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Non-deterministic Semantics and the Undecidability of Boolean BI
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DIDIER GALMICHE, LORIA–Université Henri Poincaré, Nancy, France

We solve the open problem of the decidability of Boolean BI logic (BBI), which can be considered as the core of Separation
and Spatial Logics. For this, we define a complete phase semantics for BBI and characterize it as trivial phase semantics.
We deduce an embedding between trivial phase semantics for intuitionistic linear logic (ILL) and Kripke semantics for BBI.
We single out the elementary fragment of ILL which is both undecidable and complete for trivial phase semantics. Thus, we
obtain the undecidability of BBI.
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1. INTRODUCTION

The question of the decidability of the Boolean version of the logic of Bunched Implications
(denotedBI) was a longstanding open problem.BI itself was proved decidable by Galmicheet
al. [Galmiche et al. 2005] and BooleanBI was naively thought “simpler” thanBI until a faith-
ful embedding fromBI into BooleanBI was discovered [Larchey-Wendling and Galmiche 2009].
Independently, Brotherston and Kanovich [Brotherston andKanovich 2010] on the one hand and
Larchey-Wendling and Galmiche [Larchey-Wendling and Galmiche 2010] on the other hand re-
cently solved the issue by different techniques: the former by focusing mainly on the linksbetween
BooleanBI and Separation Logic, the later by establishing semantic links between Intuitionistic Lin-
ear Logic (ILL) and BooleanBI. This paper is an enriched and self-contained version of theresults
and proofs of [Larchey-Wendling and Galmiche 2010].

The logicBI of bunched implications [O’Hearn and Pym 1999] is a sub-structural logic which
freely combines additive connectives∧, ∨,→ and multiplicative connectives∗, −∗. In BI, both the
multiplicatives and the additives behave intuitionistically. From its inception,BI was given a nice
bunched sequent proof-system enjoying cut-elimination [Pym 2002]. Later, [Galmiche et al. 2005]
gaveBI a sound and complete labeled tableaux system from which decidability was derived. The
logic BI is sometimes called intuitionisticBI to distinguish it with other variants where either the
multiplicatives or the additives include a negation and thus behave classically.

From a proof-theoretical perspective, BooleanBI (or simplyBBI) can be considered as the first
investigated variant ofBI which contained a negation:BBI combines intuitionistic multiplicatives
with Boolean additives. This focus onBBI is the consequence of the natural links betweenBBI and
separation or spatial logics. Indeed, for instance, the pure part of separation logic is essentially ob-
tained by considering a particular model ofBBI, based on a (partial) monoid of heaps [Ishtiaq and
O’Hearn 2001] (see [Larchey-Wendling and Galmiche 2009] for a more general discussion on these
links). The Hilbert proof-system ofBBI was proved complete w.r.t.relational (or non-deterministic)
Kripke semantics[Galmiche and Larchey-Wendling 2006]. However, the proof-theory ofBBI was
rather poorly developed because it was difficult to conceive how the bunched sequent calculus of (in-
tuitionistic)BI could be extended toBBI without losing key properties such as e.g. cut-elimination.

Two main families of results emerged giving a contrasted view of its proof-theory. On the one
hand, [Brotherston 2010] adapted the Display proof-systemof ClassicalBI to BBI, circumventing
the difficulty of the multiplicatives ofBBI lacking a negation. This system was proved sound and
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1:2 D. Larchey-Wendling and D. Galmiche

complete w.r.t. relational Kripke semantics. Cut-elimination was also derived but, despite the ex-
pectations of Brotherston, no decidability result followed. On the other hand, [Larchey-Wendling
and Galmiche 2009] proposed a labeled tableaux proof-system for (partial monoidal)BBI and by
the study of the relations between the proof-search generated counter-models ofBI andBBI, showed
that (intuitionistic)BI could be faithfully embedded intoBBI. This result, at first counter-intuitive,
hinted thatBBI, originally thought simpler thanBI, could in fact be much more difficult to decide.

In this paper, we consider models ofBBI belonging to different classes:

ND. The class of non-deterministic monoids;
PD. The class of partial (deterministic) monoids;
TD. The class of total (deterministic) monoids;
HM. The class of heaps monoids (i.e. separation logic models);
FM. The class of free monoids.

Generally, each class of models defines a different notion of (universal Kripke) validity on the for-
mulae ofBBI. For instance, we recall the result that the setBBIND of BBI-formulae valid in every
non-deterministic monoid is strictly included in the setBBIPD of BBI-formulae valid in every partial
deterministic monoid [Larchey-Wendling and Galmiche 2010]. The classification of these classes
of models with respect toBBI Kripke validity is not finished though.

The principal result of this paper is theundecidability of universal validity inBBI, whichever class
of models is chosen amongst ND, PD, TD, HM and FM. Although these classes of models generally
define different notions of universal validity for the wholeBBI, we have identified a fragment of
BBI on which these semantics collapse to one. This fragment is the direct image ofthe elementary
fragment of ILL (denotedeILL) by an embedding ofILL into BBI. This elementary fragment is
different from the minimal fragment of BooleanBI identified in [Brotherston and Kanovich 2010]
but has similar properties. In our case, undecidability is obtained by the following steps:

— we show that the embedding ofeILL into BBI is faithful for trivial phase semantics;
— we show that theeILL fragment iscomplete for trivial phase semantics, whichever class of

models is chosen amongst ND, PD, TD, HM and FM;
— we show how to encode the computations of two counter Minskymachines ineILL.

As a consequence, we derive the undecidability of theeILL fragment, from which we deduce the
undecidability ofBBI. We complete the pictures with additional results of undecidability on the
models based on the free monoidN × N and the models based on the partial monoidPf (N) (which
is also the simplest heap monoid). This last result is obtained using bisimulation techniques.

Compared to the original LICS’10 paper [Larchey-Wendling and Galmiche 2010], this paper
contains a more extensive study of the semantics of theeILL fragment with completeness results
for various classes of models and the adaptation of our undecidability result ofBBI to heaps models
(i.e. to Separation Logic) using a bisimulation between free monoids and heap monoids.

2. CLASSES OF NON-DETERMINISTIC MONOIDS

In this section, we define the algebraic notion of non-deterministic (commutative) monoid. We de-
note algebraic structure byM, N,... classes of structures by C, D,... sets byX, Y,... elements byx,
y,... and well known constructs like the powerset byP(X) or the set of (finite) multisets byMf (X).
The symbolN = {0, 1, 2, . . .} denotes the set of natural numbers. The symbol∅ is used either to
denote the empty set, the empty multiset or the empty class.

2.1. Non-deterministic monoids

Let us consider a setM and its powersetP(M), i.e. the set of subsets ofM. A compositionis a binary
function◦ : M ×M −→ P(M) which naturally extended to a binary operator onP(M) by

X ◦ Y =
⋃

{x ◦ y | x ∈ X andy ∈ Y} (1)
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Non-deterministic Semantics and the Undecidability of Boolean BI 1:3

for any subsetsX,Y of M. Using this extension, we can view an elementm of M as the singleton
set{m} and derive equations likem◦ X = {m} ◦ X anda ◦ b = {a} ◦ {b} by a slight abuse of notation.

Definition 2.1. A non-deterministic (or relational) monoidis a triple (M, ◦, ǫ) whereM is a set,
ǫ ∈ M is theneutral elementand◦ : M × M −→ P(M) is thecomposition operator. In addition, the
following axioms are mandatory:

∀a ∈ M, ǫ ◦ a = {a} (neutrality)
∀a, b ∈ M, a ◦ b = b ◦ a (commutativity)
∀a, b, c ∈ M, a ◦ (b ◦ c) = (a ◦ b) ◦ c (associativity)

The class of non-deterministic monoids is denoted ND.

Associativity should be understood using the extension of◦ to P(M) as defined by Equation (1).
The extension of◦ toP(M) induces a commutative monoidal structure with unit element {ǫ} onP(M).
As a consequence, the structure (P(M), ◦, {ǫ}) is a (usual) commutative monoid.

The termnon-deterministicwas introduced in [Galmiche and Larchey-Wendling 2006] in order
to emphasize the fact that the compositiona ◦ b may yield not only one but an arbitrary number of
results including the possible incompatibility ofa andb in which casea ◦ b = ∅. If (M,+, 0) is a
(usual) commutative monoid then, defininga ◦ b = {a + b} andǫ = 0 induces a non-deterministic
monoid (M, ◦, ǫ). Using the bijectionx 7→ {x} mapping elements ofM to singletons inP(M), we can
view (usual) commutative monoids as a particular case of non-deterministic monoids (later called
total deterministic monoids). Partial monoids can also be represented using the empty set∅ as the
result of undefined compositions (see section 2.2).

The termrelationalis sometimes used because the map◦ : M×M−→P(M) can equivalently be un-
derstood as a ternary relation− ◦− ∋− : M×M×M−→{0, 1} through the Curry-Howard isomorphism
and the axioms correspond to those of an internal monoid in the category of relations [Ghilardi and
Meloni 1990]. The two presentations are equivalent but we rather use the monoidal presentation in
this paper because it better suits the context and habits of phase semantics and Kripke semantics.

2.2. Sub-classes of non-deterministic monoids

Definition 2.2. Let (M, ◦, ǫ) be a non-deterministic monoid. It is apartial deterministic monoid
if for all x, y ∈ M, the compositionx ◦ y is either empty or a singleton. It is atotal deterministic
monoidif for all x, y ∈ M, the compositionx ◦ y is a singleton. We use PD (resp. TD) to represent
the sub-class of partial deterministic (resp. total deterministic) monoids.

The reader may have noticed that total deterministic monoids (of class TD) exactly correspond
to those non-deterministic monoids derived from usual commutative monoids via the mapx 7→ {x}
because the composition◦ is a functional relation in this case (exactly one image for each pair of
parameters).

Let us give an example of non-deterministic monoid which shows that the class ND contains
structures that have properties which are fundamentally different from those of partial or total
monoids. The non-deterministic monoid ({ǫ, x, y}, ◦, ǫ) built over this 3 elements set and defined
by the following composition operator:

◦ ǫ x y

ǫ {ǫ} {x} {y}
x {x} {ǫ, y} {y}

y {y} {y} {y}

is an example of such non-deterministic monoid. It is a witness that PD is a proper sub-class of ND.
But also, we see that in this monoid,x is both self inverse (ǫ ∈ x ◦ x) and this same composition
yields the absorbing element (y ∈ x ◦ x). In Section 6.1, we will see thatBBI is able to witness the
difference between the class ND and the class PD.
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A typical sub-class of partial deterministic monoids is obtained by considering disjoint union
over the powerset. Given a setX, consider the partial deterministic monoid (P(X),⊎, ∅) where∅ is
the empty subset ofX and⊎ is defined forA,B ⊆ X by

A ⊎ B =

{

∅ whenA ∩ B , ∅
{A ∪ B} whenA ∩ B = ∅

One could even restrict to finite subsets ofX by considering the partial monoid (Pf (X),⊎, ∅) where
Pf (X) is the set of finite subsets ofX.

A (more general) sub-class of partial deterministic monoids is of particular importance to Sepa-
ration Logic [Ishtiaq and O’Hearn 2001]. Given an (infinite)setL of locationsand a (non-empty)
setV of values, aheapis a partial function from locations to values defined only ona finite number
of locations. We define

HL,V = {h : L −⇀f V | def(h) is finite} where def(h) = {l ∈ L | h(l) is defined}

so def(h) is the (finite) set of locations on whichh is defined. The binary compositions| t of two
heapss, t ∈ HL,V is defined by

s| t =

{

∅ when def(s) ∩ def(t) , ∅
{r} when def(s) ∩ def(t) = ∅ with graph(r) = graph(s) ∪ graph(t)

The heap defined nowhere (i.e. with an empty graph) is denoted∅. The heap monoid (HL,V,|,∅) is
a partial deterministic monoid of class PD. We point out thatwhenV = {∗} is a singleton set, then
the heap monoid (HL,{∗},|,∅) is isomorphic to finite powerset monoid (Pf (L),⊎, ∅). Hence, the class
of heap monoids contains (an isomorphic copy of) the class offinite powersets. The class of heap
monoids is denoted HM:

HM =
{

(HL,V,|,∅) | L is infinite andV is not empty
}

It is obviously a sub-class of PD. Since for any non-empty heaphwe haveh|h = ∅ (but∅|∅ = {∅}),
it is clear that no heap monoidHL,V is a total deterministic monoid (because neitherL nor V is
empty). Hence, HM and TD are two disjoint sub-classes of PD.

Another important sub-class of non-deterministic monoidsis the class of FM of free (commuta-
tive) monoids (Mf (X), ⋆, π) whereX is a set,Mf (X) denotes the set of (finite) multisets of elements
of X, and⋆ (resp.π) denotes multiset addition (resp. the empty multiset). When X is not empty,
Mf (X) contains an elementx , π and in this case,x⋆ x , {x}. Since there are total deterministic
monoids satisfying the axiomx ⋆ x = {x} (for example lattices), we deduce that FM is a proper
sub-class of TD.

P 2.3. FM( TD ( PD( ND, HM ( PD andHM ∩ TD = ∅.

3. SEQUENT CALCULUS AND PHASE SEMANTICS FOR ILL

Linear Logic and Intuitionistic Linear Logic (denotedILL) are well know sub-structural logics in-
troduced by Girard in [Girard 1987] to better study the impact of structural rules on the proof-
theoretical as well as semantical properties of logics. Thereader can consult [Troelstra 1992] for an
overview on those topics.

The formulae ofILL are defined by the following grammar:

A ::= v | c | ! A | A � A with v ∈ Var, c ∈ {1,⊤,⊥}1 and� ∈ {�,⊸,& ,�}

A sequentis a pair denotedΓ ⊢A whereΓ is a(finite) multiset of formulaeandA is asingle formula.
Thesequent calculusS-ILL (see Figure 1) is provided forILL and theset of derivable sequentsis

1Sometimes the neutral of� is denoted 0, but we favor⊥ as in [Troelstra 1992].
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A ⊢ A
〈id〉

Γ,⊥ ⊢ A
〈⊥L〉

Γ ⊢ ⊤
〈⊤R〉

⊢ 1
〈1R〉

Γ ⊢ A A,∆ ⊢ B

Γ,∆ ⊢ B
〈cut〉

Γ,A ⊢ B

Γ, ! A ⊢ B
〈!L〉

! Γ ⊢ B
! Γ ⊢ ! B

〈!R〉
Γ ⊢ B
Γ, ! A ⊢ B

〈w〉
Γ, ! A, ! A ⊢ B

Γ, ! A ⊢ B
〈c〉

Γ ⊢ A
Γ, 1 ⊢ A

〈1L〉

Γ,A ⊢C

Γ,A & B ⊢C
〈&1

L〉
Γ, B ⊢C

Γ,A & B ⊢C
〈&2

L〉
Γ ⊢ A Γ ⊢ B
Γ ⊢ A & B

〈&R〉

Γ,A ⊢C Γ, B ⊢C

Γ,A � B ⊢C
〈�L〉

Γ ⊢ A
Γ ⊢ A � B

〈�1
R〉

Γ ⊢ B
Γ ⊢ A � B

〈�2
R〉

Γ,A, B ⊢C

Γ,A � B ⊢C
〈�L〉

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A � B

〈�R〉
Γ ⊢ A ∆, B ⊢C

Γ,∆,A⊸ B ⊢C
〈⊸L〉

Γ,A ⊢ B

Γ ⊢ A⊸ B
〈⊸R〉

Fig. 1. Sequent calculusS-ILL for ILL

the least set closed under its rules. Notice thatΓ, ∆ denote multisets of formulae andA, B, C denote
formulae. In rule〈!R〉, ! Γ denotes the multiset !Γ = ! A1, . . . , ! Ak if Γ = A1, . . . ,Ak.2

The notion of sequent calculus proof is defined as usual: an ordered tree where each node together
with its sons correspond to an instance of one of the rules ofS-ILL. Hence, a sequent is derivable
if and only if there exists a proof of it inS-ILL. By historical definition ofILL [Girard 1987], the
sequents which are provable inS-ILL are exactly thevalid sequentsof ILL, and a formulaA of ILL
is valid if ⊢ A is a valid sequent.

3.1. Non-deterministic phase spaces for ILL

We extend the notion of intuitionistic phase space [Girard 1987] to non-deterministic monoids and
show that this semantic interpretation is sound and complete w.r.t.S-ILL, and thus equivalent to the
original notion (see Corollary 3.6).

Definition 3.1. A non-deterministic (intuitionistic) phase spaceis given by a non-deterministic
monoidM = (M, ◦, ǫ) together with a stable closure operator (·)⋄ : P(M)−→P(M) and a sub-monoid
K included inJ = {x ∈ M | x ∈ {ǫ}⋄ ∩ (x ◦ x)⋄}.

— theclosure propertycorresponds to the condition

X ⊆ Y⋄ iff X⋄ ⊆ Y⋄ for anyX,Y ∈ P(M)

We recall that the monoidal composition◦ is naturally extended toP(M) by Equation (1) providing
a (commutative) monoidal structure onP(M) with unit {ǫ}. A subsetX of M is (·)⋄-closed(or simply
closed when the closure operator is obvious from the context) if X⋄ = X or equivalentlyX⋄ ⊆ X.
The set of closed subsets is denotedM⋄ = {X ∈ P(M) | X⋄ = X}, not to be confused withM⋄ where
M is viewed as the (total) subset ofM (and in this case,M⋄ = M). Any intersection of closed subsets
is a closed subset and thusM⋄ is invariant under arbitrary intersections, inducing a complete lattice
structure on (M⋄,⊆).

— thestability property3 corresponds to the condition

X⋄ ◦ Y⋄ ⊆ (X ◦ Y)⋄ for anyX,Y ∈ P(M)

2Notice that when multisets are considered as syntactic objects, it is usual to denote the composition of multisets by a
comma whereas when they are considered as semantic objects,then the denotation of the composition operator (and the
neutral element) might differ. For example, we will use⋆ andπ in this paper.
3A stable closure is aquantic nucleusin quantale theory [Yetter 1990]. The “stability” propertyitself seems to have no well
established terminology.
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1:6 D. Larchey-Wendling and D. Galmiche

Let−−◦ be the adjoint of◦ as a binary operator onP(M). It is defined byX−−◦Y = {k ∈ M | k◦X ⊆ Y}
for anyX,Y ∈ P(M). In the lattice (P(M),⊆), the operator−−◦ is contra-variant in its first parameter
and co-variant in its second and the following adjoint property holds

Z ⊆ X −−◦ Y iff Z ◦ X ⊆ Y for anyX,Y,Z ∈ P(M)

By stability of the closure operator (·)⋄, the subsetX −−◦ Y is closed as soon asY is closed and
X −−◦ Y⋄ = X⋄ −−◦ Y⋄ holds for anyX,Y ∈ P(M).

— the setK is a givensub-monoidofM included inJ, i.e.K verifies both

ǫ ∈ K ⊆ J and K ◦ K ⊆ K

We see that we have a (quite direct) generalization of the usual notion of phase space in the case
where the monoid is neither supposed to be total nor deterministic. In the particular case of total
deterministic monoids, we recover the usual notion of phasespace.

The interpretation ofILL connectives is done in the following way. Given aninterpretationof
logical variables as closed subsets [[·]] : Var−→M⋄, this interpretation is extended to all the formulae
of ILL by structural induction as follows:

[[⊥]] = ∅⋄ [[A � B]] = ([[A]] ∪ [[ B]]) ⋄

[[⊤]] = M [[A & B]] = [[A]] ∩ [[B]]
[[1]] = {ǫ}⋄ [[A � B]] = ([[A]] ◦ [[ B]]) ⋄

[[! A]] = (K ∩ [[A]]) ⋄ [[A⊸ B]] = [[A]] −−◦ [[ B]]

When the interpretation is done in a total deterministic monoid, we obtainexactly the same value
for [[A]] as in the usual phase semantics interpretation.

Definition 3.2. A sequentA1, . . . ,Ak ⊢ B of ILL is valid in the interpretation[[ ·]] if the inclusion
[[A1]] ◦ · · · ◦ [[Ak]] ⊆ [[B]] holds.

We recall the soundness theorem which states that provability in S-ILL entails semantic validity
in non-deterministic intuitionistic phase semantics.

T 3.3 (S  P S). If the sequent A1, . . . ,Ak⊢B has a proof inS-ILL
then the inclusion relation[[A1]] ◦ · · · ◦ [[Ak]] ⊆ [[B]] holds.

P. The proof of this theorem can be done directly by generalizing the soundness proof of
usual phase semantics [Girard 1987], or else, as done in Appendix A by using the algebraic semantic
characterization ofILL of [Troelstra 1992].

Definition 3.4. We denote byILLp the set of sequents which have a proof inS-ILL. We denote
by ILLX the set of sequents which are valid in every non-deterministic phase semantic interpretation
where the base monoid is of the class X.

In this paper, the class X ranges over the following set of classes{ND,PD,TD,HM,FM}. Let us
consider the following inclusion sequence:

ILLp ⊆ ILLND ⊆ ILLPD ⊆ ILLTD ⊆ ILLFM ⊆ ILLp (2)

The first inclusionILLp ⊆ ILLND is given by Theorem 3.3. The following inclusionsILLND ⊆ ILLPD ⊆

ILLTD ⊆ ILLFM are obvious consequences of the inclusions FM⊆ TD ⊆ PD ⊆ ND between
classes of non-deterministic monoids. The last inclusionILLFM ⊆ ILLp is just a reformulation of the
completeness of the phase semantics w.r.t.S-ILL:

T 3.5 (C  P S). If the sequentΓ ⊢ A is valid in every free
monoidal phase semantic interpretation(M, ◦, ǫ, (·)⋄,K, [[ ·]]) (i.e. with (M, ◦, ǫ) of the classFM),
thenΓ ⊢ A has a proof inS-ILL.
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P. The proof is based on a very nice semantic argument first introduced by Okada [Okada
2002]. Nevertheless, as its understanding is not really critical to the developments of this paper, it is
postponed to Appendix B.

C 3.6. ILLp = ILLND = ILLPD = ILLTD = ILLFM and non-deterministic phase seman-
tics is both sound and complete w.r.t.S-ILL.

P. With Theorem 3.5, we have closed the circular inclusion sequence (2). In particular
ILLp = ILLND.

Remark: we let the question of determining whetherILLHM = ILLp or elseILLHM * ILLp as an
open question.

3.2. Trivial phase semantics for ILL

In this section, we define trivial phase semantics which is a particular case of phase semantics where
the choice of the least closure operator is mandatory.

Definition 3.7. Given a non-deterministic monoidM = (M, ◦, ǫ), thetrivial phase spaceis de-
fined by taking the identity map onP(M) as closure operator (i.e. for allX ∈ P(M), X⋄ = X) and by
takingK = {ǫ}.

It is clear that the identity onP(M) is both a closure and stable. Obviously also,K = {ǫ} verifies
the conditionsǫ ∈ K ⊆ J andK ◦ K ⊆ K.4 In a trivial phase space, every subset ofM is closed and
thusM⋄ = P(M). The interpretation ofILL connectives simplifies to:

[[⊥]] = ∅ [[A � B]] = [[A]] ∪ [[B]]
[[⊤]] = M [[A & B]] = [[A]] ∩ [[B]]
[[1]] = {ǫ} [[A � B]] = [[A]] ◦ [[ B]]

[[! A]] = {ǫ} ∩ [[A]] [[ A⊸ B]] = [[A]] −−◦ [[ B]]

Trivial phase semantics isnot completefor the wholeILL. Indeed, the additive operators� and
& become distributive over each other in trivial phase semantics. This is not the case in (general)
phase semantics. In particular, the formulaA& ( B�C)⊸ (A& B) � (A& C) is valid in trivial phase
semantics but has no proof inS-ILL.

However not complete for the wholeILL, we are now going to a introduce the elementary frag-
ment ofILL which is complete for trivial phase semantics and nevertheless sufficiently expressive to
be able to encode computations of Minsky machines.

4. ELEMENTARY INTUITIONISTIC LINEAR LOGIC AND TRIVIAL PHASE SEMANTICS

We define and characterizeelementaryILL (denotedeILL), an extension of the fragments-IMELL⊸0
of ILL [de Groote et al. 2004]. We provide a simple goal-directed proof system, denotedG-eILL,
which is itself an extension of the goal-directed proof system ofs-IMELL⊸0 , obtained by the addition
of a new additive rule. Then we show that the proof systemG-eILL and trivial phase semantics
are both sound and complete w.r.t. the fragmenteILL. We also show that validity in trivial phase
semantics does not depend on a particular class of models on the elementary fragment: all classes
among{ND,PD,TD,FM} define the same set of (universally) valid elementary sequents.

4.1. The eILL fragment of ILL

Definition 4.1. A formula of ILL is (⊸,&) -elementaryif it is of the formu⊸ v, (u⊸ v)⊸ w,
u⊸ (v⊸ w) or (u & v) ⊸ w whereu, v andw are logical variables inVar. The sequents of the
fragmenteILL are those of the form !Σ, Γ ⊢ c whereΓ is a multiset of variables,c is a variable and
Σ is a multiset of (⊸,&)-elementary formulae.

4In fact, there is no other possible choice forK becauseJ = {x ∈ M | x ∈ {ǫ}⋄ ∩ (x ◦ x)⋄} = {ǫ} when (·)⋄ is the identity map
onP(M).
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1:8 D. Larchey-Wendling and D. Galmiche

! Σ, u ⊢ u
〈Ax〉

! Σ, Γ ⊢ u

! Σ, Γ ⊢ v
u⊸ v ∈ Σ

! Σ, Γ, u ⊢ v

! Σ, Γ ⊢ w
(u⊸ v)⊸ w ∈ Σ

! Σ, Γ ⊢ u ! Σ,∆ ⊢ v

! Σ, Γ,∆ ⊢ w
u⊸ (v⊸ w) ∈ Σ

! Σ, Γ ⊢ u ! Σ, Γ ⊢ v

! Σ, Γ ⊢ w
(u & v)⊸ w ∈ Σ

Fig. 2. G-eILL: a goal-directed sequent calculus foreILL

From this definition, it is obvious that membership in the fragmenteILL is a recursive property.
Compared tos-IMELL⊸0 , the only new form is (u & v)⊸ w. The validity of sequents ineILL can
be established using the proof systemS-ILL but we rather provide an alternative goal-directed proof
system calledG-eILL in Figure 2. Apart for the axiom rule〈Ax〉, each other rule〈⊸〉, 〈(⊸)⊸〉,
〈⊸(⊸)〉 or 〈(&)⊸〉 is named according to the form of its side condition. Compared to s-IMELL⊸0 ,
the only new rule is〈(&)⊸〉 (see [de Groote et al. 2004]). In this paper, the authors did not provide a
proof of soundness/completeness of the systems-IMELL⊸0 , leaving it to the reader. Here we present
a full proof of soundness/completeness for our extensionG-eILL not only to please the reader but
also to derive completeness of the fragment w.r.t. trivial phase semantics.

4.2. Completeness results for eILL

Even though validity ineILL is the same as in the wholeILL (established for instance by a proof in
S-ILL), here we show that in this specific fragment, validity is also sound and complete both w.r.t.
the systemG-eILL and w.r.t. free monoidal trivial phase semantics.

L 4.2. Every proof of a sequent inG-eILL can be transformed into a proof (of the same
sequent) which uses only rules〈id〉, 〈w〉, 〈c〉, 〈⊸L〉, 〈⊸R〉, 〈!L〉 and〈&R〉 of S-ILL.

P. We proceed by induction on the proofs inG-eILL and by case analysis, depending on the
last rule applied. Letn be the cardinal of the multisetΣ. For each rule ofG-eILL, we propose the
corresponding (open) proof tree inS-ILL:

— case of rule〈Ax〉:
〈id〉

u ⊢ u
〈w〉

... appliedn times
〈w〉

! Σ, u ⊢ u

— case of rule〈⊸〉:

! Σ, Γ ⊢ u
〈id〉

v ⊢ v
〈⊸L〉

! Σ, Γ, u⊸ v ⊢ v
〈!L〉

! Σ, Γ, !(u⊸ v) ⊢ v
〈c〉

! Σ, Γ ⊢ v

— case of rule〈(⊸)⊸〉:

! Σ, Γ, u ⊢ v
〈⊸R〉

! Σ, Γ ⊢ u⊸ v
〈id〉

w ⊢ w
〈⊸L〉

! Σ, Γ, (u⊸ v)⊸w ⊢ w
〈!L〉

! Σ, Γ, !((u⊸ v)⊸ w) ⊢ w
〈c〉

! Σ, Γ ⊢ w

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: June 2011.



Non-deterministic Semantics and the Undecidability of Boolean BI 1:9

— case of rule〈⊸(⊸)〉:

! Σ, Γ ⊢ u

! Σ,∆ ⊢ v
〈id〉

w ⊢ w
〈⊸L〉

! Σ,∆, v⊸w ⊢ w
〈⊸L〉

! Σ, Γ, ! Σ,∆, u⊸ (v⊸w) ⊢ w
〈!L〉

! Σ, Γ, ! Σ,∆, !(u⊸ (v⊸ w)) ⊢ w
〈c〉

... appliedn+ 1 times
〈c〉

! Σ, Γ,∆ ⊢ w

— case of rule〈(&)⊸〉:

! Σ, Γ ⊢ u ! Σ, Γ ⊢ v
〈&R〉

! Σ, Γ ⊢ u & v
〈id〉

w ⊢ w
〈⊸L〉

! Σ, Γ, (u & v)⊸ w ⊢ w
〈!L〉

! Σ, Γ, !((u & v)⊸ w) ⊢ w
〈c〉

! Σ, Γ ⊢ w

Combining those (open) proof trees, it is obvious to design arecursive algorithm which trans-
formsG-eILL proofs intoS-ILL proofs.

L 4.3. If the sequent! Σ, Γ⊢c of eILL is valid in every free monoidal trivial phase semantic
interpretation then it has a proof inG-eILL.

P. Let us consider a fixed multisetΣ = σ1, . . . , σk of (⊸,&)-elementary formulae. We
consider the free commutative monoid over the set of logicalvariablesM = Mf (Var), i.e. the set
of finite multisets of logical variables endowed with multiset addition (denoted by the comma) as
monoidal composition and with the empty multiset (denotedπ = ⌊∅⌋) as neutral element. We write
⌊a, a, b⌋ for the multiset composed of two occurrences ofa and one ofb. Let us define the free
monoid (M, ⋆, π) of class FM whereM = Mf (Var), π = ⌊∅⌋ and⋆ : M × M −→ P(M) is defined by
⌊Γ⌋ ⋆ ⌊∆⌋ = {⌊Γ,∆⌋}.5 The adjoint of⋆ is denoted−−⋆.

We define the following semantic interpretation in the trivial phase space based on (M, ⋆, π):

[[c]] =
{

⌊Γ⌋ ∈ M | ! Σ, Γ ⊢ c has a proof inG-eILL
}

for c ∈ Var

Let us now show thatπ ∈ [[σi ]] holds for anyσi ∈ Σ. We pick oneσi ∈ Σ and proceed by case
analysis.

— if σi = u⊸ v. Thenπ ∈ [[u⊸ v]] iff ⌊∅⌋ ⋆ [[u]] ⊆ [[v]] iff [[u]] ⊆ [[v]]. So let us consider one
⌊Γ⌋ such that⌊Γ⌋ ∈ [[u]] and prove that⌊Γ⌋ ∈ [[v]]. By definition of [[u]], the sequent !Σ, Γ ⊢ u has
a proof inG-eILL. Then, by rule〈⊸〉, the sequent !Σ, Γ ⊢ v has a proof inG-eILL. So we deduce
⌊Γ⌋ ∈ [[v]]. Hence [[u]] ⊆ [[v]] and we obtainπ ∈ [[σi ]].

— if σi = (u⊸ v)⊸ w. We haveπ ∈ [[(u⊸ v)⊸ w]] iff [[u]] −−⋆ [[v]] ⊆ [[w]]. Let use choose
⌊Γ⌋ ∈ [[u]] −−⋆ [[v]]. Then {⌊Γ⌋} ⋆ [[u]] ⊆ [[v]]. By rule 〈Ax〉, ! Σ, u ⊢ u has a proof inG-eILL and thus
⌊u⌋ ∈ [[u]]. Thus{⌊Γ, u⌋} = ⌊Γ⌋⋆ ⌊u⌋ ⊆ [[v]]. Thus !Σ, Γ, u⊢v has a proof inG-eILL. By rule〈(⊸)⊸〉,
! Σ, Γ ⊢ w has a proof inG-eILL. We conclude⌊Γ⌋ ∈ [[w]]. Thus [[u]] −−⋆ [[v]] ⊆ [[w]] holds, hence
π ∈ [[σi ]].

5Here,Γ 7→ ⌊Γ⌋ is the identity map onMf (Var) but the extra notation⌊·⌋ in the expression{⌊Γ,∆⌋} has the side effect of
removing the ambiguity on the denotation of the comma: here,it denotes the composition of multisets, not the addition of
elements in a set.
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1:10 D. Larchey-Wendling and D. Galmiche

— if σi = u⊸(v⊸w). We haveπ ∈ [[u⊸(v⊸w)]] iff [[u]]⋆ [[v]] ⊆ [[w]]. Let us choose⌊Γ⌋ ∈ [[u]]
and⌊∆⌋ ∈ [[v]] and let us prove⌊Γ⌋⋆ ⌊∆⌋ ⊆ [[w]]. Both ! Σ, Γ⊢u and !Σ,∆⊢v have a proof inG-eILL.
By rule 〈⊸(⊸)〉, the sequent !Σ, Γ,∆ ⊢ w has a proof inG-eILL. Thus⌊Γ⌋ ⋆ ⌊∆⌋ = {⌊Γ,∆⌋} ⊆ [[w]].
We deduce [[u]] ⋆ [[v]] ⊆ [[w]] and thus concludeπ ∈ [[σi ]].

— if σi = (u& v)⊸w. We haveπ ∈ [[(u& v)⊸w]] iff [[u]] ∩ [[v]] ⊆ [[w]]. If ⌊Γ⌋ ∈ [[u]] ∩ [[v]] then
both !Σ, Γ⊢u and !Σ, Γ⊢v have a proof inG-eILL. By rule〈(&)⊸〉, the sequent !Σ, Γ⊢w has a proof
in G-eILL. Thus⌊Γ⌋ ∈ [[w]]. We have proved that [[u]] ∩ [[v]] ⊆ [[w]] and we concludeπ ∈ [[σi ]].

So, for anyi ∈ [1, k] the inclusionπ ∈ [[σi ]] holds and as a consequence,π ∈ [[! σi ]] because
the identity [[!σi ]] = {π} ∩ [[σi ]] holds in trivial phase semantics. Let us considerΓ = ⌊a1, . . . , ap⌋

and suppose that the sequent !Σ, Γ ⊢ c of eILL is valid in every free monoidal trivial phase seman-
tics interpretation. As a particular case, it is valid in theinterpretation (M, ⋆, π, [[ ·]]) and thus the
inclusion

[[! σ1]] ⋆ · · · ⋆ [[! σk]] ⋆ [[a1]] ⋆ · · · ⋆ [[ap]] ⊆ [[c]]

holds. By rule〈Ax〉, for any i ∈ [1, p] the sequent !Σ, ai ⊢ ai has a proof inG-eILL and thus the
relation⌊ai⌋ ∈ [[ai ]] holds. Also remember that for anyi ∈ [1, k], we have⌊∅⌋ = π ∈ [[! σi ]]. So

⌊Γ⌋ ∈ {⌊a1, . . . , ap⌋} = ⌊∅⌋ ⋆ · · · ⋆ ⌊∅⌋ ⋆ ⌊a1⌋ ⋆ · · · ⋆ ⌊ap⌋ ⊆ [[c]]

holds and we conclude that !Σ, Γ ⊢ c has a proof inG-eILL.

T 4.4. The systemG-eILL is sound and complete for the fragmenteILL. Given a class
X ∈ {ND,PD,TD,FM}, the trivial phase semantics over the classX is sound and complete for the
fragmenteILL.

P. Consider the following inclusion sequence

eILLg ⊆ eILLp ⊆ eILLt
ND ⊆ eILLt

PD ⊆ eILLt
TD ⊆ eILLt

FM ⊆ eILLg

whereeILLg denotes the set of sequents ofeILL which have a proof inG-eILL andeILLt
X denotes

the set of sequents which are valid in every trivial phase semantic interpretation of the class X. The
inclusioneILLg ⊆ eILLp is a direct consequence of Lemma 4.2. The inclusioneILLp ⊆ eILLt

ND is a
particular case of Theorem 3.3. The inclusion sequenceeILLt

ND ⊆ eILLt
PD ⊆ eILLt

TD ⊆ eILLt
FM is an

obvious consequence of the inclusions FM⊆ TD ⊆ PD⊆ ND between classes of non-deterministic
monoids. The last inclusioneILLt

FM ⊆ eILLg is the result of Lemma 4.3.

Remark: the problem of the completeness of the fragmenteILL w.r.t. trivial heap semantics re-
quires bisimulating free monoids with heap monoids and willbe addressed in Section 7.2.

5. THE UNDECIDABILITY OF ELEMENTARY INTUITIONISTIC LINEAR LOGIC

We propose an encoding of two counter Minsky machines in the fragmenteILL of ILL. The first
encoding of Minsky machines in Linear Logic was done by Kanovich in the (!,�)-Horn fragment of
ILL [Kanovich 1994; 1995]. In this encoding, the recovery of computations from proofs is obtained
through some form of proof normalization and the� additive connective is used to simulate forking.
Lafont later showed that the use of proof normalization can be avoided and replaced by a phase
semantics argument [Lafont 1996; Lafont and Scedrov 1996].In our encoding of Minsky machines
in eILL, the & connective is used to simulate forking and we will showthat a trivial phase semantics
argument is sufficient to recover computability from provability.

5.1. Two counter Minsky machines

Let a andb be two distinct counter symbols. A (deterministic) two counter Minsky machine is a
pairM = (l, ψ) wherel > 0 is a strictly positive naturalnumber of instructionsand

ψ : [1, l] −→ {+} × {a, b} × [0, l]
∣

∣

∣ {−} × {a, b} × [0, l] × [0, l]
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is a total map representing thelist of instructions. Here,| represents the (disjoint) set sum. Minsky
machines instructions (incrementation, zero test/decrementation) are encoded as illustrated in the
two following examples:

ψ(1) = (+, a, 3) ! 1: a:=a+1; goto 3

ψ(2) = (−, b, 4, 5) ! 2: if b=0 then goto 4 else b:=b-1; goto 5

Given a two counter Minsky machineM = (l, ψ), we define the setS(M) of statesof the machine
by S(M) = [0, l] ×N ×N which collects the current instruction and the values of thecountersa and
b. With the following notations:

a = (1, 0) b = (0, 1) (m, n)a = m (m, n)b = n

we define a (binary) transition relation between states→M ⊆ S(M) × S(M). For any two states
(i,m, n) and (i′,m′, n′), the relation (i,m, n)→M (i′,m′, n′) holds if

ψ(i) = (+, x, i′) and (m′, n′) = (m, n) + x
or ψ(i) = (−, x, i′, k), (m, n)x = 0 and (m′, n′) = (m, n)
or ψ(i) = (−, x, j, i′), (m, n)x , 0 and (m′, n′) + x = (m, n)

holds for somex ∈ {a, b} and somej, k ∈ [0, l]. Notice that (i,m, n) →M (i′,m′, n′) does not hold if
i = 0 becauseψ(0) is not defined. Let→⋆

M
be the reflexive and transitive closure of the relation→M.

We say that the machineM acceptsthe input (m, n) if starting from the state (1,m, n), there exists a
sequence of transitions leading to the state (0, 0, 0) and we define the setA(M) of accepted inputs:

A(M) =
{

(m, n) ∈ N × N | (1,m, n)→⋆
M

(0, 0, 0)
}

T 5.1 (M). There exists a two counter Minsky machineM for which the setA(M)
of accepted inputs is not recursive [Minsky 1961].

5.2. The encoding of two counter Minsky machines

Let us consider the two counter symbolsa andb as two (different) logical variables and let us choose
two new variablesa andb so that the set{a, b, a, b} ⊆ Var has cardinal four. Let us choose an infinite
set6 of new logical variables{qi | i ∈ N} such thatqi , q j unlessi = j and{a, b, a, b} ∩ {qi | i ∈ N} =
∅. LetΣ0 be the following multiset composed of five (⊸,&)-elementary formulae:

Σ0 =
{

a⊸ (a⊸ a), b⊸ (b⊸ b), (a⊸ a)⊸ a, (a⊸ a)⊸ b, (a⊸ a)⊸ q0
}

Given a Minsky machineM = (l, ψ), for i ∈ [1, l], we define the multisetsΣ1, . . . ,Σl of (⊸,&)-
elementary formulae by:

Σi = {(x⊸ q j)⊸ qi} whenψ(i) = (+, x, j)
and Σi = {(x & q j)⊸ qi , x⊸ (qk⊸ qi)} whenψ(i) = (−, x, j, k)

Let ΣM be the multisetΣM = Σ0,Σ1, . . . ,Σl . Given a natural numbern and a logical variablex ∈
{a, b}, we definexn = x, x, . . . , x as the multiset composed ofn occurrences of the variablex. Then,
it is trivial to verify that for any natural numbersm, n and anyi ∈ [0, l], the sequent !ΣM, am, bn ⊢ qi
belongs to the fragmenteILL.

Let us now consider a fixed Minsky machineM = (l, ψ). Then we denoteΣM (resp.→M) simply
by Σ (resp.→). We prove four main intermediate results.

P 5.2. For any m, n ∈ N, the sequents! Σ, am⊢a and! Σ, bn⊢b are provable inG-eILL.

6For our particular purpose, we only need as manyqi ’s as there are instructions in the Minsky machine obtained from
Theorem 5.1.
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P. Here is a suitable proof tree for the case witha/a.

〈Ax〉
! Σ, a ⊢ a

〈Ax〉
! Σ, a ⊢ a

〈Ax〉
! Σ, a ⊢ a

(a⊸ a)⊸ a ∈ Σ
! Σ ⊢ a

a⊸ (a⊸ a) ∈ Σ
... appliedm− 1 times

! Σ, am−1 ⊢ a
a⊸ (a⊸ a) ∈ Σ

! Σ, am ⊢ a

The case ofb/ b is similar. Here is a suitable proof tree:

〈Ax〉
! Σ, b ⊢ b

〈Ax〉
! Σ, b ⊢ b

〈Ax〉
! Σ, a ⊢ a

(a⊸ a)⊸ b ∈ Σ
! Σ ⊢ b

b⊸ (b⊸ b) ∈ Σ
... appliedn− 1 times

! Σ, bn−1 ⊢ b
b⊸ (b⊸ b) ∈ Σ

! Σ, bn ⊢ b

In fact, these are the only possible proof trees but the demonstration of this uniqueness result is left
to the reader.

L 5.3. For any r,m, n ∈ N and any i ∈ [0, l], if (i,m, n) →r (0, 0, 0) then the sequent
! Σ, am, bn ⊢ qi is provable inG-eILL.

P. We proceed by induction on the lengthr of the transition sequence (i,m, n) →r (0, 0, 0)
leading to the accepting state.

If r = 0 then we have (i,m, n) = (0, 0, 0). The sequent !Σ ⊢ q0 has the following proof tree:

〈Ax〉
! Σ, a ⊢ a

(a⊸ a)⊸ q0 ∈ Σ
! Σ ⊢ q0

Let us now consider a transition sequence (i,m, n) → (i′,m′, n′) →r (0, 0, 0) of lengthr + 1. By
induction hypothesis, letP be a proof tree for the sequent !Σ, am′ , bn′ ⊢ qi′ . We consider the 3× 2
possible cases for (i,m, n)→ (i′,m′, n′).

— if ψ(i) = (+, a, i′) and (m′, n′) = (m, n) + a. Thenm′ = m+ 1 andn′ = n. We provide the
following proof tree for !Σ, am, bn ⊢ qi :

P

! Σ, am, bn, a ⊢ qi′
(a⊸ qi′ )⊸ qi ∈ Σ

! Σ, am, bn ⊢ qi

— if ψ(i) = (+, b, i′), m′ = m andn′ = n+ 1. Here is a proof tree for !Σ, am, bn ⊢ qi :

P

! Σ, am, bn, b ⊢ qi′

(b⊸ qi′ )⊸ qi ∈ Σ
! Σ, am, bn ⊢ qi

— if ψ(i) = (−, a, i′, k), (m, n)a = 0 and (m′, n′) = (m, n). Thenm = m′ = 0 andn = n′. Let Q
be a proof tree for !Σ, bn ⊢ b according to Proposition 5.2. We provide the following proof tree for
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! Σ, bn ⊢ qi :

Q

! Σ, bn ⊢ b

P

! Σ, bn ⊢ qi′
(b & qi′ )⊸ qi ∈ Σ

! Σ, bn ⊢ qi

— if ψ(i) = (−, b, i′, k), m= m′ andn = n′ = 0. LetQ be a proof tree for !Σ, am ⊢ a according to
Proposition 5.2. Here is a proof tree for !Σ, bn ⊢ qi :

Q

! Σ, am ⊢ a

P

! Σ, am ⊢ qi′
(a & qi′ )⊸ qi ∈ Σ

! Σ, am ⊢ qi

— if ψ(i) = (−, a, j, i′), (m, n)a , 0 and (m′, n′) + a = (m, n). Thenm = m′ + 1 andn = n′. We
provide the following proof tree for !Σ, a, am′ , bn′ ⊢ qi :

〈Ax〉
! Σ, a ⊢ a

P

! Σ, am′ , bn′ ⊢ qi′
a⊸ (qi′ ⊸ qi) ∈ Σ

! Σ, a, am′ , bn′ ⊢ qi

— if ψ(i) = (−, b, j, i′), m′ = mandn′ + 1 = n. Here is a proof tree for !Σ, am′ , b, bn′ ⊢ qi :

〈Ax〉
! Σ, b ⊢ b

P

! Σ, am′ , bn′ ⊢ qi′
b⊸ (qi′ ⊸ qi) ∈ Σ

! Σ, am′ , b, bn′ ⊢ qi

In any case we obtain a proof tree for !Σ, am, bn ⊢ qi which fulfills the induction step. Again,
but this is left to the reader, it can be demonstrated that theproof tree recursively build from the
transition sequence (i,m, n)→r (0, 0, 0) is the unique proof tree for the sequent !Σ, am, bn ⊢ qi .

Let us now consider the following trivial phase semantics interpretation. Consider the product
monoid (N×N,+, (0, 0)). We definex◦ y = {x+ y} and thus (N×N, ◦, (0, 0)) is a total deterministic
monoid. Every subset ofN × N is closed in trivial phase semantics and we define

[[a]] = {(1, 0) = a} [[a]] = N × {0}
[[b]] = {(0, 1) = b} [[b]] = {0} × N

[[qi ]] = {(m, n) ∈ N × N | (i,m, n)→⋆ (0, 0, 0)}

It is crucial that variablesa, b, a, b, q0, q1, . . . , ql were chosen distinct from one another for this
definition to be valid. Let us now consider the trivial phase semantics interpretation of the compound
formulae ofΣ.

P 5.4. For anyσ ∈ Σ, [[! σ]] = {(0, 0)} holds.

P. As the identity [[!σ]] = {(0, 0)}∩ [[σ]] holds in trivial phase semantics, it is necessary and
sufficient to prove that (0, 0) ∈ [[σ]] holds for anyσ ∈ Σ.

First let us prove that [[a⊸ a]] = {(0, 0)}. Indeed, (m, n) ∈ [[a⊸ a]] iff (m, n) ◦ [[a]] ⊆ [[a]] iff
(m, n) ◦ {(1, 0)} ⊆ {(1, 0)} iff {(m+ 1, n)} ⊆ {(1, 0)} iff (m, n) = (0, 0). Then [[(a ⊸ a) ⊸ x]] =
{(0, 0)}−−◦[[ x]] = [[ x]] for any variablex, in particular forx ∈ {a, b, q0}. Also (m, n) ∈ [[a⊸(a⊸a)]] iff
(m, n)◦ {(1, 0)} ◦N× {0} ⊆ N× {0} iff n = 0. Thus [[a⊸ (a⊸ a)]] = N× {0}. By a similar argument,
we get [[b⊸ (b⊸ b)]] = {0} × N. So for any formulaσ ∈ Σ0, we have (0, 0) ∈ [[σ]].

Let us consider the formulae inΣi for i ∈ [1, l]. Let us prove that the relation (0, 0) ∈ [[σ]] holds
for anyσ ∈ Σi by case analysis:
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1:14 D. Larchey-Wendling and D. Galmiche

— if ψ(i) = (+, x, j). Let us show (0, 0) ∈ [[( x⊸ q j)⊸ qi ]], i.e. [[x⊸ q j ]] ⊆ [[qi ]]. Let us consider
(m, n) ∈ [[ x⊸ q j ]]. Then {(m, n) + x} = {(m, n)} ◦ [[ x]] ⊆ [[q j]] and thus (m′, n′) = (m, n) + x ∈ [[q j]].
Thus we have (i,m, n)→ ( j,m′, n′)→⋆ (0, 0, 0). We conclude (m, n) ∈ [[qi ]].

— if ψ(i) = (−, x, j, k). Let us first show that (0, 0) ∈ [[( x & q j)⊸ qi ]], i.e. [[x]] ∩ [[q j ]] ⊆ [[qi ]].
Let us consider (m, n) ∈ [[ x]] ∩ [[q j]]. Then (m, n)x = 0 and (j,m, n) →⋆ (0, 0, 0). Thus (i,m, n) →
( j,m, n) →⋆ (0, 0, 0) and (m, n) ∈ [[qi ]]. Hence [[x]] ∩ [[q j ]] ⊆ [[qi ]] holds. Let us finally show that
(0, 0) ∈ [[ x⊸ (qk⊸ qi)]], i.e. [[x]] ◦ [[qk]] ⊆ [[qi ]]. As [[ x]] = {x} for x ∈ {a, b}, let us choose an
arbitrary pair (m′, n′) ∈ [[qk]] and define (m, n) = x + (m′, n′). Then (m, n)x = 1+ (m′, n′)x , 0 and
(i,m, n) → (k,m′, n′) →⋆ (0, 0, 0). We obtain (m, n) ∈ [[qi ]] and thus concludex + (m′, n′) ∈ [[qi ]].
Hence, for any (m′, n′) ∈ [[qk]] we get [[x]] ◦ (m′, n′) ⊆ [[qi ]]. Thus [[x]] ◦ [[qk]] ⊆ [[qi ]] holds.

As a consequence, for anyσ ∈ Σ, we obtain (0, 0) ∈ [[σ]]. The identity [[!σ]] = {(0, 0)} holds for
anyσ ∈ Σ.

L 5.5. For any m, n ∈ N, if ! Σ, am, bn ⊢q1 is provable inG-eILL then(m, n) ∈ A(M) holds.

P. Let Σ = {σ1, . . . , σr }. We suppose that the sequent !Σ, am, bn ⊢ q1 has a proof inG-eILL.
By the soundness part of Theorem 4.4, in our particular totaldeterministic trivial phase semantics
interpretation, we have

[[! σ1]] ◦ · · · ◦ [[! σr ]] ◦ [[a]] ◦ · · · ◦ [[a]] ◦ [[b]] ◦ · · · ◦ [[b]] ⊆ [[q1]]

wherea occursm times andb occursn times. By Proposition 5.4, we deduce (m, n) = r.(0, 0) +
m.(1, 0)+ n.(0, 1) ∈ [[q1]] and thus (1,m, n)→⋆ (0, 0, 0) holds.

From Lemma 5.3 and Lemma 5.5, we obtain as a direct consequence the following theorem which
characterizes Minsky machine acceptance in terms of provability in G-eILL.

T 5.6. For any two counter Minsky machineM and for any pair m, n ∈ N, we have
(m, n) ∈ A(M) if and only if the sequent! ΣM, am, bn ⊢ q1 is provable inG-eILL.

We point out that the form (&)⊸ is used here to encodeforking in a way similar Kanovich does
with � (see [Kanovich 1995]). The reader may have noticed that morethan the simple encoding of
computability with provability, we can even show that computations and proofs match one to one.
Even though this result is not necessary to our argumentation, this suggests that the systemG-eILL
is a natural choice to illustrate the relations between Minsky machines and linear logic, and may be
more straightforward than the (!,�)-Horn fragment [Kanovich 1995].

5.3. The undecidability of eILL

Whereas the decidability ofs-IMELL⊸0 is still unclear (but nevertheless known to be equivalent tothe
decidability ofMELL [de Groote et al. 2004]), we have proved that the simple addition of the form
(&)⊸ to s-IMELL⊸0 is sufficient to encode forking and thus, computations of Minsky machines.

T 5.7. Validity is undecidable in the elementary fragment ofILL.

P. By Theorem 5.1, letM be a two counter Minsky machine such thatA(M) is not recursive.
ComputeΣM. If there is an algorithm that discriminates between provable and unprovable sequents
of eILL, use it to decide

A(M) = {(m, n) ∈ N × N | ! Σ, am, bn ⊢ q1 is provable inG-eILL}

This identity is a direct consequence of Theorem 5.6. ThusA(M) would be recursive. We obtain a
contradiction.

We point out that the model through which the faithfulness ofthe encoding is obtained (see
Lemma 5.5) is based on the free monoidN × N. So let us denote byeILLt

N×N the set of sequents
which are valid in every trivial phase semantic interpretation over the free monoid (N×N,+, (0, 0)).
We obtain the following stronger theorem:
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T 5.8. Let X be a set of sequents in-betweeneILLp and eILLt
N×N, i.e. which satisfies

eILLp ⊆ X ⊆ eILLt
N×N. Then the setX is not a recursive set of sequents.

P. It is sufficent to prove the following equivalence:

(m, n) ∈ A(M) iff ! Σ, am, bn ⊢ q1 belongs toX

For theif part, if ! Σ, am, bn ⊢ q1 belongs toX then, it belongs toeILLt
N×N and hence, using thesame

proof as in Lemma 5.5, we deduce that (m, n) ∈ A(M). For theonly if part, if (m, n) ∈ A(M), then
by Lemma 5.3, we obtain that !Σ, am, bn ⊢ q1 is provable inG-eILL. Thus, by definition, it belongs
to eILLp, and as a consequence, the sequent !Σ, am, bn ⊢ q1 belongs toX.

Remark: we leave the question of the strictness of the inclusion eILLp ⊆ eILLt
N×N as a remaining

open problem.

6. THE SEMANTICS OF BOOLEAN BI

BooleanBI (denotedBBI) is the variant of intuitionisticBI [O’Hearn and Pym 1999] where the ad-
ditive connectives are interpreted as Boolean connectives, contrary to (intuitionistic)BI where the
additive connectives are interpreted as in propositional intuitionistic logic. The linear connectives
are both interpreted as those of multiplicative intuitionistic linear logic, i.e. the multiplicative frag-
ment ofILL. When the connectives ofBBI are given a Kripke semantics (see Section 6.1) and the
model belongs to the class of heap monoids HM, then we recoverthe core logic behind Separation
Logic [Ishtiaq and O’Hearn 2001].

The syntax ofBBI is exactly the syntax ofBI augmented with negation, although negation could
be defined by¬A = A→⊥ like in classical logic. Thus, the formulae ofBBI are defined as follows.
Starting from a setVar, they are freely built using thelogical variablesin Var, thelogical constants
in {I,⊤,⊥}, the unary connective¬ or the binary connectives in{∗,−∗,∧,∨,→}. Formally, the set of
formulae is described by the following grammar:

A ::= v | c | ¬A | A � A with v ∈ Var, c ∈ {I,⊤,⊥} and� ∈ {∗,−∗,∧,∨,→}

Validity in BBI has not always been unequivocally defined. Indeed, the initial proposition of
Pym [Pym 2002] was simply to add a double negation principle to the cut-free bunched proof
system ofBI. But of course, this does not lead to a proof-theoretically well behaved proof-system
for BBI: it does not enjoy cut-elimination, sub-formula property,etc. Then, the syntax ofBBI has
been used as a foundation for numerous variants of Separation Logic with the common property
that the additive operator→ is interpreted classically whereas it is interpreted intuitionistically in
BI [Ishtiaq and O’Hearn 2001; Calcagno et al. 2005]. The removal of the pre-order in the Kripke
semantics is moreover necessary for the interpretation of classical negation¬.

6.1. Kripke Semantics for BBI

In this paper, we choose to presentBBI as a family of logics defined by their Kripke semantics rather
than proof-systems. Given a non-deterministic monoid (M, ◦, ǫ) and an interpretation of proposi-
tional variablesδ : Var −→ P(M), we define the Kripke forcing relationδ by induction on the
structure of formulae:

mδ ⊥ iff never
mδ ⊤ iff always

mδ ¬A iff m1δ A
mδ I iff m= ǫ
mδ v iff m ∈ δ(v)

mδ A∨ B iff mδ A or mδ B
mδ A∧ B iff mδ A andmδ B

mδ A→ B iff m1δ A or mδ B
mδ A ∗ B iff ∃a, b, m ∈ a ◦ b anda δ A andb δ B

mδ A−∗ B iff ∀a, b (b ∈ a ◦m anda δ A)⇒ b δ B

Definition 6.1. A formula F is valid in a non-deterministic monoid (M, ◦, ǫ) if for any interpre-
tation δ : Var −→ P(M) of propositional variables, the relationm δ F holds for anym ∈ M. A
counter-modelof the formulaF is given by a non-deterministic monoid (M, ◦, ǫ), an interpretation
δ : Var −→ P(M) and an elementm ∈ M such thatm1δ F.
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When the interpretation of variables is obvious from the context, we may simply omit theδ
subscript and write instead ofδ. In some papers, you might findBBI defined by non-deterministic
monoidal Kripke semantics [Brotherston 2010; Galmiche andLarchey-Wendling 2006], in other
papers it is defined by partial but deterministic monoidal Kripke semantics and generally Separation
Logic models are particular instances of partial (deterministic) monoids. See [Larchey-Wendling
and Galmiche 2009] for a general discussion about these issues.

Definition 6.2. We denote byBBIX the set of formulae ofBBI which are valid in every monoid
of the class X. The class X ranges over{ND,PD,TD,HM,FM}.

On the proof-theoretic side, we briefly recall thatBBIND has been proved sound and complete
w.r.t. a Hilbert proof-system [Galmiche and Larchey-Wendling 2006] and also, more recently w.r.t.
a Display Logic based proof-system [Brotherston 2010] enjoying cut-elimination.BBIPD can be
proved sound and complete w.r.t. the semantic constraints based tableaux proof-system presented
in [Larchey-Wendling and Galmiche 2009] (although only thesoundness proof is presented in that
particular paper) and the adaptation of this tableaux system to BBITD should be straightforward
(contrary toBBIND).

As it turns out, the three different classes of models ND, PD and TD define three different logics,
i.e. universally valid formulae differ from one class of models to another. The relation ofstrict
inclusionbetweenBBIND andBBIPD was, to our knowledge, an undecided proposition.

T 6.3. BBIND ( BBIPD ( BBITD

P. The following inclusion relations TD⊆ PD ⊆ ND hold between the classes of models
which respectively define those three logics. Hence, only the strictness of the inclusion of validities
is not obvious. This strictness is established by upcoming Theorem 6.4 and Proposition 6.5.

Consider the formulaI = ¬(⊤ −∗ ¬I) and a non-deterministic monoid (M, ◦, ǫ). SinceI does not
contain any variable, its Kripke interpretation does not depend on the choice ofδ. One can check that
for anyx ∈ M, x  I iff there existsx′ ∈ M s.t.ǫ ∈ x ◦ x′. SoI expresses “invertibility” in Kripke
semantics. The formula (I ∗ I)→I expresses stability of invertibility by monoidal composition.

T 6.4. WithI = ¬(⊤−∗¬I), the formula(I∗I)→I is valid in every partial deterministic
monoid. There exists a non-deterministic monoid which is a counter-model to(I ∗ I)→I.

P. First the counter-model. Consider the non-deterministicmonoid ({ǫ, x, y}, ◦, ǫ) uniquely
defined byx ◦ x = {ǫ, y}, y ◦ α = {y} for anyα ∈ {ǫ, x, y} and the axioms 1 & 2 of Definition 2.1.7

Thenx  I because there existsα (α = x) such thatǫ ∈ x ◦ α. On the other hand,y 1 I because
there is noα such thatǫ ∈ y ◦ α holds. So, asy ∈ x ◦ x, we havey  I ∗ I. Thusy 1 (I ∗ I)→I.

Now let us prove that (I ∗ I)→ I is valid in every partial deterministic monoid. Let (M, ◦, ǫ)
be a partial deterministic monoid. Let us choosea ∈ M and let us prove thata  (I ∗ I)→ I. So
we supposea  I ∗ I holds and we have to provea  I. As a  I ∗ I, there existb, c ∈ M such
that a ∈ b ◦ c, b  I andc  I. Thus there existb′, c′ ∈ M such thatǫ ∈ b ◦ b′ andǫ ∈ c ◦ c′.
As M is (partial) deterministic, we haveb ◦ b′ = {ǫ}, c ◦ c′ = {ǫ} andb ◦ c = {a}. Thus we have
(b ◦ b′) ◦ (c ◦ c′) = {ǫ} ◦ {ǫ} = {ǫ}.

If b′ ◦ c′ = ∅ then we would have (b ◦ c) ◦ (b′ ◦ c′) = {a} ◦ ∅ = ∅ but also (b ◦ b′) ◦ (c ◦ c′) = {ǫ}
and thus∅ = {ǫ} by associativity/commutativity, which is absurd. Thusb′ ◦ c′ = {a′} and we obtain
(b ◦ c) ◦ (b′ ◦ c′) = {a} ◦ {a′} = a ◦ a′ and thena ◦ a′ = {ǫ} by associativity/commutativity. Hence,
ǫ ∈ a ◦ a′ anda  I.

The formula (¬I −∗ ⊥)→ I is inspired from the example given to establish the incompleteness of
(total) monoidal Kripke semantics w.r.t. (intuitionistic) BI (see [Pym 2002] page 63).

7This non-deterministic monoid was presented in Section 2.2as a witness that the class ND is strictly larger than PD.
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P 6.5. The formula(¬I −∗ ⊥)→ I is valid in every total deterministic monoid. There
exists a partial deterministic monoid which is a counter-model to(¬I −∗ ⊥)→ I.

P. First the counter-model. Consider the following partial deterministic monoid ({ǫ, x}, ◦, ǫ)
wherex ◦ x = ∅ andǫ ◦ α = α ◦ ǫ = {α} for anyα ∈ {ǫ, x}. Thenx , ǫ and thusx 1 I. Let us
prove thatx  ¬I −∗ ⊥. Let a, b such thatb ∈ x ◦ a anda  ¬I. Thena , ǫ and thusa = x. Then
x ◦ a = x ◦ x = ∅. We get a contradiction withb ∈ x ◦ a. From this contradiction, we deduceb  ⊥.
Hence,x  ¬I −∗ ⊥ and we concludex 1 (¬I −∗ ⊥)→ I and we have the counter-model.

Now let us prove that (¬I −∗ ⊥)→ I is valid in every total deterministic monoid. Let (M, ◦, ǫ) be a
total deterministic monoid. Let us choosea ∈ M. There are two cases. Eithera = ǫ or a , ǫ. In the
casea = ǫ, we obviously havea  (¬I−∗⊥)→ I. In the casea , ǫ, let us provea 1 ¬I−∗⊥. Suppose
a  ¬I −∗ ⊥. As a , ǫ we havea  ¬I. Also a ◦ a is not empty because◦ is total. Letb ∈ a ◦ a. As
a  ¬I −∗ ⊥, b ∈ a ◦ a anda  ¬I, we must haveb  ⊥ which is impossible. Hencea 1 ¬I −∗ ⊥ and
we conclude thata  (¬I −∗ ⊥)→ I holds also in the casea , ǫ.

Remark: we point out the inclusion sequencesILLt
ND ⊆ ILLt

PD ⊆ ILLt
TD as a remaining open

question whereILLt
X is defined by trivial phase semantics with the monoid belonging to the class

X ∈ {ND,PD,TD}. The question is of course:are these two inclusions strict?We remark that the
counter-examples of Theorem 6.4 and Proposition 6.5 cannotbe used as is because both formulae
contain a negation.

6.2. Heap models vs. free monoidal models of BBI

In this section, we briefly explain how free monoidal models are less general that heaps model,
at least with respect toBBI. The core of the argument is based on the bisimulation of multisets
by heaps, a technique that was already (implicitly) used in [Brotherston and Kanovich 2010]. In
Appendix C, we explicitly show how the bisimulation argument works.

L 6.6. Let X be a set. There exists a heap monoidHL,V of classHM and a surjective map
ϕ : HL,V −→Mf (X) such that for any Kripke interpretationδ : Var −→ P(Mf (X)) in the free monoid
(Mf (X), ⋆, π), the Kripke interpretationδ′ : Var−→ P(HL,V) in the heap monoid(HL,V,|,∅) defined
byδ′ = v 7→ ϕ−1(δ(v)) satisfies the following property:

h δ′ F if and only if ϕ(h) δ F for any F ∈ BBI

P. The proof of this technical lemma is postponed in Appendix C.

T 6.7. The inclusionBBIHM ⊆ BBIFM holds. Validity in heap monoids is stronger than
validity in free monoids.

P. Let F ∈ BBIHM be a BBI-formula which is valid in every heap model. Then let
(Mf (X), ⋆, π, δ) be a Kripke interpretation in a model of class FM. Let us consider m ∈ Mf (X)
and let us show thatm δ F holds. Let us considerHL,V andϕ : HL,V −→Mf (X) as obtained from
Lemma 6.6. Sinceϕ is surjective, let us pick anh ∈ HL,V such thatϕ(h) = m. SinceF ∈ BBIHM and
(HL,V,|,∅, δ

′) is a Kripke model of class HM, we deduceh δ′ F. By Lemma 6.6, we conclude
m= ϕ(h) δ F. ThusF belongs toBBIFM.

Let us consider two particular models ofBBI. First, the simplest heap model (HN,{∗},|,∅) which
is isomorphic to the partial monoid of finite subsets ofN, i.e. the partial deterministic monoid
(Pf (N),⊎, ∅). Then the free monoid over two elements which is isomorphicto the total deterministic
monoid (N × N,+, (0, 0)). We denote byBBIPf (N) (resp.BBIN×N) the set ofBBI formulae which
are valid in every Kripke interpretation over the heap model(Pf (N),⊎, ∅) (resp. free monoid (N ×
N,+, (0, 0))). Then we obtain the following result:

T 6.8. The inclusionBBIPf (N) ⊆ BBIN×N holds.

P. The proof is postponed in Appendix C. It is mainly a particular instance of the proofs of
Lemma 6.6 and Theorem 6.7.
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Remark: the strictness of the inclusionBBIPf (N) ⊆ BBIN×N remains an open question.

7. THE UNDECIDABILITY OF BOOLEAN BI

Having defined the Kripke semantics ofBBI within the framework of non-deterministic monoids,
let us explore its relations with non-deterministic trivial phase semantics forILL.

7.1. Trivial Phase vs. Kripke Semantics

Let us compare the trivial phase semantic interpretation ofILL connectives and the Kripke inter-
pretation ofBBI connectives. Given a non-deterministic monoidM = (M, ◦, ǫ), a trivial phase
semantic interpretation [[·]] t : Var 7→ M⋄ and an interpretation of variable in Kripke semantics
δ : Var 7→ P(M), we compare the trivial phase semantic interpretation ofILL-formulae and the
Kripke interpretation ofBBI-formulae. Recall that in trivial phase semantics all subsets of M are
closed and thusM⋄ = P(M). To better compare the two semantics, we use the notation

[[F]]k = {m | m F}

Then, using the equations defining Kripke semantics (see Section 6.1), we easily obtain the follow-
ing correspondance between the interpretations ofILL andBBI connectives:

[[⊥]] t = ∅ [[⊥]] k = ∅

[[⊤]] t = M [[⊤]] k = M
[[1]] t = {ǫ} [[ I]]k = {ǫ}

[[! A]] t = {ǫ} ∩ [[A]] t [[ I ∧ A]]k = {ǫ} ∩ [[A]]k

[[A � B]] t = [[A]] t ∪ [[ B]] t [[A∨ B]]k = [[A]]k ∪ [[ B]]k

[[A & B]] t = [[A]] t ∩ [[ B]] t [[A∧ B]]k = [[A]]k ∩ [[ B]]k

[[A � B]] t = [[A]] t ◦ [[ B]] t [[A ∗ B]]k = [[A]]k ◦ [[ B]]k

[[A⊸ B]] t = [[A]] t −−◦ [[B]] t [[A−∗ B]]k = [[A]]k −−◦ [[B]]k

Thus, there is an obvious embedding of the connectives ofILL into BBI, which can be formalized
with the following inductively defined map (·)⊛ : ILL −→ BBI:

v⊛ = v for v ∈ Var
⊥⊛ = ⊥ (A � B)⊛ = A⊛ ∨ B⊛

⊤⊛ = ⊤ (A & B)⊛ = A⊛ ∧ B⊛

1⊛ = I (A � B)⊛ = A⊛ ∗ B⊛

(! A)⊛ = I ∧ A⊛ (A⊸ B)⊛ = A⊛ −∗ B⊛

L 7.1. If the trivial phase semantics interpretation[[ ·]] : Var −→ M⋄ and the Kripke in-
terpretationδ : Var −→ P(M) are identical maps then the trivial phase semantics and the Kripke
semantics are in the following relation:

∀F ∈ ILL,∀m ∈ M, m ∈ [[F]] iff m F⊛ (3)

P. Using the previous notations [[·]] t and [[·]]k, we show that [[F]] t = [[F⊛]] k by induction
on the structure ofF. We consider the caseF = A � B as a typical example. Using the inductions
hypotheses [[A]] t = [[A⊛]]k and [[B]] t = [[ B⊛]] k, we compute [[A � B]] t = [[A]] t ◦ [[ B]] t = [[A⊛]]k ◦

[[B⊛]] k = [[A⊛ ∗ B⊛]]k = [[(A � B)⊛]] k.

So if the interpretation of logical variables coincide, trivial phase semantics and Kripke semantics
correspond to each other through the map (·)⊛. Given asequence A1, . . . ,Ak of formulae ofILL, we
define (A1, . . . ,Ak)⊛ by structural induction:

()⊛ = I (A1, . . . ,Ak+1)
⊛ = A⊛1 ∗ (A2, . . . ,Ak+1)

⊛

When [[·]] andδ are identical maps on propositional variables, it is then straightforward to prove this
equivalence by induction onk:

m ∈ [[A1]] ◦ · · · ◦ [[Ak]] iff m (A1, . . . ,Ak)
⊛ (4)
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7.2. Faithfully embedding (trivial) ILL into BBI

We define a reverse map from multisets of formulae ofILL into lists of formulae by choosing an
arbitrarydecidable total orderamong the formulae ofILL (e.g. lexicographic ordering). For any
multisetΓ of formulae ofILL, there exists a unique and computable ordered sequence of formulae
A1, . . . ,Ak such thatΓ = {A1, . . . ,Ak} and we defineΓ⊛ = (A1, . . . ,Ak)⊛.

P 7.2. The function(·)⊛ : ILL −→ BBI mapping theILL-sequentΓ ⊢ C to theBBI-
formulaΓ⊛→C⊛ is a computable map from sequents ofILL to formulae ofBBI.

P. The only thing to prove here is that the map is computable andthis is done using any
sorting algorithm based on the decidable total order previously chosen.

P 7.3. LetM = (M, ◦, ǫ) be a non-deterministic monoid. LetΓ ⊢ C be a sequent of
ILL. Then the sequentΓ ⊢ C is valid in every trivial phase semantics interpretation based onM if
and on if the formulaΓ⊛→C⊛ is valid in every Kripke interpretation based onM.

P. Let us pick the ordered sequenceA1, . . . ,Ak such that the identityΓ = ⌊A1, . . . ,Ak⌋ holds
as a multiset equation. Let us first suppose thatA1, . . . ,Ak⊢C is valid in every trivial phase semantics
interpretation based onM. Let δ : Var −→ P(M) be a Kripke interpretation of variables in the
modelM. We choose the trivial phase semantics interpretation [[·]] : Var −→ P(M) defined by
[[v]] = δ(v) for any variablev ∈ Var. By hypothesis,A1, . . . ,Ak ⊢C is valid in the interpretation [[·]]
and we deduce [[A1]] ◦ · · · ◦ [[Ak]] ⊆ [[C]]. Then, by Equations (3) and (4), for anym ∈ M we have
m (A1, . . . ,Ak)⊛→C⊛. Thus the formula (A1, . . . ,Ak)⊛→C⊛ is valid in the model (M, ◦, ǫ, δ).

Now, let us suppose that (A1, . . . ,Ak)⊛→C⊛ is valid in every Kripke interpretation based onM.
Let [[·]] : Var −→ P(M) be a trivial phase semantic interpretation of variables inthe modelM. We
choose the Kripke interpretationδ : Var −→ P(M) defined byδ(v) = [[v]] for any variablev ∈ Var.
By hypothesis, the formula (A1, . . . ,Ak)⊛ → C⊛ is valid in the interpretationδ and we deduce that
for anym ∈ M we havem  (A1, . . . ,Ak)⊛ → C⊛. As a consequence of Equations (3) and (4), we
obtain [[A1]] ◦ · · ·◦ [[Ak]] ⊆ [[C]]. Hence, the sequentA1, . . . ,Ak ⊢C is valid in the trivial phase model
(M, ◦, ǫ, [[ ·]]).

T 7.4 (E). Let X ∈ {ND,PD,TD,HM,FM} be a class of non-deterministic
monoids. For any sequentΓ ⊢C of ILL, the following equivalence holds:

Γ ⊢C ∈ ILLt
X if and only if Γ⊛→C⊛ ∈ BBIX

P. Obvious consequence of Proposition 7.3.

T 7.5. Trivial phase semantics restricted to heap models is complete for eILL.

P. Consider the inclusion sequenceeILLg = eILLt
PD ⊆ eILLt

HM ⊆ eILLt
FM = eILLg. Using

Theorem 4.4, the only inclusions left to be proved areeILLt
PD ⊆ eILLt

HM andeILLt
HM ⊆ eILLt

FM.
The first one is obvious because HM⊆ PD as classes of non-deterministic monoids. We prove the
second inclusion. LetΓ ⊢C be a sequent ofeILL. We supposeΓ ⊢C belongs toeILLt

HM . Thus, it also
belongs toILLt

HM . Then, by Theorem 7.4, we haveΓ⊛→C⊛ ∈ BBIHM . Thus by Theorem 6.7, we
obtainΓ⊛→C⊛ ∈ BBIFM. Thus by Theorem 7.4 again, we obtainΓ ⊢C ∈ ILLt

FM. SinceΓ ⊢C is an
elementary sequent, we concludeΓ ⊢C ∈ eILLt

FM.

7.3. The Undecidability Results

From the preceding developments, we establish the undecidability of BBI w.r.t. Kripke semantics
in any class belonging to{ND,PD,TD,HM,FM}. Indeed, we have a faithful embedding from triv-
ial ILL into BBI. But trivial ILL containseILL as a complete and undecidable fragment. Thus the
embedding transfers the undecidability toBBI.

T 7.6 (U  BBI). For any classX ∈ {ND,PD,TD,HM,FM}, the set of
(universally valid) formulaeBBIX is not recursive.
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P. Suppose that there is an algorithm which decides membership in BBIX . We propose the
following algorithm which would then decide validity in thefragmenteILL.

For a given elementary sequentΓ ⊢ C of eILL, compute theBBI formula Γ⊛ → C⊛. Decide if
Γ⊛ → C⊛ belong toBBIX . If true, then by Theorem 7.4, the sequentΓ ⊢ C belongs toILLt

X . By
Theorems 4.4 and 7.5, the fragmenteILL is complete w.r.t. trivial phase semantics in class X,Γ ⊢C
is a valid sequent ofILL. On the contrary, if the formulaΓ⊛→C⊛ does not belong toBBIX , then by
Theorem 7.4 the sequentΓ ⊢C has a trivial phase semantics counter-model of class X. Hence, it is
an invalid sequent ofILL.

By Theorem 5.7, there is no algorithm which decide the validity of sequent of the fragmenteILL.
We obtain a contradiction and thus no algorithm decides membership inBBIX .

T 7.7. The sets of formulaeBBIPf (N) andBBIN×N are not recursive.

P. ForBBIN×N, it is simply a consequence of the undecidability of membership in eILLt
N×N

(see Theorem 5.8) and of Proposition 7.3. ForBBIPf (N), let us first prove the two inclusions

eILLp ⊆ eILLt
Pf (N) ⊆ eILLt

N×N

For eILLp ⊆ eILLt
Pf (N), this is simply a consequence of the soundness of (trivial) phase semantics

(see Theorem 3.3). ForeILLt
Pf (N) ⊆ eILLt

N×N, we use our embedding via Proposition 7.3 and the
inclusionBBIPf (N) ⊆ BBIN×N of Theorem 6.8.

Then, by Theorem 5.8, membership in the seteILLt
Pf (N) is not decidable, and thus, by Proposi-

tion 7.3, the setBBIPf (N) is not recursive.

Remark: the result thatBBIPf (N) is not recursive is the core result of [Brotherston and Kanovich
2010]. The indirect proof we provide here explicits the use of bisimulation to transform a model
based onN × N into a model based onPf (N).

8. CONCLUSION AND RELATED WORKS

In this extended version of [Larchey-Wendling and Galmiche2010], we give a full proof of the
result of the undecidability of BooleanBI by identifying a fragment ofBBI on which the semantics
defined by different classes of models collapse to one. This fragment is thedirect image by a faithful
embedding of the elementary fragment ofILL. By studying the phase and trivial phase semantics
of eILL, we establish its completeness with respect to trivial phase semantics whichever class of
models is chosen amongst ND, PD, TD, HM and FM. Undecidability follows from an encoding of
two counter Minsky machines computations. The faithfulness of the encoding is obtained using a
trivial phase model build on the free monoidN ×N, hence we can even derive the undecidability of
eILL (and laterBBI) restriced to the interpretations in the modelN × N.

We also bisimulate free monoids with heap monoids and thus prove thateILL is complete (and
thus undecidable) for heap monoid semantics. Using a bisimulation betweenN × N andPf (N), we
also deduce the undecidability ofeILL (and thusBBI) restriced to the interpretations in the model
Pf (N), which is the simplest heap model conceivable. This is basically the core result of [Brotherston
and Kanovich 2010].

The question of the decidability for interpretations restricted toN remains open because one
counter Minsky machines are a special case of pushdown automata for which accessibility is a
decidable problem [Bouajjani et al. 1997].

In [Brotherston and Kanovich 2010], the authors show that undecidability also holds for Classi-
cal BI [Brotherston and Calcagno 2009] which is another variant ofBI containing both an additive
and a multiplicative negation. The encoding presented of [Larchey-Wendling and Galmiche 2010]
which we keep in this paper would not fit for classicalBI. But in [Larchey-Wendling 2010], the
author proposes a modified version of our encoding which is suitable for both BooleanBI and Clas-
sicalBI with a faithfulness argument based on an intepretation in the free abelian groupZ×Z. Hence
he obtains another proof of undecidability suitable for both Boolean and ClassicalBI.
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We left remaining open problems. In particular, the classification ofeILL andBBI with respect
to validity in parcular classes of models, or in particular models is unfinished. Solving this requires
finding eILL sequents orBBI formulae which distinguish the classes of models. This may be a
difficult task which might need a better understanding of the expressive power of those two logics.

A. SOUNDNESS OF NON-DETERMINISTIC PHASE SEMANTICS FOR ILL

We recall Theorem 3.3. The proof we provide is really just an adaptation of a standard proof in
Linear Logic semantics to the more general context of non-deterministic monoids.

T 3.3. LetM = (M, ◦, ǫ, (·)⋄,K) be a non-deterministic intuitionistic phase space and
[[ ·]] : Var −→M⋄ be an interpretation of logical variables. If the sequent A1, . . . ,Ak ⊢ B has a proof
in S-ILL, then the inclusion[[A1]] ◦ · · · ◦ [[Ak]] ⊆ [[B]] holds.

P. It could be done by induction onILL proof trees but we rather use the algebraic semantic
characterization ofILL of [Troelstra 1992]. We prove that

(

M⋄,∩, (· ∪ ·)⋄, ∅⋄,−−◦, (· ◦ ·)⋄, {ǫ}⋄, (K ∩ ·)⋄
)

is an IL-algebra with storage operator(where−−◦ is defined byX −−◦ Y = {k ∈ M | k ◦ X ⊆ Y}).
First, it is obvious that (M⋄,∩, (· ∪ ·)⋄, ∅⋄) is a complete lattice with bottom∅⋄. This is thesame

proof as in the usual (monoidal) case because the (non-deterministic) monoidal structure does not
play any role in this part of the proof. The principal argument is that (·)⋄ is a closure operator on
P(M).

Let us prove that (M⋄, (· ◦ ·)⋄, {ǫ}⋄) is a commutative monoid. Obviously the setM⋄ is stable
under the operator (· ◦ ·)⋄ which thus induces a binary operation onM⋄. By stability, we obtain the
inclusion{ǫ}⋄ ◦ X⋄ ⊆ ({ǫ} ◦ X)⋄ = X⋄ and we deduce that for any closed subsetX (i.e. X = X⋄), we
have ({ǫ}⋄ ◦ X)⋄ ⊆ X. Also X = {ǫ} ◦ X ⊆ {ǫ}⋄ ◦ X ⊆ ({ǫ}⋄ ◦ X)⋄ by monotonicity of◦ and (·)⋄. Thus
({ǫ}⋄ ◦ X)⋄ = X for any closed subsetX ∈ M⋄ and thus{ǫ}⋄ is a (left) unit for (· ◦ ·)⋄. Then, it is
obvious that (· ◦ ·)⋄ is a commutative operation because◦ is itself commutative. We deduce that{ǫ}⋄

is a unit for (· ◦ ·)⋄.
Let us prove that (· ◦ ·)⋄ is associative. LetA,B,C ∈ M⋄. Then, by stability of (·)⋄, we have

A ◦ (B ◦ C)⋄ ⊆ A⋄ ◦ (B ◦ C)⋄ ⊆ (A ◦ (B ◦ C))⋄ = (A ◦ B ◦ C)⋄. Thus (A ◦ (B ◦ C)⋄)⋄ ⊆ (A ◦ B ◦ C)⋄

holds. AsA ◦ B ◦ C = A ◦ (B ◦ C) ⊆ A ◦ (B ◦ C)⋄ ⊆ (A ◦ (B ◦ C)⋄)⋄, we deduce (A ◦ B ◦ C)⋄ ⊆
(A ◦ (B ◦ C)⋄)⋄. By double inclusion, we conclude that (A ◦ B ◦ C)⋄ = (A ◦ (B ◦ C)⋄)⋄. Associativity
of (· ◦ ·)⋄ follows from this last identity and associativity/commutativity of◦ onP(M).

It is obvious that (· ◦ ·)⋄ is monotonic in both parameters because it is obtained by composition of
two monotonic operators, namely◦ and (·)⋄. Let us now prove that−−◦ is a right-adjoint (· ◦ ·)⋄. First,
X−−◦Y is closed as soon asY is closed andX−−◦Y⋄ = X⋄−−◦Y⋄ holds for anyX,Y ∈ P(M) just as in the
usual (monoidal) case. Now letA,B,C ∈ M⋄. We have (A ◦ B)⋄ ⊆ C iff A ◦ B ⊆ C iff A ⊆ B −−◦ C.
Thus−−◦ is indeed right-adjoint to (· ◦ ·)⋄. The fact that−−◦ is contra-variant w.r.t. its first operand
and co-variant w.r.t. its second operand is deducible from the monotonicity of◦ and the fact that−−◦
is right adjoint to◦.

We finish by proving thatX 7→ (K ∩ X)⋄ is amodality. First, for anyX ∈ M⋄, asK ∩ X ⊆ X = X⋄,
we obtain (K ∩ X)⋄ ⊆ X. Then forX,Y ∈ M⋄, if we suppose that (K ∩ Y)⋄ ⊆ X, thenK ∩ Y ⊆
X and thusK ∩ Y ⊆ K ∩ X. Thus we obtain (K ∩ Y)⋄ ⊆ (K ∩ X)⋄. Then, asǫ ∈ K ⊆ {ǫ}⋄, we
deduce{ǫ}⋄ ⊆ K⋄ = (K ∩M)⋄.8 The last condition to check is ((K ∩ X)⋄ ◦ (K ∩ Y)⋄)⋄ = (K ∩ X ∩ Y)⋄

for any X,Y ∈ M⋄. First we have (K ∩ X)⋄ ◦ (K ∩ Y)⋄ ⊆ ((K ∩ X) ◦ (K ∩ Y))⋄. As K ⊆ {ǫ}⋄, we
have (K ∩ X) ◦ (K ∩ Y) ⊆ {ǫ}⋄ ◦ Y ⊆ Y⋄ = Y. We also have (K ∩ X) ◦ (K ∩ Y) ⊆ X. As K ◦
K ⊆ K we have (K ∩ X) ◦ (K ∩ Y) ⊆ K and hence, we deduce (K ∩ X) ◦ (K ∩ Y) ⊆ K ∩ X ∩ Y.
Using stability, we compute (K ∩ X)⋄ ◦ (K ∩ Y)⋄ ⊆ ((K ∩ X) ◦ (K ∩ Y))⋄ ⊆ (K ∩ X ∩ Y)⋄ and thus
((K ∩ X)⋄ ◦ (K ∩ Y)⋄)⋄ ⊆ (K ∩ X ∩ Y)⋄. Now let us prove the reverse inclusion. Letz ∈ K∩X∩Y. As

8Recall the identity∅⋄ −−◦ ∅⋄ = ∅ −−◦ ∅⋄ = M.
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z ∈ K thenz ∈ J and we havez ∈ (z◦ z)⋄ ⊆ ((K ∩ X) ◦ (K ∩ Y))⋄ ⊆ ((K ∩ X)⋄ ◦ (K ∩ Y)⋄)⋄. Hence,
K ∩ X ∩ Y ⊆ ((K ∩ X)⋄ ◦ (K ∩ Y)⋄)⋄ and we deduce (K ∩ X ∩ Y)⋄ ⊆ ((K ∩ X)⋄ ◦ (K ∩ Y)⋄)⋄.

We can then apply Theorem 8.21 (page 80) from [Troelstra 1992]. If A1, . . . ,Ak ⊢ B has a proof
in ILL, then the inclusion [[A1, . . . ,Ak]] ⊆ [[B]] holds. It is obvious to prove that [[A1]] ◦ · · · ◦ [[Ak]] ⊆
[[A1, . . . ,Ak]] by induction onk for example. So we deduce [[A1]] ◦ · · · ◦ [[Ak]] ⊆ [[ B]].

B. COMPLETENESS OF NON-DETERMINISTIC PHASE SEMANTICS FOR ILL

Let Form denote the set of formulae ofILL build from Var as set of logical variables, as defined in
Section 3. LetCtx = Mf (Form) denote the set ofcontextsbuild from the formulae ofILL, i.e. the set
of finite multisets ofILL-formulae. Recall that a sequent is a pair (Γ,C) ∈ Ctx×Form denotedΓ ⊢C
and thatILLp denotes the set of sequents for which there exists a proof in theS-ILL.

Given a set of contextsX ⊆ Ctx, a context∆ ∈ Ctx and a formulaC ∈ Form, we denote by
∆,X ⊢C the following set of sequents:

∆,X ⊢C = {∆, Γ ⊢C | Γ ∈ X}

We consider the following free (commutative) monoid (Ctx, ⋆, π) where the composition⋆ is
defined byΓ ⋆ ∆ = {⌊Γ,∆⌋}9 for any Γ,∆ ∈ Ctx andπ = ⌊∅⌋ is the empty context. This non-
deterministic monoid (Ctx, ⋆, π) obviously belongs to the class FM. The adjoint of⋆ is denoted−−⋆.
We define the closure operator (·)⋄ onP(Ctx) and the setK ⊆ Ctx by

X⋄ =
{

Γ ∈ Ctx | ∀∆ ∈ Ctx,∀C ∈ Form ∆,X ⊢C ⊆ ILLp ⇒ ∆, Γ ⊢C ∈ ILLp
}

K = {! Γ ∈ Ctx | Γ ∈ Ctx}

P B.1. (Ctx, ⋆, π, (·)⋄,K) is a non-deterministic phase space of classFM.

P. As mentioned earlier, (Ctx, ⋆, π) is a non-deterministic monoid of class FM. We first
prove that (·)⋄ is a stable closure, then we show thatK verifiesπ ∈ K ⊆ {Γ ∈ Ctx | Γ ∈ {π}⋄∩(Γ ◦ Γ)⋄}
andK ⋆ K ⊆ K.

Let X andY be two subsets ofCtx. Let us proveX ⊆ X⋄. Let Γ ∈ X. Then for any∆,C we have
{∆, Γ ⊢C} ⊆ ∆,X ⊢C. Hence, if∆,X ⊢C ⊆ ILLp holds, the property∆, Γ ⊢C ∈ ILLp also holds. Thus,
Γ ∈ X⋄ holds. We have provedX ⊆ X⋄. From the definition of (·)⋄, X ⊆ Y obviously entailsX⋄ ⊆ Y⋄.
Let us now prove thatX⋄⋄ ⊆ X⋄. LetΓ ∈ X⋄⋄ and let us proveΓ ∈ X⋄. We consider∆,C such that the
property∆,X ⊢C ⊆ ILLp holds. By definition of (·)⋄, we deduce that∆,X⋄ ⊢C ⊆ ILLp holds. Since
Γ ∈ X⋄⋄, we deduce that∆, Γ ⊢C ∈ ILLp holds. From∆,X ⊢C ⊆ ILLp we derived∆, Γ ⊢C ∈ ILLp, so
we have proved thatΓ ∈ X⋄. Hence,X⋄⋄ ⊆ X⋄ and then (·)⋄ is a closure operator onP(Ctx).

Let us now prove that the closure (·)⋄ is stable, i.e. satisfies the axiomX⋄ ⋆ Y⋄ ⊆ (X ⋆ Y)⋄ for
any two subsetsX,Y of Ctx. Since⋆ is commutative and (·)⋄ is a closure, it is sufficient to prove the
propertyX ⋆ Y⋄ ⊆ (X ⋆ Y)⋄ for any two subsetsX,Y of Ctx (the proof of this simplification is left
to the reader). Now let us considerΓ1 ∈ X andΓ2 ∈ Y⋄ and let us prove that⌊Γ1, Γ2⌋ ∈ (X ⋆ Y)⋄. So
let us introduce∆,C such that∆,X⋆Y ⊢C ⊆ ILLp. SinceΓ1 ∈ X holds, we deduce{Γ1}⋆Y ⊆ X⋆Y
and thus⌊∆, Γ1⌋,Y ⊢C ⊆ ILLp holds. SinceΓ2 ∈ Y⋄ holds, we deduce⌊∆, Γ1⌋, Γ2 ⊢C ∈ ILLp. Hence,
∆, ⌊Γ1, Γ2⌋⊢C ∈ ILLp holds. We conclude⌊Γ1, Γ2⌋ ∈ (X ⋆ Y)⋄. We have proved thatX⋆Y⋄ ⊆ (X ⋆ Y)⋄

holds for anyX,Y ⊆ Ctx. As a consequence, the closure (·)⋄ is stable.
Now let us finish by checking the axioms corresponding toK. Sinceπ = ⌊∅⌋ = ⌊! ∅⌋, it is obvious

thatπ ∈ K. Let us prove thatK ⊆ {Γ ∈ Ctx | Γ ∈ {π}⋄∩ (Γ ⋆ Γ)⋄}. LetΓ ∈ K. There existsΓ0 such that
Γ = ! Γ0. Let us prove that !Γ0 ∈ {π}

⋄. We consider∆,C such that∆, {π} ⊢C ⊆ ILLp, which reduces
to ∆ ⊢ C ∈ ILLp. Hence∆ ⊢ C has a proof inS-ILL and by multiple applications of rule〈w〉, we
obtain a proof of∆, ! Γ0 ⊢C in S-ILL. Hence∆, ! Γ0 ⊢ C ∈ ILLp. We conclude thatΓ = ! Γ0 belongs
to {π}⋄. SinceΓ ⋆ Γ = {⌊! Γ0, ! Γ0⌋}, we prove that !Γ0 ∈ {⌊! Γ0, ! Γ0⌋}

⋄ using a similar argument,
replacing rule〈w〉 by rule〈c〉. We finish with a proof ofK⋆K ⊆ K. LetΓ ∈ K⋆K. By definition (1)

9Recall thatΓ 7→ ⌊Γ⌋ is the identity map onCtx but the extra notation⌊·⌋ in {⌊Γ,∆⌋} is used to here to remove the ambiguity
on the denotation of the comma: here it denotes the composition of multisets, not the addition of elements in a set.
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of the extension of⋆ onP(Ctx), there exists !Γ0 ∈ K and !Γ1 ∈ K such thatΓ ∈ Γ0⋆ Γ1. We deduce
Γ = ⌊! Γ0, ! Γ1⌋ and, as a consequenceΓ ∈ K holds.

For any formulaF of ILL, we denote by↓F thesection below Fdefined by

↓F = {Γ ∈ Ctx | Γ ⊢ F ∈ ILLp}

It is easy to prove that sections are closed subsets ofP(Ctx).

P B.2. For any formula F ofILL, the inclusion(↓F)⋄ ⊆ ↓F holds.

P. For the following values of∆ = ⌊∅⌋ andC = F, we obtain∆, ↓F ⊢ C ⊆ ILLp. Hence, if
we pickΓ ∈ (↓F)⋄, we deduce∆, Γ ⊢ C ∈ ILLp by definition of (·)⋄. We concludeΓ ⊢ F ∈ ILLp and
thusΓ ∈ ↓F. Hence the inclusion (↓F)⋄ ⊆ ↓F holds.

As sections are closed, it is legitimate to interpret logical variables by their section, i.e. we define
the interpretation [[v]] = ↓v for every variablev ∈ Var. The following lemma which is the core of the
completeness argument was first explicited by Okada [Okada 2002] (but not for exactly the same
closure operator we use here).

L B.3 (O). For any formula F ofILL, the relation⌊F⌋ ∈ [[F]] ⊆ ↓F holds.

P. The proof is done by (mutual) induction of the formulaF. The beauty of the argument is
that the semantic properties⌊F⌋ ∈ [[F]] and [[F]] ⊆ ↓F correspond one to one with the rules of the
〈cut〉-freeS-ILL calculus.

— for a variablev ∈ Var, the property⌊v⌋ ∈ [[v]] reduces to⌊v⌋ ∈ ↓v which is an instance of the
identity axiom〈id〉. The property [[v]] ⊆ ↓v reduces to↓v ⊆ ↓v which is trivial;

— if F is a formula of typeF = A � B, then we observe that rule〈�L〉 corresponds to the
relation⌊A � B⌋ ∈ {⌊A, B⌋}⋄ and rule〈�R〉 corresponds to the relation↓A ⋆ ↓B ⊆ ↓A � B. Thus,
using the induction hypotheses⌊A⌋ ∈ [[A]] ⊆ ↓A and⌊B⌋ ∈ [[ B]] ⊆ ↓B, we compute⌊A � B⌋ ∈
{⌊A, B⌋}⋄ ⊆ (⌊A⌋ ⋆ ⌊B⌋)⋄ ⊆ ([[A]] ⋆ [[ B]]) ⋄ ⊆ [[A�B]] and [[A�B]] ⊆ ([[A]] ⋆ [[ B]]) ⋄ ⊆ (↓A⋆ ↓B)⋄ ⊆
(↓A � B)⋄ ⊆ ↓A � B;

— if F = A⊸B, then we use the relations⌊A⊸ B⌋ ∈ (↓A)−−⋆ {⌊B⌋}⋄ and{⌊A⌋}−−⋆↓B ⊆ ↓A⊸ B
corresponding to rules〈⊸L〉 and 〈⊸R〉 respectively. We compute⌊A⊸ B⌋ ∈ (↓A) −−⋆ {⌊B⌋}⋄ ⊆
[[A]] −−⋆ [[B]]⋄ = [[A⊸ B]] and [[A⊸ B]] = [[A]] −−⋆ [[ B]] ⊆ {⌊A⌋} −−⋆ ↓B ⊆ ↓A⊸ B;

— if F = 1, we obtain the relations⌊1⌋ ∈ {⌊∅⌋}⋄ and⌊∅⌋ ∈ ↓1 for rules〈1L〉 and〈1R〉 respectively.
Thus⌊1⌋ ∈ {⌊∅⌋}⋄ = {π}⋄ = [[1]] and [[1]] = {⌊∅⌋}⋄ ⊆ (↓1)⋄ ⊆ ↓1;

— if F = A & B, we obtain the relations⌊A & B⌋ ∈ {⌊A⌋}⋄, ⌊A & B⌋ ∈ {⌊B⌋}⋄ and↓A ∩ ↓B ⊆
↓A & B for rules〈&1

L〉, 〈&
2
L〉 and〈&R〉respectively. Thus⌊A & B⌋ ∈ {⌊A⌋}⋄∩{⌊B⌋}⋄ ⊆ [[A]]⋄∩[[B]]⋄ ⊆

[[A]] ∩ [[B]] = [[A & B]] and [[A & B]] = [[A]] ∩ [[B]] ⊆ ↓A∩ ↓B ⊆ ↓A & B;
— if F = ⊤, we obtain the relationCtx ⊆ ↓⊤ for rule 〈⊤R〉. Thus⌊⊤⌋ ∈ Ctx = [[⊤]] and

[[⊤]] = Ctx ⊆ ↓⊤;
— if F = A � B, we obtain the relations⌊A � B⌋ ∈ {⌊A⌋, ⌊B⌋}⋄, ↓A ⊆ ↓A � B and ↓B ⊆
↓A � B for rules〈�L〉, 〈�1

R〉 and〈�2
R〉 respectively. Thus⌊A � B⌋ ∈ {⌊A⌋, ⌊B⌋}⋄ = ({⌊A⌋} ∪ {⌊B⌋})⋄ ⊆

([[A]] ∪ [[ B]]) ⋄ = [[A � B]] and [[A � B]] = ([[A]] ∪ [[B]]) ⋄ ⊆ (↓A∪ ↓B)⋄ ⊆ (↓A � B)⋄ ⊆ ↓A � B;
— if F = ⊥, we obtain the relation⌊⊥⌋ ∈ ∅⋄ for rule 〈⊥L〉. Thus⌊⊥⌋ ∈ ∅⋄ = [[⊥]] and [[⊥]] =
∅⋄ ⊆ (↓⊥)⋄ ⊆ ↓⊥;

— if F = ! A, we obtain the relations⌊! A⌋ ∈ {⌊A⌋}⋄ andK ∩ ↓A ⊆ ↓ (! A) for rules〈!L〉 and〈!R〉

respectively. Since⌊! A⌋ ∈ K by definition ofK, we deduce⌊! A⌋ ∈ K ∩ {⌊A⌋}⋄ ⊆ K ∩ [[A]] ⊆ [[! A]]
and [[!A]] = (K ∩ [[A]])⋄ ⊆ (K ∩ ↓A)⋄ ⊆ (↓ (! A))⋄ ⊆ ↓ (! A).

T 3.5. If the sequentΓ ⊢ A is valid in every free monoidal phase semantic interpretation
(M, ◦, ǫ, (·)⋄,K, [[ ·]]) (i.e. with(M, ◦, ǫ) of the classFM), thenΓ ⊢ A has a proof inS-ILL.
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P. Let A1, . . . ,Ak ⊢ B be a sequent which is valid in every free monoidal phase semantic
interpretation. In particular, it is valid in our current interpretation (Ctx, ⋆, π) and we deduce that
the inclusion [[A1]] ⋆ · · · ⋆ [[Ak]] ⊆ [[ B]] holds. By Okada’s lemma B.3, we obtain

⌊A1, . . . ,Ak⌋ ∈ ⌊A1⌋ ⋆ · · · ⋆ ⌊Ak⌋ ⊆ [[A1]] ⋆ · · · ⋆ [[Ak]] ⊆ [[B]] ⊆ ↓B

and we concludeA1, . . . ,Ak ⊢ B ∈ ILLp. Hence, the sequentA1, . . . ,Ak ⊢ B has a proof inS-ILL.

Remark: this proof does not use the cut rule〈cut〉 so it can also be used as an argument forstrong
completenessfrom which it is easy to derive a semantic proof of cut-elimination forS-ILL.

C. BISIMULATING FREE MONOIDS WITH HEAP MONOIDS

In this section, we give a detailed proof of Lemma 6.6. Let us fix a setX. We denote by (Mf (X),+, 0)
the (usual) free commutative generated byX, i.e.Mf (X) is the set of finite multisets of elements of
X. Multiset composition is denoted additively, so for example we denote bym =

∑

x∈X mx.x the
multiset which contains exactlymx ∈ N occurrences of the variablex for eachx ∈ X. In caseX is
infinite, it is assumed that the value ofmx is non-zero for only a finite subset ofX. Recall that there
is an associated (total deterministic) free monoid of classFM which is denoted (Mf (X), ⋆, π) with
the identitiesm⋆ n = {m+ n} andπ = 0.

We define the following set of locationsL = X × N, andLx = {x} × N is a section ofL for each
x ∈ X. We also definel ix = (x, i) ∈ L and thus we obtain the following identities:

L =
⊎

x∈X

Lx and Lx = {l
0
x, l

1
x, l

2
x, . . .} for x ∈ X

We define the set of valuesV = {∗} as a singleton set. Considering the heap monoid (HL,V,|,∅), we
define a mapϕ : HL,V −→Mf (X) by

ϕ(h) =
∑

x∈X

card
(

def(h) ∩ Lx
)

.x

P C.1. The mapϕ : HL,V −→Mf (X) satisfies the following properties:

(1) ϕ is a surjective map;
(2) if m1,m2 ∈ Mf (X) and h∈ HL,V satisfyϕ(h) = m1 +m2 then there exists h1, h2 ∈ HL,V such

thatϕ(h1) = m1, ϕ(h2) = m2 and h1 | h2 = {h};
(3) for any m1 ∈ Mf (X) and any h2 ∈ HL,V there exists h1 ∈ HL,V such thatdef(h1) ∩ def(h2) = ∅

andϕ(h1) = m1;
(4) ϕ(h1 | h2) = ϕ(h1) ⋆ ϕ(h2) whendef(h1) ∩ def(h2) = ∅;
(5) ϕ(h) = 0 if and only if h= ∅ for any h∈ HL,V;
(6) ϕ−1(A) | ϕ−1(B) = ϕ−1(A ⋆ B) for anyA,B ⊆ Mf (X).

P. Let us prove Property (1) and show thatϕ is a surjective map. Letm =
∑

x∈X mx.x be a
finite multiset. Then the set{(l ix, ∗) | 0 6 i < mx} is the graph of a partial function and we denote this
function byhm. It can be easily be checked that def(hm) is a finite subset ofL and that

ϕ(hm) =
∑

x∈X

card{l ix | 0 6 i < mx}.x =
∑

x∈X

mx.x = m

Let use prove Property (2). Letm, n ∈ Mf (X) andh ∈ HL,V be such thatϕ(h) = m+ n. For each
x ∈ X, we have card(def(h) ∩ Lx) = mx + nx. Let us partition def(h) ∩ Lx in def(h) ∩ Lx = L1

x ∪ L2
x

such that card(L1
x) = mx and card(L2

x) = nx. Then leth1 (resp.h2) be the partial function with graph
{(l ix, ∗) | l

i
x ∈ L1

x} (resp.{(l ix, ∗) | l
i
x ∈ L2

x}). The reader can check thatϕ(h1) = m1, ϕ(h2) = m2 and
h1 | h2 = {h} hold.

Let us prove Property (3). Let us writem1 =
∑

x∈X m1
x.x. For x ∈ Var, sinceLx\def(h2) is an

infinite set, let us chooseL1
x such thatL1

x ⊆ Lx\def(h2) and card(L1
x) = m1

x. Now let us consider

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: June 2011.



Non-deterministic Semantics and the Undecidability of Boolean BI 1:25

the partial functionh1 defined by the graph{(l ix, ∗) | l ix ∈ L1
x}. It is obvious that def(h1) is finite,

def(h1) ∩ def(h2) = ∅ andϕ(h1) = m1.
Let us prove Property (4). Leth1, h2 ∈ HL,V such that def(h1) ∩ def(h2) = ∅. Let h be the result

of the composition ofh1 andh2, i.e. h1 | h2 = {h}. Then card(def(h) ∩ Lx) = card(def(h1) ∩ Lx) +
card(def(h1) ∩ Lx) and we deduceϕ(h) = ϕ(h1) + ϕ(h2), henceϕ(h1 | h2) = {ϕ(h1) + ϕ(h2)}.

Property (5) is obvious. Let us prove Property (6). First letus consider the inclusionϕ−1(A⋆B) ⊆
ϕ−1(A) | ϕ−1(B). Let us pickh ∈ ϕ−1(A ⋆ B). Thenϕ(h) ∈ A ⋆ B so there existsm1 ∈ A andm2 ∈ B
such thatϕ(h) = m1 +m2. By Property (2), there existsh1, h2 such thatϕ(h1) = m1, ϕ(h2) = m2 and
h1 | h2 = {h}. Henceh1 ∈ ϕ

−1(A) andh2 ∈ ϕ
−1(B). As h1 | h2 = {h}, we geth ∈ ϕ−1(A) | ϕ−1(B).

Let us consider the reverse inclusionϕ−1(A)| ϕ−1(B) ⊆ ϕ−1(A⋆ B). Let h ∈ ϕ−1(A)| ϕ−1(B). Then
there existsh1 ∈ ϕ

−1(A) andh2 ∈ ϕ
−1(B) such thath ∈ h1 | h2. Then we have def(h1) ∩ def(h2) = ∅

(otherwiseh1 | h2 = ∅) and by Property (4), we deduceϕ(h) = ϕ(h1) + ϕ(h2) ∈ A ⋆ B. Hence
h ∈ ϕ−1(A ⋆ B).

L C.2 (B). Let Rϕ ⊆ HL,V ×Mf (X) be the binary relation defined by the graph
of ϕ, i.e. h Rϕ m iff ϕ(h) = m. Then Rϕ is a bisimulation between non-deterministic monoids, i.e.it
satisfies the following property for any h∈ HL,V and any m∈ Mf (X)

h Rϕ m⇒



































h = ∅ iff m= π
∀h1, h2 h ∈ h1 | h2⇒ ∃m1,m2 m ∈ m1 ⋆m2 and h1 Rϕ m1 and h2 Rϕ m2
∀m1,m2 m ∈ m1 ⋆m2⇒ ∃h1, h2 h ∈ h1 | h2 and h1 Rϕ m1 and h2 Rϕ m2
∀h1, h2 h2 ∈ h1 | h⇒ ∃m1,m2 m2 ∈ m1 ⋆ m and h1 Rϕ m1 and h2 Rϕ m2
∀m1,m2 m2 ∈ m1 ⋆m⇒ ∃h1, h2 h2 ∈ h1 | h and h1 Rϕ m1 and h2 Rϕ m2

P. Let us first prove thath Rϕ m⇒ (h = ∅ iff m= π). Let h andm such thath Rϕ m holds.
Then by definition, we obtainϕ(h) = m. If m= π(= 0), then by Property (5) of Proposition C.1, we
obtainh = ∅ and thus (h,m) ∈ {(∅, π)}. If m, 0 then by Property (5) of Proposition C.1, we obtain
h , ∅ and thus (h,m) ∈ Mf (X)\{π}.

Let us now prove the four co-induction properties. Leth andm such thath Rϕ m holds. Then
ϕ(h) = m holds.

— Let h1, h2 ∈ HL,V such thath ∈ h1 | h2. Let m1 = ϕ(h1) andm2 = ϕ(h2). By Property (4) of
Proposition C.1, we obtainm= ϕ(h) ∈ ϕ(h1) ⋆ ϕ(h2) = m1 ⋆ m2, h1 Rϕ m1 andh2 Rϕ m2;

— Let m1,m2 ∈ Mf (X) such thatm = m1 + m2. Property (2) of Proposition C.1, there exists
h1, h2 ∈ HL,V such thatϕ(h1) = m1, ϕ(h2) = m2 andh1 | h2 = {h}. Hence,h ∈ h1 | h2, h1 Rϕ m1 and
h2 Rϕ m2;

— Let h1, h2 ∈ HL,V such thath2 ∈ h1 | h. Let m1 = ϕ(h1) andm2 = ϕ(h2). By Property (4) of
Proposition C.1, we obtainm2 = ϕ(h2) ∈ ϕ(h1) ⋆ ϕ(h) = m1 ⋆m, h1 Rϕ m1 andh2 Rϕ m2;

— Letm1,m2 ∈ Mf (X) such thatm2 = m1+m. By Property (3) of Proposition C.1, let us chooseh1
such that def(h1) ∩ def(h) = ∅ andϕ(h1) = m1. Hence,h1 Rϕ m1 holds. Since def(h1) ∩ def(h) = ∅,
let h2 be the unique heap such thath2 ∈ h1 | h. By Property (4) of Proposition C.1, we obtain
ϕ(h2) = ϕ(h1) + ϕ(h) = m1 +m= m2. Henceh2 Rϕ m2 holds.

L 6.6. Let X be a set. There exists a heap monoidHL,V of classHM and a surjective map
ϕ : HL,V −→Mf (X) such that for any Kripke interpretationδ : Var −→ P(Mf (X)) in the free monoid
(Mf (X), ⋆, π), the Kripke interpretationδ′ : Var−→ P(HL,V) in the heap monoid(HL,V,|,∅) defined
byδ′ = v 7→ ϕ−1(δ(v)) satisfies the following property:

h δ′ F if and only if ϕ(h) δ F for any F ∈ BBI

P. By induction on the structure ofF, we prove the following property:

∀h,m h Rϕ m⇒
(

h δ′ F iff mδ F
)

Let us proceed by case analysis on the structure ofF:
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— if F is reduced to a logical variablev ∈ Var, thenh Rϕ m impliesϕ(h) = m and thus we
compute:h δ′ v iff h ∈ δ′(v) iff h ∈ ϕ−1(δ(v)) iff ϕ(h) ∈ δ(v) iff m ∈ δ(v) iff mδ v;

— if F is the multiplicative unitI then the relation reduces toh Rϕ m⇒ (h = ∅ iff m= π) which
is a consequence of Lemma C.2;

— if F = A ∗ B, let us supposeh δ′ A ∗ B and let us provem δ A ∗ B. By definition of
Kripke semantics, there existsh1, h2 such thath ∈ h1 | h2, h1 δ′ A andh2 δ′ B. Sinceh Rϕ m, by
Lemma C.2, we obtainm1,m2 such thatm ∈ m1⋆m2, h1 Rϕ m1 andh2 Rϕ m2. By induction, we get
m1 δ A andm2 δ B. Hence, by definition of Kripke semantics, we deducemδ A∗B. We proceed
in a perfectly symetric way formδ A ∗ B⇒ h δ′ A ∗ B;

— if F = A −∗ B, let us supposeh δ′ A −∗ B and let us provem δ A −∗ B. So let usm1,m2
consider such thatm2 ∈ m1 ⋆ m andm1 δ A and let us prove thatm2 δ B. Sinceh Rϕ m, by
Lemma C.2, we obtainh1, h2 such thath2 ∈ h1 | h, h1 Rϕ m1 andh2 Rϕ m2. By induction, we get
h1 δ′ A. Hence, by definition of Kripke semantics for−∗, we deduceh2 δ′ B. By induction again,
we derivem2 δ B. Symmetrically we obtainmδ A−∗ B⇒ h δ′ A−∗ B;

— if the outermost connective ofF is not multiplicative, i.e. belongs to{⊥,⊤,¬,∨,∧,→}, then
the equivalence is trivially obtained from the induction hypothesis because of the pointwise defini-
tion of the Kripke semantics of non-linear connectives.

Let us consider the following map between the heap monoid (Pf (N),⊎, ∅) and the free monoid
(N×N,+, (0, 0)). Let use splitN into two infinite parts such asN = E⊎OwhereO = {2n+1 | n ∈ N}
andE = {2n | n ∈ N}. We define the mapψ : Pf (N) −→N × N by

ψ(K) = (card(K ∩ E), card(K ∩ O)) for K finite subset ofN

The mapψ is just a particular case of the mapϕ where the setX has two elements like for example
X = {0, 1}. Then the mapψ is surjective and the binary relation defined by its graph is abisimula-
tion between non-deterministic monoids as defined in Lemma C.2. Hence, we imediatly derive the
following result:

L C.3. There exists a surjective mapψ : Pf (N) −→ N × N such that for any Kripke in-
terpretationδ : Var −→ P(N × N) in the free monoid(N × N,+, (0, 0)), the Kripke interpretation
δ′ : Var −→ P(Pf (N)) in the heap monoid(Pf (N),⊎, ∅) defined byδ′ = v 7→ ψ−1(δ(v)) satisfies the
following property:

h δ′ F if and only if ψ(h) δ F for any F ∈ BBI

We deduce a proof of Theorem 6.8

T 6.8. The inclusionBBIPf (N) ⊆ BBIN×N holds.

P. Let F ∈ BBIPf (N) be aBBI-formula which is valid in the heap model (Pf (N),⊎, ∅). Then
let δ : Var −→ P(N × N) be a Kripke interpretation in the free monoid (N × N,+, (0, 0)). Let us
consider (a, b) ∈ N × N and let us show that (a, b) δ F holds. Sinceψ is surjective, let us pick
K ∈ Pf (N) such thatψ(K) = (a, b) (for instance,K = {0, . . . , 2a − 2} ∪ {1, . . . , 2b − 1} would fit).
SinceF ∈ BBIPf (N), we deduceK δ′ F. By Lemma C.3, we conclude (a, b) = ψ(K) δ F. ThusF
belongs toBBIN×N.
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