
HAL Id: hal-01256952
https://hal.science/hal-01256952v1

Submitted on 18 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Of Time Engines and Masters An API for Scheduling
and Synchronizing the Generation and Playback of

Event Sequences and Media Streams for the Web Audio
API

Norbert Schnell, Victor Saiz, Karim Barkati, Samuel Goldszmidt

To cite this version:
Norbert Schnell, Victor Saiz, Karim Barkati, Samuel Goldszmidt. Of Time Engines and Masters An
API for Scheduling and Synchronizing the Generation and Playback of Event Sequences and Media
Streams for the Web Audio API. WAC, Jan 2015, Paris, France. �hal-01256952�

https://hal.science/hal-01256952v1
https://hal.archives-ouvertes.fr

Of Time Engines and Masters
An API for Scheduling and Synchronizing the Generation and Playback of

Event Sequences and Media Streams for the Web Audio API

Norbert Schnell
Victor Saiz

Karim Barkati
Samuel Goldszmidt

IRCAM – Centre Pompidou, STMS lab IRCAM-CNRS-UPMC, Paris France
{norbert.schnell, victor.saiz, karim.barkati, samuel.goldszmidt}@ircam.fr

ABSTRACT
In this article we present an API and a set of Javascript mod-
ules for the synchronized scheduling and aligned playback of
predetermined sequences of events such as notes, audio seg-
ments, and parameter changes as well as media streams (e.g.
audio buffers) based on the Web Audio API logical time.
The API has been designed to facilitate the development on
both ends, the implementation of modules which generate
event sequences or media streams as well as the integration
of such modules into complex audio applications that require
flexible scheduling, playback and synchronization.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Web-
based interaction; H.5.5 [Information Interfaces and Pre-
sentation]: Sound and Music Computing – Systems

Keywords
HTML 5; Web Audio API; Audio Processing; Scheduling;
Synchronization

1. INTRODUCTION
Flexible and precise scheduling and sequencing of audio

events and synthesis parameter changes is an important fea-
ture of any real-time audio synthesis authoring environment
[4, 9, 2]. The Web Audio API [1] provides a logical time
synchronized to the audio input/output system (i.e. cur-

rentTime of an AudioContext) and the possibility to sched-
ule events and parameter changes with perfect accuracy (see
also [8]). Nonetheless, real-time web audio processing appli-
cations that generate events which are required to impact
audio synthesis with precise timing (e.g. to generate rhyth-
mic or phase-synchronous signals) generally have to cope

Copyright r 2015 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.
WAC ’15, Paris, France
.

with the short-term synchronization between Javascript ti-
mers (i.e. setTimeout) and the Web Audio API logical time
[10]. Multiple libraries propose APIs that formalize flexi-
ble scheduling and sequencing of audio events for musical
applications based on the Web Audio API [3, 5].

The API that we present in this article, contributes a
unified and interoperable formalization for the synchronized
scheduling and aligned playback of predetermined sequences
of events such as notes, audio segments, and parameter
changes as well as media streams (e.g. audio buffers) based
on the Web Audio API logical time. The API has been
designed to facilitate the development on both ends, the
implementation of modules, “time engines”, which generate
events algorithmically or interpret prerecorded sequences or
media streams as well as the integration of such modules into
complex audio applications that require flexible scheduling,
playback and synchronization.

2. TIME, POSITION, AND SPEED
As a very first step to properly formalize the different tem-

poralities of a system-wide reference time and the playback
time of predetermined event sequences or media streams, we
propose to refer to the former as time and to the latter as
position. This allows for intuitively defining the ratio be-
tween them as speed. While time is steadily increasing, the
evolution of position can be interrupted (e.g. by stopping
or pausing the playback), discontinuous (e.g. by rewinding
or seeking) and reversed (e.g. by playing backwards). Nev-
ertheless, times and positions are given in seconds.1 Since
they always refer to the logical time of the current Web Au-
dio API context – directly or scaled through speed –, time
and position can be regarded as perfectly precise when used
in conjunction with Web Audio API calls such as the Oscil-
latorNode’s or the AudioBufferSourceNode’s start method
and the audio parameter automation methods (e.g. setVal-
ueAtTime). They can apply to events on any temporal scale
including, for example, elementary waveforms synthesized
through granular synthesis, the beats of a drum pattern or
the macrostructure of a sound installation over several days,
weeks or months.

1The time-position-speed nomenclatura we propose as a
clear and intuitive alternative to denominations like current
time, playback time and playback rate at least have the ad-
vantage of shortening the function and attribute names of
the proposed API.

3. TIME ENGINES AND MASTERS
In the API we propose, a component that generates se-

quences of events or media streams extends the TimeEngine

class. We have identified three cases that have been formal-
ized as three different interfaces provided by the TimeEngine:

scheduled – the module generates events that are precisely
scheduled in time (e.g. the grains generated by a gran-
ular synthesis engine)

transported – the module generates events that are pre-
cisely associated to particular positions (e.g. the per-
cussive elements of a recorded beat pattern annotated
by onset positions)

speed-controlled – the module provides its own synchro-
nization to the current Web Audio context time as well
as a way to control its playback rate (e.g. a Web Audio
API AudioBufferSourceNode)

A TimeEngine can be added to a master module that uses
one of these interfaces to drive the engine in synchronization
with other engines. In apparent symmetry to the three in-
terfaces provided by the TimeEngine class, we implemented
three masters, the scheduler, the Transport class, and the
PlayControl class. When adding an engine to a master,
the master provides it with getters for the attributes cur-

rentTime and currentPosition. The engines can use these
getters in their implementation to synchronize their process-
ing to the master.2

The different interfaces provided by the engines and the
getters provided by the masters allow for implementing en-
gines that behave differently when added to different masters
and for implementing masters that drive the same engines
in different ways, while relying on a clear and simple API
on both sides.

3.1 Scheduler and Scheduled
The scheduler object is provided as a global singleton

that allows for driving engines which implement the sched-
uled interface.3 Scheduled engines generate a sequence of
events by implementing the method advanceTime which is
called for the first time when the engine is added to the
scheduler – or with an optional delay. The method ad-

vanceTime is called with the corresponding Web Audio con-
text time of the event to be generated and returns the time
of the next event (see figure 1). When returning Infin-

ity, the engine’s advanceTime method is not called again
until it is rescheduled. The scheduler provides the sched-
uled engines with a function resetNextTime that allows for
changing their next scheduling time.

We have implemented two versions of the global scheduler
singleton. The more complex version maintains a priority
queue of the currently scheduled engines. This variant allows
for implementing complex systems where the precise order
of events is crucial. A simplified version (i.e the simple-
scheduler) is based on the principle laid out in [10] where
the next scheduling time of all scheduled engines is tested in
a regularly – and recursively – called setTimeout callback.

2In the TimeEngine base class, the getter of currentTime
returns the current Web Audio context time and that of
currentPosition returns 0.
3In addition, the scheduler allows for scheduling simple –
one-shot – callbacks with arbitrary delay times.

scheduler
“fast”
engine
scheduled

scheduler
time

scheduler
priority

queue

“slow”
engine
scheduled

advanceTime advanceTime

Figure 1: Two engines generating events at different
pace. The scheduler successively calls the engines’
advanceTime method just before their scheduled time
and reschedules each engine at the returned time
using a priority queue.

Both variants of the scheduler provide the same attributes
to parameterize the scheduling behavior:

period – period (simple scheduler) or minimum period (sched-
uler) of the recursive setTimeout calls

lookahead – lookahead time by which all calls to the en-
gines advanceTime method are anticipated in respect
to the current Web Audio context time

3.2 Transport and Transported
The Transport class implements the core of a generic

player that controls multiple engines. While the engines take
over the generation or interpretation of event sequences and
media streams, the transport master provides their synchro-
nization and alignment to a common playing position that
evolves as a function of the transport’s external control. The
user can determine how the engine’s event or media positions
are aligned to the transport position through a set of param-
eters including start, offset and end positions. While the
transported interface is the preferred interface of the trans-
port, it also accepts engines that implement the other two
interfaces.4

scheduler

scheduling
time

transport
“fast”
engine
transported

“slow”
engine
transported

transport
position

transport
priority

queue

advancePosition advancePosition

advanceTime

scheduler
priority

queue

transport
scheduler

hook
scheduled

Figure 2: The same engines as in figure 1 con-
trolled by a transport. The transport’s scheduled
event translates the engines’ positions in scheduling
times depending on the transport’s playing controls.

4When adding an engine to the transport, the transport
checks first whether the engine implements the transported
interface followed by the speed-controlled and the scheduled
ones.

With regard to transported engines, the transport can be
seen as a translator that translates the engines’ positions
into scheduling times. The translation process is illustrated
in the figures 2 and 3. Similar to the scheduled interface,
the transported interface essentially consists of a method
advancePosition that generates an event and returns the
position of the next event regarding the current playing di-
rection (i.e. whether the speed is positive or negative). To
translate the event positions into scheduling times the trans-
port adds an internal scheduled engine – its scheduled cell –
to the global scheduler.5 This cell is always scheduled – and
rescheduled – at the time that corresponds to the position
of the next transported engine (see figure 2). Similarly to
the scheduler, a transport keeps a priority queue of the next
positions of its transported engines. When playing in one
direction, these positions do not depend on the transport
speed, so that only the first position of the priority queue
has to be rescheduled when the transport’s speed changes.
This allows for efficient scheduling of any number of trans-
ported engines.

scheduler

tr
an

sp
or

t
po

sit
io

n

scheduling
time

“slow”
engine

transported

transport
scheduler

hook
scheduled

tr
an

sp
or

t

sp
ee

d
>

1

“fast”
engine

transported

engine positions translated to scheduler times

en
gi

ne
 p

os
iti

on
s

in
 tr

an
sp

or
t

sp
ee

d =
 1

speed
 < 1

speed = 0

Figure 3: The transport translates the positions of
the transported engines into scheduling times de-
pending on the transport’s variable speed. In the
illustrated example corresponding to figure 2, the
transport position evolves continuously (no seek)
and without reversing the playing direction (speed
≥ 0).

However, the transport’s priority queue is reconstructed
each time the transport starts playing, seeks to a new posi-
tion, or reverses its playing direction. Therefore, each trans-
ported engine provides a method resetPosition that re-
turns its next position regarding the master’s current posi-
tion and playing direction.6

5The Transport class requires the version of the scheduler
based on a priority queue in order to properly synchronize
the transported engines and their control.
6The transport provides the engines under its control with a
function resetNextPosition that allows for changing their
next transport position.

When adding an engine that only implements the sched-
uled interface, the transport delegates the scheduling of the
engine to the global scheduler and generates an adapter.
The adapter consists of a minimal transported engine adds
the engine to the scheduler at its start position and removes
it when the transport stops or reaches the engine’s end posi-
tion. To align its processing to the transport’s position, the
engine can obtain a precise position corresponding to the
current time through the currentPosition attribute getter
provided by the transport (see figure 4).

1 scheduler.add(engine , Infinity , () => {
2 // get currentPosition
3 return (this.transport.currentPosition

- this.offsetPosition) *
this.scalePosition;

4 });

Figure 4: The currentPosition attribute getter pro-
vided by the adapter for scheduled engines added
to a transport. The getter is given as third argu-
ment – an ECMAScript 6 arrow function –, when
adding the engine to the global scheduler. The In-

finity given as scheduling delay (second argument)
makes that the engine is not called until it is actually
started – and rescheduled – by the transport.

The third kind of engines that can be added to the trans-
port are those implementing the speed-controlled interface.
Similar to the case of scheduled engines, the transport au-
tomatically generates an adapter that controls the engine
through the provided interface. The speed-controlled inter-
face is described in the next section. An example that illus-
trates the functioning of a speed-controlled engine added to
a transport is given below as the PlayerEngine (see 4.4).

The Transport class itself extends the TimeEngine class
and implements two of its interfaces. Through its trans-
ported interface, a transport can be added to another trans-
port, which allows for constructing hierarchical structures
of transports being slaved to transports and, ultimately, to
compose sequences of sequences. The speed-controlled in-
terface allows for keeping the transport class to its essential
functionalities. Play control methods and attributes can be
added to a transport by associating it to a PlayControl

master.

3.3 PlayControl and Speed-Controlled
The PlayControl class allows for controlling a single en-

gine that is given as an argument of its constructor. Like
transports, instances of the PlayControl class accept en-
gines of all three TimeEngine interfaces. The basic idea of
the PlayControl is to transform any engine into a player
that provides common media player control methods and
attributes such as start, stop, seek, and speed.

The preferred interface of PlayControl masters is the
speed-controlled interface – followed by the transported inter-
face. This interface aims at controlling engines that, other
than scheduled and transported engines, ensure their syn-
chronization to the current Web Audio context time inde-
pendently. This is for example the case for transports, which
are internally driven by the global scheduler, as well as for
audio players based on the Web Audio API AudioBuffer-

SourceNode.

The interface consists of a single method syncSpeed that is
called with the master’s current (Web Audio context) time,
position, and speed as well as with a flag seek, that indicates
whether the engine has to jump to a new position. From the
calls to the syncSpeed method, a speed-controlled engine can
easily derive whether it should (re-)start, halt, reverse its
playing direction, or jump to a new position (see 4.4 below).

The way the PlayControl class handles scheduled and
transported engines is very similar to the Transport. How-
ever, since instances of PlayControl only control a single
engine with a fixed alignment – at position 0 –, the imple-
mentation remains considerably simpler.

4. IMPLEMENTED ENGINES
We have developed a set of engines that implement differ-

ent interfaces provided by the TimeEngine class. Here, they
are included to further illustrate both the functioning of the
TimeEngine API and its masters as well as the motivations
for its development.

4.1 A Metronome
The Metronome class extends TimeEngine and implements

both the scheduled and the transported interface. In both
cases, the engine periodically generates click sounds using
the Web Audio API. A set of attributes allows for setting the
period and adjusting the sound of the click. As a scheduled
engine, the metronome produces clicks of the given period
as soon as it is added to the scheduler. When added to a
transport, the metronome clicks are aligned to the transport
position and occur when the transport reaches their posi-
tions depending on its external control. Figure 5 shows the
implementation of the interface methods of the metronome.

1 // TimeEngine scheduled interface
2 advanceTime(time) {
3 this.click(time); // generate sound
4 return time + this.period;
5 }
6
7 // TimeEngine transported interface
8 syncPosition(time , position , speed) {
9 var next = (Math.floor(position /

this.period) + this.phase) *
this.period;

10
11 if (speed > 0 && next < position)
12 next += this.period;
13 else if (speed < 0 && next > position)
14 next -= this.period;
15
16 return next;
17 }
18
19 // TimeEngine transported interface
20 advancePosition(time , position , speed) {
21 this.click(time); // generate sound
22
23 if (speed < 0)
24 return position - this.period;
25
26 return position + this.period;
27 }

Figure 5: Implementation of the scheduled and
transported interface methods of the Metronome class.

4.2 The GranularEngine
The GranularEngine is an example of a TimeEngine that

only implements the scheduled interface but nevertheless can
be aligned to the position of a transport. The engine per-
forms granular synthesis on a given AudioBuffer. A set of
attributes determines the engine’s synthesis parameters such
as the grain period, duration, and resampling (i.e. pitch
transposition) as well as the position of the grains in a given
AudioBuffer. When added to the scheduler, an engine gen-
erates grains with the given period at the given the position
– that usually is randomly varied for each grain within given
boundaries.

1 get currentPosition () {
2 return this.position;
3 }

Figure 6: The default currentPosition attribute get-
ter of the GranularEngine class.

Internally, the engine uses the currentPosition attribute
to generate a grain, that by default is defined as the value
of the position attribute (see figure 6). When added to a
transport, the getter of currentPosition is redefined by
the transport to return the current transport position trans-
formed through the alignment parameters defined for the
engine (see figure 4 in 3.2).

This way, the engine becomes a granular player that is au-
tomatically aligned to other engines controlled by the same
transport. To create a simple granular player, the user can
create a GranularEngine instance with PlayerControl in-
stance (see figure 7).

1 var engine = new GranularEngine ();
2 var player = new PlayControl(engine);
3
4 engine.period = 15;
5 engine.duration = 120;
6 player.start ();

Figure 7: Example code composing a granular player
from a GranularEngine and a PlayerControl.

4.3 The SegmentEngine
The SegmentEngine synthesizes sound segments that are

defined by an array of onset positions and durations refer-
ring to an AudioBuffer. The engine’s implementation and
parameters largely resemble those of the GranularEngine

class described in 4.2. Like the metronome (see 4.1), the Seg-
mentEngine implements both the scheduled and transported
interfaces. In the scheduler, the engine produces sound seg-
ments selected through the segmentsIndex attribute at reg-
ular time intervals while allowing for controlling their period,
duration, and resampling by a set of attributes. When added
to a transport, the segment onset positions are aligned to the
transport position, which allows for playing the segments
with different tempi – also backwards – and for rearranging
their order by appropriately controlling the transport speed
and position.

4.4 The PlayerEngine
The PlayerEngine completes the set of TimeEngine classes

that implement different interfaces to playback recorded au-
dio aligned and synchronized through a transport by a sim-
ple audio player. The engine implements the speed-controlled
interface and derives the control of an AudioBufferSource-

Node from the syncSpeed method calls (see figure 8).

1 // TimeEngine speed -controlled interface
2 syncSpeed(time , position , speed , seek) {
3 var lastSpeed = this.speed;
4
5 if (speed !== lastSpeed || seek) {
6 if (seek || lastSpeed * speed < 0) {
7 this.halt(time);
8 this.start(time , position , speed);
9 } else if (lastSpeed === 0 || seek)

{
10 this.start(time , position , speed);
11 } else if (speed === 0) {
12 this.halt(time);
13 } else if (this.bufferSource) {
14 this.bufferSource.playbackRate
15 .setValueAtTime(speed , time);
16 }
17
18 this.speed = speed;
19 }
20 }

Figure 8: Implementation of the speed-controlled in-
terface in the PlayerEngine class. The internal meth-
ods start and halt create, start and stop an Au-

dioBufferSourceNode using the given parameters.

Associated to a PlayControl the PlayerEngine provides
a simple audio player. When added to a transport, multiple
instances of the class can be composed to multi-track audio
player synchronized to engines of the other interfaces.

5. CONCLUSION
We have presented an API and a set of Javascript modules

for the scheduling and synchronization of modules that gen-
erate or playback sequences of events or media streams using
the Web Audio API. The article summarized the underly-
ing concepts as well as the implementation of the provided
TimeEngine base class and masters: the scheduler single-
ton, the Transport class and the PlayControl class. Finally,
we have briefly described a set of example modules extend-
ing the TimeEngine class to further illustrate the presented
concepts.

Since early on, the TimeEngine API and the presented
master and audio processing modules have been used in the
development of prototype applications for the WAVE and
CoSiMa projects.7. These developments have guided the
design and allowed for validating many of its aspects [7].

The developed software modules are available on GitHub,
under BSD-3-Clause license, as separate repositories asso-
ciated to the Ircam-RnD organization.8 The repositories
include documentation and working examples. The docu-
mentation of the TimeEngine API can be found in the time-

engine repository [6].

7http://wave.ircam.fr/ and http://cosima.ircam.fr/
8https://github.com/Ircam-RnD

6. ACKNOWLEDGEMENTS
The developments described in this article have been con-

ducted in the context of the WAVE and CoSiMa research
projects, partially funded by the french National Research
Agency (ANR, projects ANR-12-CORD-0027 and ANR-13-
CORD-0010). We would like to thank our colleagues and
project partners Sébastien (Robi) Robaszkiewicz, Benjamin
Matuszewski, and Emmanuel Fréard for their precious con-
tributions to this work.

7. REFERENCES
[1] Web Audio API – W3C Editor’s Draft.

http://webaudio.github.io/web-audio-api/.

[2] G. Essl. UrMus – An Environment for Mobile
Instrument Design and Performance. In Proceedings of
the International Computer Music Conference, ICMC
’10, New York, 2010.

[3] S. Piquemal. WAAClock, a Comprehensive Event
Scheduling Tool for Web Audio API.
https://github.com/sebpiq/WAAClock, 2013.

[4] M. Puckette. Combining Event and Signal Processing
in the MAX Graphical Programming Environment.
Computer Music Journal, 15(3):68–77, 1991.

[5] C. Roberts, G. Wakefield, and M. Wright. The Web
Browser as Synthesizer and Interface. In Proceedings
of the Conference on New Interfaces for Musical
Expression, NIME ’13, pages 313–318, 2013.

[6] N. Schnell. The WAVE Audio TimeEngine Base Class.
https://github.com/Ircam-RnD/time-engine, 2014.

[7] N. Schnell, S. Robaszkiewicz, D. Schwarz, and
F. Bevilacqua. Collective Sound Checks – Exploring
Intertwined Sonic and Social Affordances of Mobile
Web Applications, 2015.

[8] N. Schnell and D. Schwarz. Gabor,
Multi-Representation Real-Time Analysis/Synthesis.
In COST-G6 Conference on Digital Audio Effects,
DAFx ’05, pages 122–126, Madrid, Spain, Septembre
2005.

[9] G. Wang. The Chuck Audio Programming Language.
”A Strongly-timed and On-the-fly Environ/Mentality”.
PhD thesis, Princeton, NJ, USA, 2008.

[10] C. Wilson. A Tale of Two Clocks – Scheduling Web
Audio with Precision. http://www.html5rocks.com/
en/tutorials/audio/scheduling/, 2013.

https://github.com/sebpiq/WAAClock
https://github.com/Ircam-RnD/time-engine
http://www.html5rocks.com/en/tutorials/audio/scheduling/
http://www.html5rocks.com/en/tutorials/audio/scheduling/

	Introduction
	Time, Position, and Speed
	Time Engines and Masters
	Scheduler and Scheduled
	Transport and Transported
	PlayControl and Speed-Controlled

	Implemented Engines
	A Metronome
	The GranularEngine
	The SegmentEngine
	The PlayerEngine

	Conclusion
	Acknowledgements
	References

