0and (,n") = (mn). Thenm=m = 0andn=n". LetQ
be a proof tree for X, b" + b according to Proposition 5.2. We provide the following drvee for

(@—~qg)—qgex

(b—oq/)—oqgeX
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IZ,b"Fq;:
Q P
IS, b"rb IS b"Faqp
I3, b"F q

(b&qi)—qgieX

— if y(i) = (-, b,i’,k), m=n" andn =n" = 0. LetQ be a proof tree forX, a™+ a according to
Proposition 5.2. Here is a proof tree fat,b" + g;:

Q P

1%,amra !1%,amrqp

(@& qgi)—oqgeX
12, amF g = I

— if y(i) = (- a,j},i"),(mn), #0and (7,n") +a = (mn). Thenm=m + 1 andn = n". We
provide the following proof tree forX, a,a™,b"  qg;:

p
AX) ———————
!Z,a!—a< ) 13,a™, b +qp

13, a,am,b" g

a—o(qr —q)eX
— if y(i) = (-, b, },i"), " = mandn’ + 1 = n. Here is a proof tree for¥, a™, b, b" r q;:
P
AX)
!2,bkb< ) 13,a™, b +q;
13, a™ b,b" F gj

b —o (g < qj) €X

In any case we obtain a proof tree fax,'a™ b" + g; which fulfills the induction step. Again,
but this is left to the reader, it can be demonstrated thaptbef tree recursively build from the
transition sequence, (n, n) —" (0, 0, 0) is the unique proof tree for the sequeBta™, b"+qi. O

Let us now consider the following trivial phase semantidsripretation. Consider the product
monoid iV x N, +, (0, 0)). We definexoy = {x+y} and thus I x N, o, (0, 0)) is a total deterministic
monoid. Every subset af x N is closed in trivial phase semantics and we define

[al = (LO)=3)  [a] =Nx (0}
[bl = (©.1)=B)  [b] = {0} x N

Itis crucial that variables, b, a, b, qo, q1, ..., q Were chosen distinct from one another for this
definition to be valid. Let us now consider the trivial phasmantics interpretation of the compound
formulae ofx.

Proposition 5.4. Foranyo € %, [[! o] = {(0, 0)} holds.

Proor. As the identity [lo] = {(0,0)}n[o] holds in trivial phase semantics, it is necessary and
sufficient to prove that (M) € [o] holds for anyo € X.

First let us prove thatf — a]] = {(0,0)}. Indeed, (n,n) € [a — a] iff (mn)o[a] € [a] iff
(m,n) o {(1,0)} C {(1,0)} iff {(m+ 1,n)} C {(1,0)} iff (mn) = (0,0). Then [[a —a) — X] =
{(0,0)}—[X] = [ X] forany variablex, in particular forx € {a, b, qo}. Also (m, n) € [a—(a—a)] i ff
(m,n)o{(1,0)} o Nx {0} € Nx {0} iff n=0. Thus [a — (a — a)] = N x {0}. By a similar argument,
we get [b — (b — b)] = {0} x N. So for any formular € Xy, we have (00) € [o].

Let us consider the formulae k) for i € [1,1]. Let us prove that the relation (0) € [o] holds
for anyo € X by case analysis:

[al ={(mn) e NxN|(i,mn)—*(0,0,0)
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1:14 D. Larchey-Wendling and D. Galmiche

— if (i) = (+, %, j). Let us show (00) € [(x— qj) < qi], i.e. [x—q;j] < [ai]. Let us consider
(mn) € [x— q;]. Then{(m,n) + X} = {(m,n)} o [X] < [q;] and thus 7,n") = (m,n) + X € [q;].
Thus we havei(m, n) — (j,n',n’) —»* (0,0, 0). We concluder, n) € [q;].

— if y(i) = (-, % },K). Let us first show that (@) € [(X& qj) — qi], i.e. [X] N [q;] < [ail-
Let us considerrq,n) € [X] N [q;]. Then (m n)y = 0 and (,m n) —* (0,0,0). Thus {,m n) —
(jmn) =* (0,0,0) and (n,n) € [q;]. Hence [x] N [q;] < [a] holds. Let us finally show that
(0,0) € [X— (ak = )], i-e. [X] o [ak] € [ail- As [X] = {X} for x € {a, b}, let us choose an
arbitrary pair (W, n’) € [qx]] and define fn,n) = X+ (M, ’). Then fn,n), = 1+ (M, n")x # 0 and
(i,mn) — (k,.n?,n’) -* (0,0,0). We obtain fn, n) € [q;] and thus conclud& + (7, n’) € [q.
Hence, for anyrfY, n’) € [ax]] we get [X] o (m',n’) € [q;]- Thus [X] o [ax] < [ai] holds.

As a consequence, for amye X, we obtain (00) € [[o]. The identity [! o] = {(0, 0)} holds for
anyoc €X. O

Lemma 5.5. Foranymne N, if I X, a™ b"+q; is provable inG-elLL then(m, n) € A(M) holds.

Proor. LetX = {o,...,07}. We suppose that the sequeit &, b" + q; has a proof irG-elLL.
By the soundness part of Theorem 4.4, in our particular tgrministic trivial phase semantics
interpretation, we have

['oal o---otox] o[a] o---o[a] o [b] o---o[b] < [a]

wherea occursm times andb occursn times. By Proposition 5.4, we dedua®, () = r.(0,0) +
m.(1,0)+ n.(0, 1) € [q1] and thus (1m,n) —* (0,0, 0) holds. O

From Lemma 5.3 and Lemma 5.5, we obtain as a direct consegqtientollowing theorem which
characterizes Minsky machine acceptance in terms of pilitydb G-elLL.

Tueorem 5.6. For any two counter Minsky maching and for any pair mn € N, we have
(m,n) € A(M) if and only if the sequentzy, a™, b" + q; is provable inG-elLL.

We point out that the form (&) is used here to encoderkingin a way similar Kanovich does
with @ (see [Kanovich 1995]). The reader may have noticed that tharethe simple encoding of
computability with provability, we can even show that cortgiions and proofs match one to one.
Even though this result is not necessary to our argumentdtics suggests that the syst@vrelLL
is a natural choice to illustrate the relations between kimaachines and linear logic, and may be
more straightforward than the, ()-Horn fragment [Kanovich 1995].

5.3. The undecidability of elLL

Whereas the decidability sfIMELL’ is still unclear (but nevertheless known to be equivaletit¢o
decidability ofMELL [de Groote et al. 2004]), we have proved that the simple autddf the form
(&) — to s-IMELLy is suficient to encode forking and thus, computations of Minsky nizes.

Tueorem 5.7. Validity is undecidable in the elementary fragmentidf.

Proor. By Theorem 5.1, lePt be a two counter Minsky machine such tiagdt) is not recursive.
Computexyy. If there is an algorithm that discriminates between préeabnd unprovable sequents
of elLL, use it to decide

AM) = {(MnN) e NxN|!Z a™b"+ q; is provable inG-elLL}

This identity is a direct consequence of Theorem 5.6. T&(@B) would be recursive. We obtain a
contradiction. O

We point out that the model through which the faithfulnessha&f encoding is obtained (see
Lemma 5.5) is based on the free mondick N. So let us denote bgILL!, ,, the set of sequents
which are valid in every trivial phase semantic interpiietabver the free monoid{x N, +, (0, 0)).
We obtain the following stronger theorem:
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Tueorem 5.8. Let X be a set of sequents in-betweslhL, and elLL} ., i.e. which satisfies

elLLp C X C elLLj,. Then the seX is not a recursive set of sequents.

Proor. It is suficent to prove the following equivalence:
(mn)e AOM) iff !X a™b"F q; belongs toX

For theif part, if | £, a™, b" - q; belongs toX then, it belongs telLL!,,; and hence, using treame
proof as in Lemma 5.5, we deduce that ) € A(M). For theonly if part, if (m,n) € A(), then
by Lemma 5.3, we obtain thak! a™, b" + q; is provable inG-elLL. Thus, by definition, it belongs
toelLL,, and as a consequence, the sequEna™, b" + q; belongs toX. O

Remark: we leave the question of the strictness of the ifaiusLL C elLL,,; as a remaining
open problem.

6. THE SEMANTICS OF BOOLEAN Bl

BooleanBI (denotedBBl) is the variant of intuitionisti®! [O’Hearn and Pym 1999] where the ad-
ditive connectives are interpreted as Boolean connegctdgegrary to (intuitionisticBl where the
additive connectives are interpreted as in propositiomaiitionistic logic. The linear connectives
are both interpreted as those of multiplicative intuitgiiu linear logic, i.e. the multiplicative frag-
ment ofILL. When the connectives &Bl are given a Kripke semantics (see Section 6.1) and the
model belongs to the class of heap monoids HM, then we re¢bearore logic behind Separation
Logic [Ishtiag and O’'Hearn 2001].

The syntax oBBI is exactly the syntax d8l augmented with negation, although negation could
be defined by-A = A— 1 like in classical logic. Thus, the formulae BBI are defined as follows.
Starting from a seVar, they are freely built using thlegical variablesin Var, thelogical constants
in {l, T, L}, the unary connective or the binary connectives if, -, A, v, —}. Formally, the set of
formulae is described by the following grammar:

A:=v|c|-A|A®mA withveVar,ce{l, T, L}and& € {x, =, A, V, =}

Validity in BBI has not always been unequivocally defined. Indeed, thalirptioposition of
Pym [Pym 2002] was simply to add a double negation principl¢he cut-free bunched proof
system ofBI. But of course, this does not lead to a proof-theoreticalyl wehaved proof-system
for BBI: it does not enjoy cut-elimination, sub-formula prope#ig. Then, the syntax @Bl has
been used as a foundation for numerous variants of Sepalatigic with the common property
that the additive operates is interpreted classically whereas it is interpreted tinistically in
Bl [Ishtiag and O’Hearn 2001; Calcagno et al. 2005]. The rermof/¢he pre-order in the Kripke
semantics is moreover necessary for the interpretatiotassical negatior.

6.1. Kripke Semantics for BBI

In this paper, we choose to pres&l as a family of logics defined by their Kripke semantics rather
than proof-systems. Given a non-deterministic mondid4, €) and an interpretation of proposi-
tional variabless : Var — P(M), we define the Kripke forcing relations by induction on the
structure of formulae:

mis L iff never mis Av B iff mrs Aormirs B
mis T iff always mirs ANB iff mirs Aandmirs B
miks —A iff mis A mirs A— B iff mgs Aormirs B
mirs | If m=e€ mi-s A= B iff da,b, meaobandais Aandbis B

Miks v iff me 6(v) mis A—- B iff Ya,b(beaomandais A) = bis B

Definition 6.1 A formulaF is valid in a non-deterministic monoid\, o, ¢) if for any interpre-
tations : Var — P(M) of propositional variables, the relation 5 F holds for anym € M. A
counter-modedf the formulaF is given by a non-deterministic monoitl( o, €), an interpretation
¢ : Var — P(M) and an element € M such thamk; F.
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When the interpretation of variables is obvious from thetert we may simply omit theé
subscript and write instead ofr5. In some papers, you might fil8B1 defined by non-deterministic
monoidal Kripke semantics [Brotherston 2010; Galmiche harthey-Wendling 2006], in other
papers itis defined by partial but deterministic monoidapke semantics and generally Separation
Logic models are particular instances of partial (deteistit) monoids. See [Larchey-Wendling
and Galmiche 2009] for a general discussion about thesedssu

Definition 6.2 We denote byBBIx the set of formulae oBBI which are valid in every monoid
of the class X. The class X ranges oy®D, PD, TD, HM, FM}.

On the proof-theoretic side, we briefly recall thgBlyp has been proved sound and complete
w.r.t. a Hilbert proof-system [Galmiche and Larchey-Wamgl2006] and also, more recently w.r.t.
a Display Logic based proof-system [Brotherston 2010] yingp cut-elimination.BBIpp can be
proved sound and complete w.r.t. the semantic constraggstableaux proof-system presented
in [Larchey-Wendling and Galmiche 2009] (although only soeindness proof is presented in that
particular paper) and the adaptation of this tableaux sBy$teBBIrp should be straightforward
(contrary toBBInp).

As it turns out, the three fierent classes of models ND, PD and TD define thréemint logics,
i.e. universally valid formulae ¢tier from one class of models to another. The relatiorstatt
inclusionbetweerBBIyp andBBlpp was, to our knowledge, an undecided proposition.

Tueorem 6.3. BBIyp € BBlpp C BBltp

Proor. The following inclusion relations TR PD < ND hold between the classes of models
which respectively define those three logics. Hence, ordysthictness of the inclusion of validities
is not obvious. This strictness is established by upcomimgpfem 6.4 and Proposition 6.5

Consider the formuld = —(T -+ =l) and a non-deterministic monoit!( o, €). Sincel does not
contain any variable, its Kripke interpretation does ngiated on the choice @f One can check that
foranyx € M, x I+ 7 iff there exists¢ € M s.t.e € xo X'. S0I expresses “invertibility” in Kripke
semantics. The formuld(x 7) — I expresses stability of invertibility by monoidal compasit.

TuEOREM 6.4. With I = —(T-«=l), the formula(Z = 1) — I is valid in every partial deterministic
monoid. There exists a non-deterministic monoid which isuter-model tq7 = 1) — 1.

Proor. First the counter-model. Consider the non-determinisimoid (e, x, y}, o, €) uniquely
defined byx o x = {e,y}, y o @ = {y} for anye € {¢, x,y} and the axioms 1 & 2 of Definition 2.1.
Thenx I+ I because there exists(a = x) such thak € x o @. On the other hand; ¥ 7 because
there is nax such thak € y o @ holds. So, ag € xox,we havey I 7 « 7. Thusy ¥ (I « 1) — 1.

Now let us prove thatX = I) — I is valid in every partial deterministic monoid. Le¥i(o, )
be a partial deterministic monoid. Let us choase M and let us prove that + (I =« ) —» 7. So
we supposea I 7 = I holds and we have to prower 7. Asa - I = I, there exisb,c € M such
thata € boc, b+ 7 andc - 7. Thus there exish’',¢c’ € M such thate € bo b’ ande € co C'.
As M is (partial) deterministic, we haveo b’ = {€}, co ¢’ = {¢} andb o ¢ = {a}. Thus we have
(bob)o(coc) ={e}ole} = {e}.

If b’ o ¢’ = 0 then we would haveb(o C) o (b oC’) ={a}oc @ =0 butalso po b’)o (co ) = {e}
and thug) = {e} by associativitfcommutativity, which is absurd. This o ¢’ = {a’} and we obtain
(boc)o (o) ={a}o{a} =aoca andthemo a = {€} by associativitjcommutativity. Hence,
ecaoa andar 7. O

The formula ¢ -+ L) — | is inspired from the example given to establish the incotepless of
(total) monoidal Kripke semantics w.r.t. (intuitionistigl (see [Pym 2002] page 63).

"This non-deterministic monoid was presented in Sectiora8.2 witness that the class ND is strictly larger than PD.
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ProposiTion 6.5. The formula(—l -+ L) — | is valid in every total deterministic monoid. There
exists a partial deterministic monoid which is a countere@do (=1 - L) — I.

Proor. First the counter-model. Consider the following partielerministic monoid{g, x}, o, €)
wherexox = 0 andeoc @ = o e = {a} for anya € {¢,x}. Thenx # € and thusx ¥ I. Let us
prove thatx I =1 - L. Leta,b such thatb € x o aanda  -I. Thena # € and thusa = x. Then
xoa=xox =0. We get a contradiction with € x o a. From this contradiction, we dedube- L.
Hencex I =l - L and we conclude ¥ (-l -+ 1) — | and we have the counter-model.

Now let us prove that{l -« 1) — | is valid in every total deterministic monoid. Le¥l(o, €) be a
total deterministic monoid. Let us chooae M. There are two cases. Either= € ora # €. In the
casea = ¢, we obviously hava i (=l - 1) — I. In the case # ¢, let us provea ¥ -l - L. Suppose
alkr -l _1.Asa # e we havea I —I. Also a o ais not empty becauseis total. Letb € ao a. As
alk -l - 1, beaocaandar -I, we must havd I L which is impossible. Henca¥ -l -+ L and
we conclude thaa I+ (=l -« 1) — | holds also in the case+# €. O

Remark: we point out the inclusion sequentids,, C ILLp, C ILL}, as a remaining open
question whereLL; is defined by trivial phase semantics with the monoid belogdo the class
X € {ND, PD, TD}. The question is of coursare these two inclusions strict®e remark that the
counter-examples of Theorem 6.4 and Proposition 6.5 camnased as is because both formulae
contain a negation.

6.2. Heap models vs. free monoidal models of BBI

In this section, we briefly explain how free monoidal modeis kess general that heaps model,
at least with respect tBBI. The core of the argument is based on the bisimulation ofissi$
by heaps, a technique that was already (implicitly) usedimtherston and Kanovich 2010]. In
Appendix C, we explicitly show how the bisimulation argurhesrks.

Lemma 6.6. LetX be a set. There exists a heap mon#id, of classHM and a surjective map
¢ : H v — M;(X) such that for any Kripke interpretation: Var — P(M;(X)) in the free monoid
(M¢(X), x, ), the Kripke interpretatiod’ : Var — P(Hyv) in the heap monoi@H, v, +, @) defined
byd’ = v ¢ 1(5(V)) satisfies the following property:

hiry F ifandonlyif ¢(h) ks F forany F e BBI
Proor. The proof of this technical lemma is postponed in Appendix G

Tueorem 6.7. The inclusiorBBlyy € BBIgy holds. Validity in heap monoids is stronger than
validity in free monoids.

Proor. Let F € BBIlyy be aBBI-formula which is valid in every heap model. Then let
(M (X), %, m,8) be a Kripke interpretation in a model of class FM. Let us ad&ism € M;(X)
and let us show than s F holds. Let us considéil, y andy : H, v — M;(X) as obtained from
Lemma 6.6. Since is surjective, let us pick ah € H, y such thatp(h) = m. SinceF € BBlyv and
(H_v,, 2,8 is a Kripke model of class HM, we deduber; F. By Lemma 6.6, we conclude
m = ¢(h) ks F. ThusF belongs tdBBlgy. O

Let us consider two particular modelsBBI. First, the simplest heap modél( .,, =, @) which
is isomorphic to the partial monoid of finite subsetsMafi.e. the partial deterministic monoid
(P¢(N), w, 0). Then the free monoid over two elements which is isomorfahibe total deterministic
monoid iV x N, +, (0, 0)). We denote byBBIy vy (resp.BBli.av) the set ofBBI formulae which
are valid in every Kripke interpretation over the heap md@églN), W, ) (resp. free monoidiy x
N, +, (0, 0))). Then we obtain the following result:

Taeorem 6.8. The inclusiorBBIg,qy) € BBl holds.

Proor. The proofis postponed in Appendix C. It is mainly a partézuhstance of the proofs of
Lemma 6.6 and Theorem 6.7
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Remark: the strictness of the inclusiBBlp,a;) € BBhyxy remains an open question.

7. THE UNDECIDABILITY OF BOOLEAN BI

Having defined the Kripke semantics BBI within the framework of non-deterministic monoids,
let us explore its relations with non-deterministic trijidase semantics fokL.

7.1. Trivial Phase vs. Kripke Semantics

Let us compare the trivial phase semantic interpretatiolilofconnectives and the Kripke inter-
pretation ofBBI connectives. Given a non-deterministic mongditi = (M, o, €), a trivial phase
semantic interpretation-[' : Var — M° and an interpretation of variable in Kripke semantics
¢ : Var — P(M), we compare the trivial phase semantic interpretatiofLbfformulae and the
Kripke interpretation oBBI-formulae. Recall that in trivial phase semantics all stde¢M are
closed and thug1® = P(M). To better compare the two semantics, we use the notation

[FI* = {m|m F}

Then, using the equations defining Kripke semantics (setddek: 1), we easily obtain the follow-
ing correspondance between the interpretationsloAndBBI connectives:

[t Al' = {e) N AT [1AAT* = {e) NTAT
[11°=0 [11%=0 [A®B]' = [[A]]tU[[B]]t [AvB]*= IIA]]kU[[B]]k
[TI'=m  [TI*=M [A&B]'=[A]l'n[B]' [AABI*=[Al“N[B]"
[11" = {e) [1*= (e [A®B]' = [A]' o [B]' [A+B]*=[A]“o[B]"

[A—<B]'=[A]'<[B]' [A~BI“=[A]“~[B]"

Thus, there is an obvious embedding of the connectivéld ahto BBI, which can be formalized
with the following inductively defined map)¢ : ILL — BBI:

Vo =v forveVar

1®=1 (A® B)®=A®v B®
T®=T (A& B)® = A® A B®
1° =1 (A® B)® = A® « B®
(PA®=1AA® (A— B)® = A® « B®

Lemma 7.1. If the trivial phase semantics interpretatiid] : Var — M°® and the Kripke in-
terpretations : Var — P(M) are identical maps then the trivial phase semantics and thipkis
semantics are in the following relation:

VF €ILL,Yme M, me [F] iff mr F® 3)

Proor. Using the previous notations]Jf and []¥, we show that F]' = [F®]* by induction
on the structure oF. We consider the cage = A® B as a typical example. Using the inductions
hypotheses ]! = [A®]* and [B]' = [B®], we compute fR® B]' = [A]'! o [B]! = [A®]¥ o
[B°1* = [A®« B°]* = [(A® B)]]*. O

So if the interpretation of logical variables coincideyial phase semantics and Kripke semantics

correspond to each other through the mdp Given asequence A.. ., A of formulae oflLL, we
define @y, ..., A)® by structural induction:

()® =1 (Ag, ..., Ak+1)® = A? % (A, ..., Ak+1)®

When [[] and s are identical maps on propositional variables, it is thesightforward to prove this
equivalence by induction ok

me A o---o[AJ iff mi (Ag,...,A)® (4)
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7.2. Faithfully embedding (trivial) ILL into BBI

We define a reverse map from multisets of formuladLafinto lists of formulae by choosing an
arbitrarydecidable total ordelamong the formulae dlL (e.g. lexicographic ordering). For any
multisetI” of formulae ofILL, there exists a unique and computable ordered sequencenuiife
Ai,...,Acsuchthal = {Aq,..., Al and we defin@® = (A, ..., AY)®.

ProposiTion 7.2. The function(-)® : ILL — BBI mapping thelLL-sequent” + C to the BBI-
formulal® — C® is a computable map from sequentdiof to formulae ofBBI.

Proor. The only thing to prove here is that the map is computablethisdis done using any
sorting algorithm based on the decidable total order preshjochosen. O

ProposiTion 7.3. Let M = (M, o, €) be a non-deterministic monoid. LEt- C be a sequent of
ILL. Then the sequefit+ C is valid in every trivial phase semantics interpretaticasbd onM if
and on if the formuld™® — C® is valid in every Kripke interpretation based dgvl.

Proor. Let us pick the ordered sequen&g. .., A such that the identity = | Ay, ..., Ac] holds
as a multiset equation. Let us first suppose fat. ., A+ C is valid in every trivial phase semantics
interpretation based oM. Lets : Var — P(M) be a Kripke interpretation of variables in the
model M. We choose the trivial phase semantics interpretatifn: [ Var — P(M) defined by
[Vl = 6(v) for any variabler € Var. By hypothesisAq, ..., Ac+ Cis valid in the interpretation |
and we deduce/] o --- o [A < [C]. Then, by Equations (3) and (4), for anye M we have
mi (A, ..., A)® — C®. Thus the formula4y, ..., A)® — C?®is valid in the modelN, o, €, 6).

Now, let us suppose thady, ..., A)® — C® is valid in every Kripke interpretation based a.
Let[-] : Var — P(M) be a trivial phase semantic interpretation of variablethexmodelM. We
choose the Kripke interpretatioh: Var — P(M) defined bys(v) = [V] for any variablev € Var.
By hypothesis, the formuladg, ..., A)® — C® is valid in the interpretatiod and we deduce that
foranym € M we havem I (A4,..., A)® — C®. As a consequence of Equations (3) and (4), we
obtain [Aq] o---o[A«D < [C]. Hence, the sequeny,, ..., A+ C is valid in the trivial phase model
(M,o.e.[[]). O

Tueorem 7.4 (Bvsepping). Let X € {ND,PD, TD,HM, FM} be a class of non-deterministic
monoids. For any sequeht- C of ILL, the following equivalence holds:

I'rCellly ifandonlyif T®— C® e BBIx
Proor. Obvious consequence of Proposition 7.81
Tueorem 7.5. Trivial phase semantics restricted to heap models is cotmjbde elLL.

Proor. Consider the inclusion sequeneLy = elLLyy C elLLy,, C elLLy, = elLLg. Using
Theorem 4.4, the only inclusions left to be proved eitd L, C elLL},, andelLL},, C elLLL,,.
The first one is obvious because HMPD as classes of non-deterministic monoids. We prove the
second inclusion. Lt + C be a sequent afILL. We suppos€ + C belongs teelLL},,. Thus, it also
belongs toILLLM. Then, by Theorem 7.4, we haV& — C® € BBlyyw. Thus by Theorem 6.7, we
obtainI® — C® € BBIgy. Thus by Theorem 7.4 again, we obt&in C € ILL,. Sincel + C is an
elementary sequent, we concludeC € elLLf,,. O

7.3. The Undecidability Results

From the preceding developments, we establish the undsligaf BBI w.r.t. Kripke semantics

in any class belonging tiND, PD, TD, HM, FM}. Indeed, we have a faithful embedding from triv-
ial ILL into BBI. But trivial ILL containselLL as a complete and undecidable fragment. Thus the
embedding transfers the undecidabilityBBl.

Tueorem 7.6 (UnpecibasiLiTy oF BBI). For any classX € {ND,PD, TD,HM, FM}, the set of
(universally valid) formuladBly is not recursive.
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Proor. Suppose that there is an algorithm which decides memigeirsBiBlx. We propose the
following algorithm which would then decide validity in thiagmentelLL.

For a given elementary sequdnt C of elLL, compute theBBI formulal™® — C®. Decide if
I'® — C® belong toBBlI. If true, then by Theorem 7.4, the sequént C belongs tolLL},. By
Theorems 4.4 and 7.5, the fragmeiitL is complete w.r.t. trivial phase semantics in clas$'x,C
is a valid sequent dL.L. On the contrary, if the formulB® — C® does not belong t8BIyx, then by
Theorem 7.4 the sequelit C has a trivial phase semantics counter-model of class X. élenis
an invalid sequent di.L.

By Theorem 5.7, there is no algorithm which decide the vglidf sequent of the fragmeatLL.
We obtain a contradiction and thus no algorithm decides neeshiip inBBlx. O

Taeorem 7.7. The sets of formulaBBlp,q;) and BBl are not recursive.

Proor. For BBl it is simply a consequence of the undecidability of memiviers elLL,,
(see Theorem 5.8) and of Proposition 7.3. BBi, v, let us first prove the two inclusions

ellLp C elLLy, gy € ellliyy

ForellLL, C eILL}Pf(N), this is simply a consequence of the soundness of (trivizd)sp semantics

(see Theorem 3.3). Fa@iLL}, ,, C elLLj,,, we use our embedding via Proposition 7.3 and the
inclusionBBIg, ) € BBl of('l)heorem 6.8.

Then, by Theorem 5.8, membership in the esldaJL{mf(N) is not decidable, and thus, by Proposi-
tion 7.3, the seBBIg,qy) is not recursive. O

Remark: the result th&Blp ) iS not recursive is the core result of [Brotherston and Kartov
2010]. The indirect proof we provide here explicits the us&isimulation to transform a model
based olN x N into a model based ap ().

8. CONCLUSION AND RELATED WORKS

In this extended version of [Larchey-Wendling and Galmi20d0], we give a full proof of the
result of the undecidability of Booledi by identifying a fragment oBBI on which the semantics
defined by diferent classes of models collapse to one. This fragment dithet image by a faithful
embedding of the elementary fragmentlof. By studying the phase and trivial phase semantics
of elLL, we establish its completeness with respect to trivial pteasnantics whichever class of
models is chosen amongst ND, PD, TD, HM and FM. Undecidglddilows from an encoding of
two counter Minsky machines computations. The faithfunefsthe encoding is obtained using a
trivial phase model build on the free monaidx N, hence we can even derive the undecidability of
elLL (and laterBBI) restriced to the interpretations in the motiek N.

We also bisimulate free monoids with heap monoids and thogepthatelLL is complete (and
thus undecidable) for heap monoid semantics. Using a biation betweerN x N andPs(N), we
also deduce the undecidability efLL (and thusBBI) restriced to the interpretations in the model
P¢(N), which is the simplest heap model conceivable. This isdadlgithe core result of [Brotherston
and Kanovich 2010].

The question of the decidability for interpretations rieséd to N remains open because one
counter Minsky machines are a special case of pushdown at#ofor which accessibility is a
decidable problem [Bouajjani et al. 1997].

In [Brotherston and Kanovich 2010], the authors show thateeidability also holds for Classi-
cal Bl [Brotherston and Calcagno 2009] which is another varialafontaining both an additive
and a multiplicative negation. The encoding presented afdhey-Wendling and Galmiche 2010]
which we keep in this paper would not fit for classi@l But in [Larchey-Wendling 2010], the
author proposes a modified version of our encoding whichitalsle for both Boolea®l and Clas-
sicalBI with a faithfulness argument based on an intepretationdifirte abelian groupxZ. Hence
he obtains another proof of undecidability suitable forbBbolean and Classical.
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We left remaining open problems. In particular, the clasaiion ofelLL andBBI with respect
to validity in parcular classes of models, or in particulardals is unfinished. Solving this requires
finding elLL sequents oBBI formulae which distinguish the classes of models. This maab
difficult task which might need a better understanding of theesgive power of those two logics.

A. SOUNDNESS OF NON-DETERMINISTIC PHASE SEMANTICS FOR ILL

We recall Theorem 3.3. The proof we provide is really just daation of a standard proof in
Linear Logic semantics to the more general context of nderdenistic monoids.

Tueorem 3.3. Let M = (M, o, ¢, (-)°, K) be a non-deterministic intuitionistic phase space and
[-1: var— M° be an interpretation of logical variables. If the sequent A., A+ B has a proof
in S-ILL, then the inclusioffA;]] o --- o [A«]l < [B] holds.

Proor. It could be done by induction diL proof trees but we rather use the algebraic semantic
characterization oL of [Troelstra 1992]. We prove that

(MO’ n, ( U ')O’ (2)0’ -, ( ° ')0’ {E}O’ (K N ')0)

is an IL-algebra with storage operatqwhere—o is defined byx o Y = {k e M | ko X C Y}).

First, it is obvious thatNI°, n, (- U -)°, 0°) is a complete lattice with bottoff. This is thesame
proof as in the usual (monoidal) case because the (non-detetitimenoidal structure does not
play any role in this part of the proof. The principal argumisrthat ()° is a closure operator on
P(M).

Let us prove that §1°, (- o -)°, {€}°) is a commutative monoid. Obviously the skt° is stable
under the operator ¢ -)° which thus induces a binary operation st By stability, we obtain the
inclusion{e}® o X° C ({e} o X)° = X* and we deduce that for any closed subséite. X = X°), we
have (e}° o X)° C X. Also X = {€} o X C {€}° o X C ({€}° o X)° by monotonicity ofo and ¢)°. Thus
({e}* o X)° = X for any closed subset € M° and thus(e}° is a (left) unit for (o -)°. Then, it is
obvious that{o -)° is a commutative operation becauss itself commutative. We deduce tHa}’
is a unit for ¢ o -)°.

Let us prove that-(c -)° is associative. LeA,B,C € M?°. Then, by stability of {°, we have
Ao(BoC) CA°0(BoC)* C(Ao(BoC))° =(AoBoC)’.Thus@o(BoC)?)  C(AoBoC)°
holds. AsSAocBoC =Ao(BoC) CAoc(BoC)° C (Ao(BoC)°)’, we deducefoBoC)° C
(Ao (BoC)%)°. By double inclusion, we conclude that ¢ B o C)° = (A o (B o C)°)°. Associativity
of (- o -)° follows from this last identity and associativigpmmutativity ofo onP(M).

Itis obvious that{o -)° is monotonic in both parameters because it is obtained byosition of
two monotonic operators, namedyand ()°. Let us now prove thato is a right-adjoint (o -)°. First,
X—oY is closed as soon &sis closed anK — Y° = X°—oY* holds for anyX, Y € P(M) just as in the
usual (monoidal) case. Now |18t B,C € M°®. We have Ao B)° CCiff AcBC Ciff ACB —C.
Thus—o is indeed right-adjoint to- © -)°. The fact that-o is contra-variant w.r.t. its first operand
and co-variant w.r.t. its second operand is deducible flmemtonotonicity ob and the fact thato
is right adjoint too.

We finish by proving thaX — (K n X)° is amodality. First, for anyX € M°®, asKk N X € X = X¢,
we obtain KN X)° € X. Then forX,Y € M?¢, if we suppose that{ N Y)° C X, thenKNY C
X and thusk N Y € Kn X. Thus we obtainK NY)® € (KN X)°. Then, asc € K C {e}°, we
deducge)’ € K° = (KN M)°.8 The last condition to check is(N X)° o (KN Y)°)° = (KN XN Y)°
forany X,Y € M°. First we have KN X)° o (KNY)* € (KNX)o (KNY)). AsK C {e}°, we
have KN X)o (KNY) C {ef°oY C Y° =Y. We also haveK N X) o (KNY) € X. AsKo
K € Kwe have KN X) o (KN Y) C Kand hence, we deduc&k ( X) o (KNY) C KNXNY.
Using stability, we computek(n X)° o (KNY)® € (KN X)o (KNY))* € (KNXNY)® and thus
(KN X)° o (KNY)®)” € (KNXNY)°. Now let us prove the reverse inclusion. zet KNXNY. As

8Recall the identityd)® — 0° = 0 —0 0° = M.
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ze Kthenze Jand we have € (zo2)° € (KN X) o (KNY))® C (KN X)° o (KNY))°. Hence,
KNXNYC(KNX)®o(KNY))® and we deduce{Nn X NY)° < ((KN X)® o (KNY))°.

We can then apply Theorem 8.21 (page 80) from [Troelstra [L902, ..., A« + B has a proof
in ILL, then the inclusion f\, ..., AJ <€ [B] holds. Itis obvious to prove that4;]] o --- o [A«] <
[A4,...,Ad by induction onk for example. So we deduc@\[]] o--- o [AJ C[B]. O

B. COMPLETENESS OF NON-DETERMINISTIC PHASE SEMANTICS FOR ILL

Let Form denote the set of formulae dfL build from Var as set of logical variables, as defined in
Section 3. LeCtx = M¢(Form) denote the set afontextduild from the formulae ofLL, i.e. the set
of finite multisets ofiLL-formulae. Recall that a sequent is a p&ir¢) € Ctx x Form denoted™+ C
and thalLL, denotes the set of sequents for which there exists a prob&is-tLL.

Given a set of context8 C Ctx, a contextA € Ctx and a formulaC € Form, we denote by
A, X'+ C the following set of sequents:

AXFC={AT+C|TeX}

We consider the following free (commutative) mono(tx, x, 7) where the compositios is
defined by’ x A = {[I',A]}® for anyT,A € Ctx andx = [0] is the empty context. This non-
deterministic monoidEtx, %, ) obviously belongs to the class FM. The adjointois denoted-x.
We define the closure operatey’ (onP(Ctx) and the seK C Ctx by

X®={l e Ctx | YA € Ctx,YC e Form A, X+C CILL, = A,T'+C € ILL}
K={T € Ctx | T € Ctx}

Proposition B.1. (Ctx, %, 7, (-)°, K) is a non-deterministic phase space of cl&ss.

Proor. As mentioned earlier,Gix, x, ) is a non-deterministic monoid of class FM. We first
prove that{)° is a stable closure, then we show tKaterifiest € K C {I' € Ctx | T € {n}° N ([ o ')°}
andK x K C K.

Let X andY be two subsets oftx. Let us proveX € X°. LetT" € X. Then for anyA, C we have
{A,T'+C} C A, X+C. Hence, ifA, X+ C C ILL,, holds, the property, I'+- C € ILL,, also holds. Thus,
I' € X° holds. We have proved C X°. From the definition of-}°, X C Y obviously entails<® C Y°.
Let us now prove thax°® € X°. LetI’ € X°° and let us prov& € X°. We considen, C such that the
propertyA, X+ C C ILL,, holds. By definition of {)°, we deduce that, X° - C C ILL, holds. Since
I' e X*°, we deduce thak,I'- C € ILL,, holds. FromA, X+ C C ILL, we derivedA,T'+C € ILL,, SO
we have proved thdt € X°. Hence X°° C X° and then {)° is a closure operator dr(Ctx).

Let us now prove that the closurg’(is stable, i.e. satisfies the axioki x Y° C (X x Y)° for
any two subsetX, Y of Ctx. Sincex is commutative and)’ is a closure, it is sficient to prove the
propertyX = Y° C (X % Y)° for any two subset¥, Y of Ctx (the proof of this simplification is left
to the reader). Now let us considér € X andI'; € Y° and let us prove thdal'1,T2] € (X x Y)°. So
let us introduce\, C such thai\, X x Y+ C C ILL,. Sincel'; € X holds, we deduc’y} x Y C X Y
and thugA,T'1], Y+ C C ILL, holds. Sincd™; € Y* holds, we deduciA, T [, T> +C € ILL,. Hence,
A, [I'1,I2J-C € ILLp holds. We concludfl™s, I'2] € (X * Y)°. We have proved thagxY® € (X % Y)*
holds for anyX, Y C Ctx. As a consequence, the closu#g (s stable.

Now let us finish by checking the axioms corresponding.t&incer = |0 = [! 0], it is obvious
thatr € K. Let us prove thak C {T' € Ctx | " € {z}° N (I »« I)°}. LetI" € K. There exist§y such that
I' = ITo. Let us prove thatll'y € {x}°. We considen, C such that, {x} - C C ILLp, which reduces
to A+ C € ILL,. HenceA + C has a proof inS-ILL and by multiple applications of rul@v), we
obtain a proof ofA, I T - C in S-ILL. HenceA, ! To + C € ILL,. We conclude thall = ! Ty belongs
to {z}°. Sincel’ x ' = {|! Ty, ! I'o]}, we prove that I'y € {|!To,!I'o]}° using a similar argument,
replacing rulgwy) by rule(c). We finish with a proof oK x K C K. LetT" € K x K. By definition (1)

9Recall thafl ~— [I'] is the identity map oiCtx but the extra notatiof | in {|T', AJ} is used to here to remove the ambiguity
on the denotation of the comma: here it denotes the compiogfimultisets, not the addition of elements in a set.
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of the extension ok onP(Ctx), there existsI'p € K and 'I'; € K such thal” € I'y % I';. We deduce
I'=[!Ty,!T1] and, as a consequence K holds. O

For any formula- of ILL, we denote by F thesection below Flefined by
IF={'eCtx|I'+F €lILLp}
It is easy to prove that sections are closed subser§iik).
Proposition B.2. For any formula F oflILL, the inclusion(| F)° € | F holds.

Proor. For the following values oA = |0] andC = F, we obtainA, | F +- C C ILL,. Hence, if
we pickT € (| F)°, we deduce\, T + C € ILL, by definition of ()°. We concludd + F € ILL, and
thusr” € | F. Hence the inclusion|(F)° € | F holds. O

As sections are closed, it is legitimate to interpret lopweaiables by their section, i.e. we define
the interpretationy[] = | vfor every variabler € Var. The following lemma which is the core of the
completeness argument was first explicited by Okada [Ok&@2]2but not for exactly the same
closure operator we use here).

Lemma B.3 (Okapa). For any formula F ofILL, the relation F | € [F] < | F holds.

Proor. The proof is done by (mutual) induction of the formé&aThe beauty of the argument is
that the semantic properti¢g | € [F] and [F] < | F correspond one to one with the rules of the
(cup-free S-ILL calculus.

— for a variablev € Var, the propertyv] € [V] reduces tdv] € | v which is an instance of the
identity axiom(id). The property f]] € |vreducestq v C |vwhich is trivial;

— if F is a formula of typeF = A ® B, then we observe that rukg, ) corresponds to the
relationA® B] € {lA, Bl}® and rule{(®g) corresponds to the relatigpA x | B € |A® B. Thus,
using the induction hypothesgs] € [A] € |Aand|B] € [B] ¢ |B, we computd A® B] €
{LA.BJ}° < (LAl x |B])" € (IAl * [B])° < [A®B] and [A®B] < ([A] * [BI)° € (1A |B)’ C
(lA®B)’'C|A® B

— if F = A— B, then we use the relatiohd — B| € (| A) — {|B]}° and{|lA]} x|BC |A—-B
corresponding to ruleé—-, ) and(—Rg) respectively. We computeA —- B| € (JA) — {|BJ}* C
[A] -~ [B]* =[A—B]and [A—- B] = [A] -~ [[B] € {lA]} x |BC |A— B;

— if F =1, we obtain the relationid | € {|0]}° and|0] € | 1 for rules(1, ) and(1gr) respectively.
Thus|1] € {[0]}° = {x}° = [1] and [1] = {l0]})° € (11)" € L 1;

— if F = A& B, we obtain the relationgA & B] € {{A]}°, |A& B] € {|{BJ}°*and|An |B C
LA& Bforrules(&}), (&2) and(&ryrespectively. ThugA & B] e {|A}’n{LBJ}* < [AI°N[B]° c
[AlN[Bl =[A&BJand[A& B] =[AIn[B] < |An|BC |A&B;

— if F = T, we obtain the relatiolCtx ¢ | T for rule (Tg). Thus|T] € Ctx = [T] and
[Tl=Cxc|T;

— if F = A® B, we obtain the relationsA® B] € {|Al,|BJ}*’, /A € |A@Band|B
LA @ Bforrules(®,), (@é) and(eBzR) respectively. ThugA @ B] € {LAl, |BJ}* = ({LAl} U {LBI})°
(IAT VBN =[A®Bland [A® B] = ([Al VBN c (LAULIB)’c(lA®B)°C |A® B,

— if F = L, we obtain the relatiofL| € 0° for rule (L, ). Thus| L] € 0° = [[L] and [1]
0°c(lL)ycla;

— if F =1 A we obtain the relationd A| € {{Al}°* andKn | A C | (! A) for rules(!.) and{!g)
respectively. Sincg! A| € K by definition ofK, we deduce! A] e KN {[A]}° C KN [A] ¢ [! Al
and ['A]l = (KNTAD°  c (KN LA (L A) Cl(A).

c
c

a

Tueorem 3.5. If the sequenr + A is valid in every free monoidal phase semantic interpretat
(M, 0,6, ()%, K, [-I) (i.e. with(M, o, €) of the clas$=M), thenI" - A has a proof irS-ILL.
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Proor. Let Ay,...,Ac+ B be a sequent which is valid in every free monoidal phase stean
interpretation. In particular, it is valid in our currenténpretation Ctx, x, r) and we deduce that
the inclusion [Aq]] % - -- % [AcJ < [B] holds. By Okada’s lemma B.3, we obtain

AL A € AL % - & LA S TA] * -« [AJ <[B] < UB
and we concludé, ..., A+ B € ILLp. Hence, the sequeht, . .., A+ B has a proof irS-ILL. O

Remark: this proof does not use the cut {dat) so it can also be used as an argumensfamng
completenessom which it is easy to derive a semantic proof of cut-eliation forS-ILL.

C. BISIMULATING FREE MONOIDS WITH HEAP MONOIDS

In this section, we give a detailed proof of Lemma 6.6. Letxia fetX. We denote byNi;(X), +, 0)
the (usual) free commutative generateddyy.e. M;(X) is the set of finite multisets of elements of
X. Multiset composition is denoted additively, so for exaenple denote byn = Y, .x my.x the
multiset which contains exactlyy € N occurrences of the variablefor eachx € X. In caseX is
infinite, it is assumed that the value mof, is non-zero for only a finite subset ®f Recall that there
is an associated (total deterministic) free monoid of cigswhich is denotedNi; (X), %, ) with
the identitieam x« n = {m+ n} andn = 0.

We define the following set of locationis= X x N, andLy = {x} x N is a section ot for each
x € X. We also defind, = (x,1) € L and thus we obtain the following identities:

L=|+/Lx and Ly={I%1L12,..} forxeX
xeX

We define the set of valu&s= {x} as a singleton set. Considering the heap morifid,(+, @), we
define a ma : H y — M;(X) by

o(h) = Z carddef(h) N Ly).x

xeX

ProposiTion C.1. The mapp : H v — M;(X) satisfies the following properties:

(1) ¢is a surjective map;

(2) if my, mp € M¢(X) and he Hy y satisfye(h) = my + mp then there existsihh, € Hy v such
thatp(hy) = my, ¢(h2) = mp and hy 11 h, = {h};

(3) forany m € M;(X) and any h € Hy_y there exists he H,_ y such thatdef(h;) N def(hy) = 0
ande(hy) = my;

(4) ¢(hy 11 hg) = (hg) x p(hz) whendef(h;) N def(hz) = 0;

(5) ¢(h) =0if and only if h= @ for any he Hy_y;

(6) ¢ 1(A) = ¢ 1(B) = ¢ (A x B) for anyA, B C M;(X).

Proor. Let us prove Property (1) and show thais a surjective map. Lan = Y ,.x my.x be a
finite multiset. Then the s¢fl}, =) | 0 < i < my} is the graph of a partial function and we denote this
function byhy,. It can be easily be checked that dgf) is a finite subset af and that

o(hm) = anrdl‘x [0<i<mglx= Z Me.X=m

xeX xeX

Let use prove Property (2). Let, n € M;(X) andh € H, vy be such thap(h) = m+ n. For each
x € X, we have card(defij N Ly) = my + ny. Let us partition detf) N Ly in def(h) N Ly = LU L2
such that card¢) = my and card(2) = ny. Then leth; (resp.h) be the partial function with graph
{(1, %) | I e LY} (resp.{(lL, =) | I\ € L2}). The reader can check thath;) = my, ¢(hy) = mp and
h; 1 hy = {h} hold.

Let us prove Property (3). Let us write; = Y ,.x m:.x. For x € Var, sincelLy\def(h,) is an
infinite set, let us choosk! such thatll c Ly\def(h,) and card(}) = mi. Now let us consider
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the partial functiorh; defined by the grapk(ll, ) | I € L}}. It is obvious that def{,) is finite,
def(hy) N def(hy) = 0 andp(hy) = M.

Let us prove Property (4). Lét;, hy, € H, v such that detf;) N def(hy) = 0. Let h be the result
of the composition oh; andhy, i.e.h; 1 hy = {h}. Then card(def{) N L) = card(defby) N Ly) +
card(deffy) N Ly) and we deduce(h) = ¢(hy) + ¢(hy), hencep(hy 11 hy) = {p(h1) + ¢(hy)}.

Property (5) is obvious. Let us prove Property (6). Firstetonsider the inclusiapr*(A x B) €
¢ (A) 1 ¢~1(B). Let us pickh € ¢™(A % B). Theng(h) € A x B so there existay € A andm, € B
such thatp(h) = my + m,. By Property (2), there existg, h, such thatp(h;) = my, ¢(hz) = mp and
hi ¥ hy = {h). Henceh; € ¢™1(A) andh, € ¢71(B). Ashy 1 hy = {h}, we geth € ¢ 1(A) = ¢~ 1(B).
Let us consider the reverse inclusign'(A) 1 ¢(B) C ¢ 1(A x B). Leth € ¢"1(A) 11 ¢%(B). Then
there existdy € ¢~1(A) andh, € ¢~1(B) such thah € h; 1 hy. Then we have defi) N def(hy) = 0
(otherwiseh; 1 h, = 0) and by Property (4), we deduggh) = ¢(h;) + ¢(hy) € A x B. Hence
heo X (AxB). O

Lemma C.2 (Bismuration). Let R, € Hy v x My(X) be the binary relation defined by the graph
of g, i.e. h R, miff ¢(h) = m. Then Ris a bisimulation between non-deterministic monoidsijt.e.
satisfies the following property for anyehH, y and any me M (X)

h=oifm=n

VYhy,hy hehyhy = 3Im,m, memxmandh R, myandh R, mp
hR, m={V¥m,m mem *m = Jh;,h, hehjwhyandhh Rampandh R, mp

Yhy,hy hpehyh=3Im,m mem*mandh R, myandh R, mp

Ymy,my mpem xm= 3h;,hy hpehywhandh R, mpand b R, mp

Proor. Let us first prove that R, m= (h = @ iff m= x). Leth andmsuch thah R, m holds.
Then by definition, we obtaip(h) = m. If m = z(= 0), then by Property (5) of Proposition C.1, we
obtainh = @ and thusl, m) € {(@, 7)}. If m # 0 then by Property (5) of Proposition C.1, we obtain
h # @ and thus i, m) € M (X)\{r}.

Let us now prove the four co-induction properties. beindm such thath R, m holds. Then
¢(h) = mholds.

— Lethy, hy € Hyy such thath € hy 1 hy. Letmy = ¢(hy) andm, = ¢(hy). By Property (4) of
Proposition C.1, we obtaim = ¢(h) € ¢(h1) x ¢(h2) = my % mp, hy R, mg andh; R, m2;

— Let m, mp € M¢(X) such thatm = my + mp. Property (2) of Proposition C.1, there exists
hy, hy € Hy v such thatp(hy) = my, ¢(hy) = mp andhy 1 hy = {h}. Henceh € hy # hy, hy R, my and
h2 m2;

Eﬁ Let hy,hy € Hi v such thath, € hy 1 h. Letmy = ¢(h1) andm, = ¢(hy). By Property (4) of
Proposition C.1, we obtaim, = ¢(hy) € ¢(h1) x ¢(h) = my * m, hy R, my andh, R, m2;

— Letmy, mp € M;(X) such thatn, = my+m. By Property (3) of Proposition C.1, let us chotise
such that detf;) N def(h) = 0 ande(hi) = my. Henceh; R, my holds. Since def()) n def(h) = 0,
let h, be the unique heap such that € h; 1 h. By Property (4) of Proposition C.1, we obtain
p(h2) = p(hy) + ¢(h) = My + m= mp. Henceh; R, My holds.

|

Lemma 6.6. Let X be a set. There exists a heap mon#id, of classHM and a surjective map
¢ : H v — M;(X) such that for any Kripke interpretation: Var — P(M;(X)) in the free monoid
(M¢(X), x, ), the Kripke interpretatiod’ : Var — P(H, v) in the heap monoidH, v, 4, @) defined
byd” = v ¢ 1(6(v)) satisfies the following property:

hirg F ifand onlyif ¢(h) s F for any F € BBI
Proor. By induction on the structure &f, we prove the following property:
Yhhm hRm=(hiy Fiff mir; F)
Let us proceed by case analysis on the structufe of
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— if F is reduced to a logical variable € Var, thenh R, mimplies ¢(h) = mand thus we
computeh ik Viff he §(v) iff h e g 1(5(V)) iff ¢(h) € 5(v) iff me §(v) iff mirs v,

— if F is the multiplicative unit then the relation reducestoR, m= (h = @ iff m= ) which
is a consequence of Lemma C.2;

— if F = A« B, let us supposé s A x B and let us proven s A = B. By definition of
Kripke semantics, there exidhs, h, such that € hy 11 hy, hy -y Aandh, s B. Sinceh R, m, by
Lemma C.2, we obtaimy, mp such thatn e my x mp, hy R, my andh, R, mp. By induction, we get
my ks Aandm, s B. Hence, by definition of Kripke semantics, we dedaoce; Ax B. We proceed
in a perfectly symetric way fomirs A= B= h iy Ax B;

— if F = A— B, let us supposé s A - B and let us proven s A - B. So let usm;, m,
consider such thatp € my x mandm ks A and let us prove thaty s B. Sinceh R, m, by
Lemma C.2, we obtaihy, h, such thah; € h; 1 h, hy R, my andh, R, mp. By induction, we get
h; ks A. Hence, by definition of Kripke semantics far, we deducd, s B. By induction again,
we deriverm, -5 B. Symmetrically we obtaimirs A+ B = h ks A - B;

— if the outermost connective &f is not multiplicative, i.e. belongs taL, T, —, v, A, =}, then
the equivalence is trivially obtained from the inductiorpbthesis because of the pointwise defini-
tion of the Kripke semantics of non-linear connectives.

O

Let us consider the following map between the heap morigi@j, w, ®) and the free monoid
(NxN, +, (0, 0)). Let use splilN into two infinite parts such @ = Ew O whereQ = {2n+1| n € N}
andE = {2n| n € N}. We define the map : Pf(N) — N x N by

Y(K) = (cardK N E), cardK N ©)) for K finite subset ofV

The mapy is just a particular case of the mapvhere the seX has two elements like for example
X = {0,1}. Then the mapy is surjective and the binary relation defined by its graphligssanula-
tion between non-deterministic monoids as defined in Lemr@aldence, we imediatly derive the
following result:

Lemma C.3. There exists a surjective map: P;(N) — N x N such that for any Kripke in-
terpretations : Var — P(N x N) in the free monoidN x N, +, (0, 0)), the Kripke interpretation
& : Var — P(P(N)) in the heap monoidP;(IV), w, 0) defined by’ = v i y~1(5(v)) satisfies the
following property:

hiry F ifandonlyif w(h) ks F for any F € BBI
We deduce a proof of Theorem 6.8
TaeoreM 6.8. The inclusiorBBlp,ay) € BBlyxwy holds.

Proor. Let F € BBIp,qy) be aBBI-formula which is valid in the heap modé#(IN), w, 0). Then
let 6 : Var — P(N x N) be a Kripke interpretation in the free monoily & N, +, (0, 0)). Let us
consider & b) € N x N and let us show thaia(b) s F holds. Sincey is surjective, let us pick
K e P¢(N) such thaty(K) = (a,b) (for instanceK = {0,...,2a—- 2} U {1,...,2b — 1} would fit).
SinceF € BBIp,qy), we deduc&K Iy F. By Lemma C.3, we concludeyb) = ¢(K) I-s F. ThusF
belongs tBBhya. O
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