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HYPERSPECTRAL IMAGES

Gianni Franchi Jesús Angulo

CMM-Centre for Mathematical Morphology, MINES ParisTech; France

ABSTRACT

This paper deals with a problem of reducing the dimension

of hyperspectral images using the principal component anal-

ysis. Since hyperspectral images are always reduced before

any process, we choose to do this reduction by adding spatial

information that can be useful then for classification process;

to do it we choose to project our data in new spaces thanks

mathematical morphology.

Index Terms— Statistical Learning, reduction of dimen-

sion, Hyperspectral images, Morphology.

1. INTRODUCTION

Conventionally, hyperspectral images which allow us to re-

construct the spectral profiles of objects imaged by the acqui-

sition of several tens or several hundred of narrow spectral

bands are often reduced in dimension before any treatment.

Many hyperspectral reduction methods are linear and do not

care of the multiple sources of nonlinearity presented in [1].

However lately, non linear reduction techniques have been de-

veloped, and some of them have been used in hyperspectral

images [2]. However, most of these techniques present disad-

vantages [3] in comparison to the principal component anal-

ysis that is why we choose to work with the PCA and to add

spatial information, which are nonlinear. Since mathemati-

cal morphology is a nonlinear image processing methodology

based on the application of complete lattice theory to spatial

structures, we choose to explore this kind of processing like

[4, 5], however in our case we use mathematical morphology

to improve the reduction of the dimension.

2. NOTATIONS AND NOTIONS OF

MATHEMATICAL MORPHOLOGY

2.1. Morphological Decomposition

In this section we are going to introduce the notation that

would be used on the rest of this paper. Let E be a subset

of the discrete space Z
2, which represents the support space

of a 2D image and F ⊆ R
D be a set of pixels values in di-

mension D. Hence, in our case the value of a pixel x∈ E is

represented by a vector v ∈ F of dimension D. Additionally,

we will write higher order tensors by a calligraphic upper-

case letters (I,S, . . .). Moreover if I ∈ R
n1×n2×n3 , for all

i ∈ [1, n3] I:,:,i represents a matrix of size n1 ×n2 where the

third component is equal to i. We can associate a tensor to the

hyperspectral image, we called this tensor F ∈ R
n1×n2×D.

Let f be a grey scale image which can be represented by a

function. Area openings (resp. area closings) are morpholog-

ical filters that remove from an image the bright (resp. dark)

connected components having a surface area smaller than the

parametersl ∈ N [6] : γa
sl
(f) =

∨
i
{γBi(f)|Bi is connected and card(Bi) =

sl} and ϕa
sl
(f) =

∧
i
{ϕBi(f)|Bi is connected and card(Bi) = sl}

, where γB(f) and ϕB(f) represent respectively the morpho-

logical flat opening and closing according to structuring

element B .

Let us consider {γa
sl
}, l = 1...S and {ϕa

sl
}, l = 1...S, two

families indexed one of openings and one of closing. Typi-

cally, the index l is associated to the size of the structuring

element or in our case to the surface area. The notion of mor-

phological decomposition is related to granulocytic axiomatic

[7]. Namely, based on [8] we have :

f =
1

2





S
∑

l=1

(γ
a
sl−1

(f) − γ
a
sl

(f)) −

S
∑

l=1

(ϕ
a
sl

(f) − ϕ
a
sl−1

(f)) + γS(f) + ϕS(f)





Therefore we have a decomposition of the initial image into

S scales, together with the last opening and closing. We re-

mark that residue (γa
sl−1

(f)−γa
sl
(f)) represents bright details

between levels sl and sl−1. Identically (ϕa
sl
(f) − ϕa

sl−1
(f))

stands for dark details between levels sl and sl−1. We can

now calculate a decomposition of each band of the hyper-

spectrale cube. However there are some issues to be taken

into account : by decomposing an image into scales we have

now to deal with an object of bigger dimensionality, and also

the decomposition may not be optimal: it depends on the dis-

cretization of the S scales, the size of the pixel scales, etc...

Then in next section we are going to introduce the pattern

spectrum and how it can be used to deal with the problem of

discretization.

2.2. Pattern Spectrum (PS)

The pattern spectrum provides the probability density func-

tion (pdf) of the granulometry. The area normalized pattern

spectrum of f is at size sl : PSa(f, l) =
Mes(γa

sl
(f))−Mes(γa

sl+1
(f))

Mes(f)
,



PSa(f,−l) =
Mes(ϕa

sl+1
(f))−Mes(ϕa

sl
(f))

Mes(f)
, where ”Mes” repre-

sents the integral of the image. Based on the analogy between

the pdf and the PS, we can calculate the cumulative distribu-

tion function of the spectrum for the opening part and also

one for the closing part. Afterwards we sample these cumu-

lative distribution functions where the number of sample is

fixed and is equal to S, under the constrain that the sampled

cumulative distribution function must be as much as possi-

ble similar to the original function. Since in probability, the
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Fig. 1. On the left the Pattern Spectrum with opening of a

grey scale image, on the right in blue its corresponding cu-

mulative distribution function of the spectrum, and in red its

approximation with S = 8.

cumulative distribution function is a way to characterised

a distribution such as the pdf then thanks to this property,

we can be sure that our discretization represents the original

image.

2.3. Distance function

Let us consider a binary image bf , and X a close set

of this image, the distance function corresponding to this

close set X gives to each point x ∈ X a real number

that depends on the position of x with respect to X such

as : d(x,X) = min{ρ(x, y) : y ∈ Xc}, where ρ(x, y)
is the Euclidean distance between x and y, and where

Xc is the complemented of set X . Now let us consider

a gray-scale image f ,and {Xs(f)}s its upper level sets.

Then, according to [9], the gray-scale distance transform

of f is : d(x, f) = 1
255 ×

∑b

s=a d(x,Xs(f)), where

a = min{f(x), x ∈ E}, and b = max{f(x), x ∈ E},

where E is the index of the position of the pixel of f .

3. MORPHOLOGICAL PRINCIPAL COMPONENT

ANALYSIS (MPCA)

3.1. Classical PCA

Principal Component Analysis (PCA) starts with a set vec-

tor vi ∈ R
D, 1 ≤ i ≤ n where n represents the number of

vectors, in our case it corresponds to the number of image

pixels, i.e., n = n1n2. The goal of the PCA is to reduce the

dimension of this vector space, namely F = {vi}
n
i=1 −→

F ′ = {v′i}
n
i=1, with v′i ∈ R

d, where d ≪ D. In our case,

F ∈ Mn,D(R) represents the hyperspectral image F , where

each column Fk ∈ R
n, 1 ≤ k ≤ D corresponds to a vector-

ized spectral band. PCA maximizes the objective function :

L(wj , λ) = wT
j V wj − λ(wT

j wj − 1), where λ ∈ R and V =

n−1(FTF ), V ∈ MD,D(R), is the covariance of F . This re-

duction can be done by projecting the data on d eigenvectors

of V corresponding to the d higher eigenvalues of V

3.2. MPCA and its variants

The fundamental idea of Morphological Principal Component

Analysis (MPCA) consists in replacing the covariance matrix

V of PCA, which represents the statistical interaction of spec-

tral bands, by a covariance matrix VMorpho computed from a

morphological representation of the bands. Therefore, math-

ematical morphology is fully integrated in the dimensional-

ity reduction problem by standard SVD computation to solve

VMorphowj = λjwj . The corresponding principal components

wj provides the projection space for the hyperspectral image

F .

Scale-space Decomposition MPCA. Using the surface area-

based nonlinear scale-space discussed in previous section, the

grey-scale image of each spectral band F:,:,k is decomposed

into residues of area openings and area closings according

to the discretization into S scales for each operator, i.e.,

rl(F:,:,k) = γa
sl−1

(F:,:,k) − γa
sl
(F:,:,k) and r−l(F:,:,k) =

ϕa
sl
(F:,:,k) − ϕa

sl−1
(F:,:,k), 1 ≤ l ≤ S. Thus we have in-

creased the dimensionality of the initial dataset from a tensor

(n1, n2, D) to a tensor (n1, n2, D, 2S + 1). As discussed

in [8], this tensor can be reduced using high order-SVD tech-

niques. We propose here to simply compute a covariance

matrix as the sum of the covariance matrices from the various

scales. More precisely, we introduce VMorpho-1 ∈ MD,D(R)

with : VMorpho-1 =
∑S

l=1(V (l)) +
∑S

l=1(V (−l)) where the

covariance matrices at each scale l is obtained as V (l)k,k′ =
Covar (rl(F:,:,k), rl(F:,:,k′)), 1 ≤ k, k′ ≤ D. We note

that involves an assumption of independence of the various

scales. We remark also that this technique is different of clas-

sical approaches of differential profiles as [10, ?] where all

the images of the morphological decomposition are used as

columns to compute a covariance matrix in M2S+1,2S+1(R).

Pattern Spectrum MPCA. In fact, we can consider a much

compact representation of the morphological information as-

sociated to area-based nonlinear scale-space of each spectral

band. It simple involves to consider the area-based pattern

spectrum of spectral bands as the variable to be used to find

statistical redundancy on the data. In other words, the corre-

sponding covariance matrix VMorpho-2 ∈ MD,D(R) is defined

as : VMorpho-2 k,k′ = Covar (PSa(F:,:,k, l), PSa(F:,:,k′ , l)) ,
with 1 ≤ k, k′ ≤ D and where PSa(F:,:,k, l), −S ≤ l ≤ S,

is the area-based pattern spectrum obtained by area-openings

and area-closings. We note that the pattern spectrum can be

seen a size a pdf of image structures and consequently the
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Fig. 2. (a) band 1 of Pavia, (b) PS of band 1 of Pavia

(c)distance function band 1 of Pavia, idem for (d), (e) and

(f) but with band 100.

MPCA associated to it explores intrinsic dimensionality of

sets of distributions instead of sets of vectors.

Distance Function MPCA. Classical PCA for hyperspectral

images is based on exploring covariances between spec-

tral intensities. The previous MPCA involves to change

the covariance to a morphological scale-space representa-

tion of the images. An alternative is founded on trans-

forming each spectral band from an intensity based map

to a metric based map where at each pixel the value is

associated to both the initial intensity and the spatial re-

lationships between the image structures. This objective

can be achieved using the Molchanov gray-scale distance

function for each spectral band dist(F:,:,k). The new co-

variance matrix VMorpho-3 ∈ MD,D(R) is now defined as:

VMorpho-3 k,k′ = Covar (dist(F:,:,k), dist(F:,:,k′)) , with

1 ≤ k, k′ ≤ D.

Spatial/Spectral MPCA. As we have discussed, VMorpho-2

represents a compact morphological representation of the

image, however the spectral intensity information is also im-

portant for dimensionality reduction. Let us write X and

Y two random variables such as X represents the spectral

information of the data, and Y the morphological/spatial in-

formation. To come with a new variant of MPCA we assume

the independence of the spectral and spatial information so of

X and Y . This imply that var ((1− β) Pr(X) + β Pr(Y )) =
(1 − β)2 varPr(X) + β2 varPr(Y ), with β ∈ [0, 1]. More

concretely, that means that we can build another covariance

matrix VMorpho-4 that would represent the spectral and spa-

tial information without increasing the dimensionality by :

VMorpho-4 β = (1 − β)2V + β2VMorpho-2, where obviously

Vk,k′ = Covar (F:,:,k,F:,:,k′) and β stands for a regulariza-

tion term that balances the spatial over the spectral informa-

tion.

4. MPCA APPLIED TO HYPERSPECTRAL IMAGES

4.1. Criteria to evaluate PCA vs. MPCA

We can now use PCA and the four variant of MPCA to di-

mensionality reduction of hyperspectral images. In order to

evaluate the interest for such purpose, it is necessary to estab-

lish quantitative criteria that should be assessed. We want to

show the improvement of classical PCA with respect to the

following criteria.

Criterion 1. (C1) The reconstructed hyperspectral image

F̃ using the first d principal components should be regular-

ized in order to be more spatially/spectrally homogeneous;

Criterion 2. (C2) Hyperspectral image F̃ should pre-

serve the edges of the main image structures;

Criterion 3. (C3) Separability of spectral classes should

be improved in the dimensionality reduced space. That in-

volves in particular a better pixel classification.

In order to assess C2, we compute for initial image F
the gradient of each band k, denoted ‖∇Fk‖, and compare

it to the gradient of the reconstructed image F̃ , by measur-

ing the Euclidean distance. In order to have an estimator

of the error, we integrate for all the bands, i.e., ErrorGrad =∑D

k=1

∑n1,n2

i,j=1 |‖∇Fi,j,k‖ − ‖∇F̃i,j,k‖|
2.

To assess C1, which involves image homogeneity, we pro-

pose an approach based on a partition of the image into re-

gions. First, working on the d eigenvectors, we compute the

image partition associated to the α-flat zones, the partition is

denoted πα. We remind that two neighboring pixels belong

to the same α-flat zones if their distance is lower or equal to

α [11]. In our case, the pixel distance corresponds to the Eu-

clidean distance of vector values in the eigenimages and the

choice of α is done in order to have a number C of α-flat

zones similar for all the approaches of PCA and MPCA to be

compared. By fixing the number of zones in the partition, we

guarantee that the difference between a partition and another

one depends exclusively on the homogeneity of the image.

Then, using the partition πα, we compute the spectral

mean value of pixels from original image F in each zone,

in order to produce a simplified hyperspectral image denoted

F
πα

. Finally, we assess how pixels of the original image from

each α-flat zone are far from their mean by computing the fol-

lowing error ErrorHomg =
∑D

k=1

∑n1,n2

i,j=1 |Fi,j,k −F
πα

i,j,k|
2.

Finally, C3 is related to supervised classification of hyper-

spectral image. We have considered SVM with a linear kernel

as learning technique, where the classifier is validated using

5-fold cross validation. Sensitivity and specificity of classifi-

cation are then computed.

4.2. Evaluation of Pavia hyperspectral image

The assessment of the performance of PC and MPCA was

carried out using the well known University of Pavia hyper-

spectral image, which has dimensions n1 = 1610×n2 = 340
pixels, D = 103 spectral bands and its geometrical resolution

is of 1.3 m. We have applied classical PCA and the differ-

ent variants of MPCA to Pavia image. Fig. 4.2 shows the

first three eigenimages, visualized as a RGB false color. We

note that the PS MPCA requires d = 5 to represent 90%
of the variance whereas the other approaches only imposes
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Fig. 3. RGB false color visualization of first three eigen-

images from Pavia image: (a) spectral PCA, (b) scale-

decomposition MPCA, (c) pattern spectrum MPCA, (d) dis-

tance function MPCA.

d = 3. An interesting aspect observed on the projection

of the 103 spectral bands into the first two eigenvectors is

how PCA and the scale-space decomposition MPCA clus-

ter the bands linearly, since bands close in the projection are

also near in the spectral domain, whereas the patter spec-

trum MPCA and distance function MPCA tends to cluster

spectral bands which are not necessary spectrally contigu-

ous. Therefore the nonlinear embedding from VMorpho-2 and

VMorpho-3 is clearly illustrated. Obviously, a similar behavior

is observed for VMorpho-4 β . From a quantitative viewpoint,

one can see in Table 1 that globally MPCA produces a more

homogenous regularization of the image than classical PCA,

especially the distance function MPCA and Spatial/Spectral

MPCA with an appropriate β = 0.2, which give the lowest

values of ErrorHomg. Finally, Table 2 summarizes the results

of supervised classification of Pavia. We note the sensitiv-

ity is excellent for all the methods, however we can see how

MPCA improves the results on the specificity. Once again

VMorpho-3 and VMorpho-4 β=0.2 are significantly better than the

others variants.

V VMorpho-1 VMorpho-2 VMorpho-3

ErrorHomg 100 100 95.9 79.3

ErrorGrad 55.41 54.88 55.25 100

VMorpho-4 β VMorpho-4 β VMorpho-4 β

β = 0.8 β = 0.2 β = 0.5

ErrorHomg 93.2 83.9 88.3

ErrorGrad 38.9 98.5 78,5

Table 1. Comparison of principal component analysis from

Pavia image using results of criteria C1 and C2. The values

have normalized to worst case, which gives 100.

5. CONCLUSION

We have introduced in the paper the notion of MPCA which
has been declined into four different approaches. MPCA al-
lows to deal with a spatial/spectral representation of the im-
age based on mathematical morphology tools for SVD-based
dimensionality reduction. It is important to note that it in-
volves only to change the covariance matrix used in the SVD
to obtain the eigenvectors where the spectral bands are then

Sensitivity Specificity

±σ(10−5) ±σ(10−2)

V 0.99 ± 1.03 0.44 ± 3.44
VMorpho-1 0.99 ± 1.03 0.45 ± 3.39
VMorpho-2 0.99 ± 1.03 0.56 ± 3.38
VMorpho-3 0.99 ± 0.93 0.76 ± 3.35
VMorpho-4 β , β = 0.8 0.99 ± 0.93 0.39 ± 3.35
VMorpho-4 β , β = 0.2 0.99 ± 0.93 0.78 ± 3.35
VMorpho-4 β , β = 0.5 0.99 ± 0.93 0.47 ± 3.35

Table 2. Comparison of hyperspectral supervised classifica-

tion on principal component space from Pavia image, linear

kernel SVM and 5−fold cross validation.

projected. We have shown that the best results results are
obtained when we combine spatial and spectral information
(VMorpho-3, VMorpho-4 β , β = 0.2).
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